PROGRAMMING CYBERSPACE
William Bricken
April 1989

Email correspondence from various sources.

Fantasy (william)

My fantasy is an 80860 for each eye, with a parallel auxiliary of a batch
(say 16 or so) of Transputers to be assigned to maintenance of specific
(complex) objects. Rather than doing collision detection from a single
perspective (say the user), each object does parallel "zone" detection,
monitoring each moving object within its hierarchical zones of control. You
might recognize this as the way the US Early warning radar system is set up.
If each object has control of the local space in its vicinity, it could
express its preferences by altering the metric of the underlying space in its
control. The "space processor" gets a parameter from an dominant object (the
owner of the space) whenever a moving foreign object enters its "air space”.
The parameter might be 1, or unity, which would not change space, or it might
be an exponential repulsive force, which would make the approaching object
expend more energy the closer it came, or it might be a tractor-beam...

Who owns a chuck of flexible-metric space? Perhaps the biggest object, or
perhaps objects might collect power points (a greater sphere of influence).
What about just adding the functional parameters each object has in effect on
a shared space?

I 1ike to think of the space of Cyberspace as cellular, with a influence
vector as an attribute in each cell. Spatial control parameters are one way
of changing the influence vector. A very simple way is to subtract "g" ,
that is have an influence vector pointing down and equal to the force of
gravity. So a local gravitational field is implemented by subtracting the
influence vector from the acceleration of the mass occupying each point.
Statistical averaging and sampling (center-of-gravity, field differential,

etc.) makes the computation tractable.

Well, at least, that's the fantasy for now.

Programming (William)

In contrast to standard object-oriented systems, in which the global object
is some abstract "thing", the global in Cyberspace is "space" itself.

Objects can be composed hierarchically, as would be expected. So sub-objects
are spatially dependent on their containing object. The key idea is that
objects within a space are sub-objects of the containing space. We can then
twiddle the characteristics of space (say gravity) to change (by inheritance)



the behavior of all objects within a space.

This rather minor change, from object-centered to space-centered, permits
many wonderful algorithms. Movement of any kind, for instance, can be built
into the fabric (underlying metric) of space, rather than being added to the
characteristics of objects. Space-based reasoning permits overloading of
behavior and existence. Changes in coordinate systems (Cartesian to
Spherical, for eg) are no longer changes in object representation, instead
they are changes in the metric of space.

But most fundamentally, empty space is not Void, rather it contains the
attention of the user. Space-based models incorporate the
user/programmer/mathematician/cybernaut at the very beginning. In
conventional models of interface, the user is always in an external
perspective (outside). Space-based models unify object and observer,
permitting principled techniques for changing perspective (outside/inside the
space).

Choice of external/internal perspective underlies most programming dualities,
including object/process, global/local, sequential/parallel,
batch/interactive, deterministic/autonomous, and procedural/declarative.

The distinction between thing and space makes parallelism easy.

Cyberspace programmer's perspective

We are not assuming, at all, that cyberspace will be "rather static". On the
contrary, we're designing it to be fundamentally dynamic, including multiple
participants and parallel processes. A fundamental principle is that each
control room (physical space from which actions are mapped into cyberspace)
will be driven by a computing engine that includes a complete model of the
virtual world. 1In other words, there is only one simulated world, no matter
how many nodes in the network. Each node might include hardware to support
the parallel execution of multiple bodies (dynamic objects), but that's not
what was alluded to; rather, we were pointing out that only state changes
need flow around the network. At the network level the problem isn't
throughput: 1it's synchronization.

For many spaces, there may well be a need for a "world master", but we aren't
looking at it as the central authority that somehow provides the world to the
nodes. Rather it will simply be another object in the world with
capabilities suited to the purposes of the world designers. It might, for
example, determine which participants (people or programs) can communicate
with each other at particular times. The basic idea is to distribute
autonomy so that interesting - and unexpected - behaviors can emerge from
interactions among participants. Think of it as setting up a context for
action rather than a prescription. Interesting worlds aren't likely to be
pre-programmed.



