
SOME SOFTWARE TECHNIQUES FOR VIRTUAL ENVIRONMENTS

William Bricken

February 1993

VR is the body of multidisciplinary techniques that apply computation to the

generation of experientially valid realities. Broadly, virtual reality is

that reality which people construct from information, a reality which is

potentially orthogonal to the reality of mass. Within computer science, VR

refers to the computer-based construction of participatory information,

providing the direct experience of a digital environment.

Computer-based VR consists of a suite of four interrelated technologies:

Behavior Transducers: hardware interface devices

Inclusive Computation: software interaction techniques

Intentional Psychology: biological constraints and plasticity

Experiential Design: functionally aesthetic construction

Behavior transducers map natural behavior onto digital streams. Natural

behavior is what two-year-olds do: point, grab, issue single word commands,

look around, toddle around. Behavior transducing interface devices convert

our actions into digital information, extending the body with position

tracking, voice recognition, kinesthetic feedback, infrared vision and remote

manipulation. Transducers work in both directions, physical behavior to

digital information and virtual display to subjective experience.

Inclusive computation provides tools for construction of, management of, and

interaction with digital environments which surround, or include, a

participant. Participation within information is also called immersion.

Inclusive software techniques include physiological models, behavioral

entities, inconsistency maintenance, autonomous agents, sensory cross-

mapping, active environments, and asynchronous parallelism.

The intentional psychology of VR addresses how to structure environments that

respond to our intentions as well as our actions, that reflect our

imagination as well as our formal specifications. This requires the

integration of digital computation with human functionality, our physiology,

our perceptions, our cognition, and our intentions. Intentional psychology

incorporates situated learning, interactive construction, individual

customization, participant uniqueness, subjective evaluation, multiple

concurrent interpretations, satisficing solutions, choice-centered

computation, and personal, mezzo and public spaces.

Experiential design seeks to unify inclusion and intention, to make the

virtual world feel good. The central design issue is to construct inclusive

environments which are fun and functional for a participant. There is no

interface to design, but their is a world of creation to explore. The tools

for experiential design may include wands, invocations, embedded narrative,

adaptive refinement, genetic algorithms, artificial life, and social

construction.

VR unifies a diversity of current computer research topics, providing a

uniform metaphor and an integrating agenda. The physical interface devices

of VR are similar to those of the teleoperation and telepresence communities.

VR software incorporates artificial intelligence, expert systems, pattern

recognition, and reactive planning. VR worlds provide extended senses,

traversal of scale (size-travel), synesthesia, fluid definition of self,

super powers, hyper sensitivities, and meta physics. VR requires innovative

mathematical approaches, including visual programming languages, spatial

representations of mathematical abstractions, imaginary logics, void-based

axiomatics, and experiential computation. The entirely new interface

techniques and software methodologies cross all disciplines, creating totally

new alignments between knowledge and activity.

Software Techniques

The primary task of a virtual environment operating system is to make

computation transparent, to empower the participant with natural interaction.

The technical challenge is to create mediation languages which enforce

rigorous mathematical computation while supporting intuitive behavior. Since

humans evolve in a spatial environment, VR uses spatial interaction as a

mediation tool. The design goal for natural interaction is simply direct

access, interaction not filtered by a layer of abstract representation. This

implies both eliminating the keyboard as an input device, and minimizing the

use of text as output.

In order to turn the machine into a tool of the mind, we must develop

programming techniques based on behavioral rather than processing metaphors.

VR operating systems must attempt to restructure programming tools, from the

bottom up, in terms of spatial, organic models.

Virtual environment software tools coordinate display and computational

hardware, software functions and resources, and world models. Software tools

for construction of and interaction with digital environments include

movement and viewpoint control; object inhabitation; boundary integrity;

editors of objects, spaces, and abstractions; display, resource and time

management; coordination of multiple concurrent participants; and history and

statistics accumulation.

Five central components of a virtual environment software suite follow:

The physical model maps digital input onto a realistic digital representation

of the participant and of the physical environment the participant is in.

This model is responsible for screening erroneous input data and for assuring

that the semantic intent of the sensor input is appropriately mapped into the

world database.

The virtual body customizes effects in the virtual environment (expressed as

digital world events) to the subjective display perspective of the

participant. The virtual body is a representation of the participant's

manifest form in the virtual world, and is tightly coupled to the physical

model of the participant in order to enhance the sensation of presence.

Differences between physical input and virtual output, such as lag,

contradiction, and error, can be negotiated between these two components of

the body model without entering the world model.

Virtual world tools program and control the virtual world, and provide

techniques for navigation, manipulation, and participatory interaction. All

transactions between the model and the system resources are managed by the

tool layer.

The virtual world database stores world state, and static and dynamic

properties of software objects within the virtual environment. Tools access

and assert database information through model transactions.

