
ILOC VALIDATION

William Bricken

June 2002

An overview of the verification techniques used in ILOC implementations.

Test-vectors

The ~200 MCNC benchmarks come with a complete set of test-vectors, exhaustive

in the case of combinational circuits, and as good as can be expected for the

sequential circuits. All ILOC transformations are correct wrt the test

vectors. In the case of parametric circuits that we generate (adders,

multipliers, comparators, etc), we also generate test-vectors from RTL

behavioral equations.

Logic Test Problems

In the case of core ILOC algorithms, we have a test-suite of over 1200 logic

problems of all degrees of difficulty and complexity, most of them

constructed to test difficult and pathological cases. This suite includes:

tautologies constructed for code testing

arithmetic

literal pervasion

form pervasion

algebraic

pattern-matching

query reduction

challenge

circuit transformations

minimization constructed for code testing

literal pervasion

form pervasion

algebraic

query reduction

challenge

collections of challenge problems

Newell-Simon human problem solving

Pelletier theorem prover failures

exponential SAT

entire textbooks

Manna-Waldinger

Klenk logic

Klenk minimization

Gersting two-level

Gersting multiple minima

Hachtel factoring

Validation Techniques

For the core ILOC algorithms:

• They are implemented by two completely different approaches (fully

recursive and stack-based), which are used for algebraic cross-checking.

• Each transformation is tested against the ~1200 logic tautology and

minimization test sets

• Each transformation is verified by applying a tautology checker

(equivalence checking) to before and after forms.

• Each transformation is also verified using case analysis (dynamic

test-vector generation), similar to BDD approaches.

For the circuit-based ILOC algorithms:

• Each transformation is tested against industry furnished test-vectors

for the ~200 MCNC benchmarks

• Each transformation is verified using case analysis on input

variables (BDD-like)

• Each transformation is verified algebraically using two techniques:

equational transformation, i.e. A ==> B

conversion to logical standard form, i.e. A=B ==> (A B)((A)(B))

Implementation

There's a distinction to be made between correct mathematical algorithms and

correct implementations of algorithms.

For the mathematical algorithms: we have all the standard proofs of

consistency, completeness, convergence, etc.

For the implementation: we have the above verification tests, and as well:

• The functions which comprise the recursive version of the IL core

implementation have been proved correct algebraically

• The code structure is highly modular, with various redundant

implementation and verification techniques such as

object-oriented models for cell and circuit properties

recursive functions for process tracing

guarded transformations for functional i/o consistency

logical variable names for all constants

• All code is extensively cross-verified and error-message interrupted

at every transformation step, for e.g.

type-checking each cell (A cell is a compound logic gate.)

structural type verification

semantic labels for each cell id

output and function traces

dynamic random and boundary condition test-vector generation

partial functional evaluation

cell pattern-matching, abstraction, and expansion

separate validation of circuit structure after each transform,

to check for

duplicate cells

duplicate functionality with different ids

cell id consistency after transforms

upper and lower network connectivity for each cell

structurally isolated cells

• All sets of circuit transformations are under version control,

including

circuit type checking

debug processing modes,

with conditional error messages and process interrupts

renumbering and circuit id control

statistical verification of circuit composition

file comparison and equivalence

A typical analysis run (in debug mode) on a single circuit might generate 20

to 30 transformation files, each cross-verified for correctness.

Hardware Technology Mapping

The circuit-based algorithms have been mapped to several hardware

architectures, and verified independently for each hardware model. These

include:

logic networks with arbitrary node logic

flattened forms with all logic in one node

two-input standard gate libraries

circuit library expansion/abstraction

Comesh diagonal array-based form (old version)

Comesh block-array (in process of testing)