Cyberspace class hierarchies (programmer)

Just being curious, I decided to look at the class hierarchies in the
cyberspace code. Here's how they look today, subclassing denoted with
indentation:

Where the action is, container of bodies and sensors
cyberspace

A graphical entity in cyberspace
body
camera

How cyberspace looks (sufficiently different from a body)
e3view

Lights (could be body subclass)
light

What the patron of cyberspace wears
Sensor

Keyboard

Sensor2d
Joy
Mouse

Sensor6d
DataGlove
Polhemus

Dimo

How sensors communicate with the host
communication
serialport

Assorted 2d drawing objects
shape
elrect
eZpolygon
eZpolyline
s2rect

3-d matrox-supported primitives
e3solid
block
sphere
cone
cylinder
torus



"Spaces" related to management of 2 and 3-d drawing capabilities
sZspace
eZspace
e3space

Linear Algebra
vector
coord
convector
euler
spinor
matrix

Some board-level software entities
colorLut
segment

Classes corresponding to particular hardware components

matroxBoards
Textscreen

For numbermongers, the Cyberspace system has

.hpp class definitions, 1789 1lines in 3@ modules
.cpp class implementations, 5565 lines in 29 modules
.h global constants, 739 lines in 6 modules

And more (another programmer)

I'd also add that there's quite a bit of detail within each class, with all
sorts of implied conceptual threads. The cyberspace class, for example, 1is
defined recursively. In general, cyberspace will not be just one place, but
a space of spaces.

Programming Inside Cyberspace (CAD developer)

But what about programming? Where does that fit into Cyberspace? Is the
software vendor back in the position of anticipating everything the clever
user might want, and/or limiting him to operations that can be performed by
moving things around in 3-space?

For example, suppose we provide the user with a particular magic wand with
which he can touch an object and replicate it into an orthogonal array. Then
can you imagine the number of other magic wands the users will want to have
available and that we won't want to be in the business of creating for him?



Programmers' reply

We have been talking about the spirit of cyberspace, which emphasizes the
manipulation of models as if they were real objects. There's nothing in the
approach that precludes programming and customization. On the contrary,
we're working very carefully to develop a flexible and open architecture.
What happens in a space, for example, is entirely up to the dynamic bodies in
the space (which are now implemented as C++ objects). The particular bodies
won't come from us, by and large, but rather from our customers, who will use
our tools to build the bodies. Programming, as always, will be the essential
tool. The style of programming, however, will likely evolve in directions
fostered by the new paradigm. Things that we haven't normally considered in
the past, like parallelism, timing, forces, emergent behavior, and so on,
will significantly influence both how we program and what tools we supply.
Personally, I think an object-oriented Lisp, integrated with C++, would be
ideal for cyberspace development. What we need is a programming capability
that helps us DIRECTLY PROGRAM dynamic bodies. I can't imagine anything more
at odds with the spirit of cyberspace than traditional compilation (which
compels programmers to wait, lose their train of thought, and mentally
disengage from the space they're working in). Presently we're working on
nuts and bolts (basically an operating system), in C++, but when that's in
place we can start pushing the evolution of programming tools. If you're
worried that the role of programming may be diminished, don't: 1it's going to
be more important and exciting than ever.

Programming 1in Cyberspace (William)

Cyberspace is an interface technology and a philosophy of computing. The
philosophy is that strings of symbols rob us of easy ways to say lots of
things. I'd rather point with my finger than type in a symbolic pointer.

It's well established that specialized languages are needed to say
specialized things. So the question is "What's the best way to issue
instructions in CAD?" The general observation is that strings of symbols are
notoriously poor for conveying spatial concepts.

VPL and the Lab have been working on fully expressive visual programming
languages. Think of stacking up toy blocks instead of symbolic words to
program. It's relatively easy to express abstractions such as GOTO and IF-
THEN-ELSE as 2D diagrams and 3D sculptures. Think of parallel processors,

in which the only way to capture the asynchronous activity is with a diagram.
(Stacks of words, linear dumps, are degenerate projections of parallel
computation.)