The virtual environment operating system manages transactions between

computational software and hardware. Since machine level architectures often

dictate efficiency, the operating system is particularly important for real-

time performance, including update rates, complexity and size of worlds, and

participant responsiveness.

The operating system communications management (messages and networking)

coordinates resources with computation. The intense interactivity of virtual

worlds, the plethora of external real-time devices, and the distributed

resources of multiple participants combine to place unusual demands on

communication models.

The operating system memory management (paging and allocation) coordinates

storage and retrieval. Virtual worlds present massive databases, concurrent

transactions, multimedia data types, and partitioned dataspaces.

The operating system process management (threads and tasks) coordinates

computational demands. Parallelism and distributed processing are

fundamental to VR systems.

The VEOS Project

The Virtual Environment Operating Shell (VEOS) is a software suite currently

written in C that wraps around the UNIX operating system. It provides a

tightly integrated computing model for data, processes, and communication.

VEOS is platform independent, and has been extensively tested on the DEC

5000, Sun 4, and Silicon Graphics VGX and Indigo platforms. The programmer's

interface to VEOS is XLISP 2.1, written for public domain by David Betz.

VEOS consists of four tightly integrated software subsystems.

SHELL manages entity initialization and linkages.

TALK manages interprocess communications.

NANCY manages the distributed parallel database.

FERN manages entity processes.

An entity is a coupled collection of data, functionality and resources, which

interacts with an environment using a behavioral metaphor. Each entity

within the virtual world is modular and self-contained, each entity can

function independently and autonomously. VEOS takes care of the lower level

details of inter-entity communication, coordination, and data management. In

VEOS, everything is an entity (the environment, the participant, hardware

devices, software programs, and all objects within the virtual world).

Several specialized entities (such as Mercury, the fast virtual body; UM,

the behavior specification package; MIDI, the musical interface; and

BlockLogic, the mathematical visualization tool) were built as the FERN

system was iteratively refined. As well, over a dozen mid-size applications

have been developed using suites of VEOS entities. These projects range over

several Masters Theses, and include applications to manufacturing (a bicycle

company assembly line, integrated with AutoMod simulation software),

education (worlds created by high school students during five day world

building projects), perception (a comparative study of virtual and physical

spaces), scientific visualization (the Mars database, optics tracking,

modeling semiconductor junctions), group interactivity (Catch, building

dynamic environments, group blocks world), and demonstration systems (The

Boeing Virtual Osprey, TopoSeattle, and the Metro).

TALK uses heavyweight sequential UNIX processes to connect networks of

workstations into a virtual world processor. TALK uses two simple message

passing primitives, SEND and RECEIVE. Messages are transmitted

asynchronously and reliably, whether or not the receiving entity is waiting.

NANCY provides a content addressable database accessible through pattern-

matching. It is modeled on Gelernter's coordination language Linda. The

Linda approach separates programming into two essentially orthogonal

components, computation and coordination. Computation is a singular

activity, consisting of one process executing a sequence of instructions one

step at a time. Coordination creates an ensemble of these singular processes

by establishing a communication model between them. Programming the virtual

world is then conceptualized as defining "a collection of asynchronous

activities that communicate" [Gelernter and Carriero ACM'92].

Structurally, the database consists of a collection of fragments of

information, labeled with unique syntactic identifiers. Collections of

related data can be rapidly assembled by invoking a parallel pattern match on

the syntactic label which identifies the sought after relation.

All database operations in VEOS are implemented at the lowest level by a

single computational algorithm: match-and-substitute. Elements which have a

complex syntactic description (such as the structure 2x+3x) are identified by

pattern matching. Then a simpler expression (the result 5x in the example)

is substituted for the complex one.

Dynamics

Entity dynamics is modeled by associating behavioral functions and rulebases

with sensory input and with processes internal to the entity. Entities

exhibit persistent behavior by running algorithms that do not interact with

the environment. Entity behavior can be classified by the complexity of

the behavioral functions and rules.

Reactive entities have rules that trigger when specific events are posted to

the environmental database.

Responsive entities react to their environment, but they also have memory

resources to store previous experiences. These entities can exhibit complex

delayed responses and critical incidence behavior.

Inferential entities have a small inference engine which they can apply to

their accumulated database of experiences and internal rules.

Coordinated entities share rules with other entities. A typical use of

coordination is to share synchronized clocks, permitting time sequencing of

group behavior.

Autonomous entities provide exploratory tools for emergent behavior.

Autonomous behavior is generated by meta-rules, rules which change the

entity's behavioral rules.

The most complex entity is one that is inhabited by a human participant. In

inhabited entities, dynamic behavior is slaved to physical transducers

attached to the participant. These signals are standardized to the

participant's physiological body model. The physiological model is then

mapped onto a virtual body, which can be an arbitrary representation.