Sure, someone will need to compress these visual concepts into linear code.
That someone is us, the tool is the Cyberspace Construction Kit. We provide



the infrastructure, applications programmers provide the worlds. Building
worlds is effort intensive, build tools to build worlds is profit intensive.
CAD forms the basis of a world building toolkit. What we do best as a
company is to provide world building tools. The Cyberspace Toolkit adds
formal models of real world constructions.

So, multiply an abstract template by an object to get an orthogonal array of
those objects. We provide the capability for form abstraction, and the
ability to point to the object. The user draws the abstract shape (say a 3x4
orthogonal array) and pushes the multiply button. The user can link the
instruction to multiply by an abstract form (say, OrthogonalArray) to a wand
if desired.

No one will do text processing in Cyberspace, cause text is 1D and is better
handled by string processing environments. No one will do form processing in
words, cause spatial forms are 2D and 3D, and better handled in CAD and in
Cyberspace.

So you can do abstract programming in Cyberspace by placing an abstract
semantics on 3D objects rather than 1D words. You can do macro programming
in Cyberspace by hooking form abstraction tools onto interface devices. And
(contrary to current options), you can choose the environment that best suits
the ideas you wish to work with.

And to amplify Peter Schwartz' point: the key to software success is not
sales, but resilience. When it changes (and it will change), we must be
ready to change with it. Fortunately, as a leader, we can define the
direction of change actively.

Concerns (CAD developer)

What more does pointing with your hand in the virtual world buy you than
pointing with a mouse on a 2D screen projection of a 3D world?

I watched someone go through conniptions with the data glove to grab and move
a cube. Isn't it easier to use the small, refined hand movements to move a
mouse than it is to wave your arm around?

And isn't a 2D view going to be necessary in your virtual world because of
the sheer ambiguity of the 3D world? In which case, if all drafting requires
a move to a plan or 2D elevation view, why even bother with cyberspace in the
first place?



Some replies (programmers)

> What more does pointing with your hand in the virtual world buy you
> than pointing with a mouse on a 2D screen projection of a 3D world?

What it buys you is directness. You want to specify some 3-d point, you
simply point to it. That's all that's needed.

> And isn't a 2D view going to be necessary in your virtual world because of
> the sheer ambiguity of the 3D world?

Huh? Don't you have this backwards? The 2-d projection is ambiguous, in the
sense that you've lost information (depth information) in projecting into 2-
d. The same 3-d object projects into 2-d in may ways (cf. Nekker cube
illusion, etc.)

> I watched someone go through conniptions with the data glove
Permit me an analogy:

I watched you go through conniptions with the mouse to grab and move a cube.
Isn't it easier to use the small, refined finger movements to press cursor
keys (a 1-d positioning device) than it is to slide your arm around?

For whatever reason, the world I perceive seems 3-d. I'd like the world I
interact with in the computer to have the same perceptual and interactive
characteristics. If your arm tires moving in 3-space, use a mouse. If your
arm tires using a mouse, use cursor keys. But I claim that to do the same
thing, you're gonna have to slide more than you wave, and press more than you
slide.

> In which case, if all drafting requires a move to a plan or 2D elevation
> view, why even bother with cyberspace in the first place?

Drafting? Who's talking about drafting? I want (and am working to have)
direct manipulation of realistic 3-d things in 3-d.

I concur that cyberspace may well be irrelevant to drafting. But when
cyberspace matures, drafting will be irrelevant to design, just as clay
tablets and pointed sticks are currently irrelevant to writing.

Reply (William)

We assume that we are working with hardware and interface tools that are in
their infancy. Yes, the glove is clumsy now, but soon... It's incredible
what a large market can do for hardware.



The win in going from mouse to finger is naturalism. How much training does
it take to teach a kid to point at something?

3D worlds are ambiguous in CAD because we don't do 3D modeling. There is no
ambiguity with a formal model. And clearly, a projection onto a space of
lower dimensionality (3D -> 2D) must always lose information. That's what
going to a lower dimension means. We are working to increase information.

All your questions seem based in the present rather than the future.



