
IMAGER XLISP INTERFACE

Marc W. Cygnus

October 1992

Copyright (c) 1992 by the Washington Technology Center.

*** "Conceptual Issues" documentation, mentioned at times below, doesn't

quite exist yet. Soon... ***

(The form of this documentation is preliminary; I'll try to have

 a more friendly arrangement in another month)

Now an IMPORTANT NOTE about long and short term software stability:

The Imager is an evolving software package, as is most all of our

 work-in-progress. However, constant evolution does not necessarily imply

 backwards incompatibility, and in this case it _must_ not, without

 agreement among the groups who will have to deal with the changes.

The functions described in this document, except as noted, are stable

 as of 10-02-92. You may build code which depends upon them. They may be

 expanded at some point in the future with optional parameters, but the

 function name, its required parameters, and their ordering is stable. If

 there is a concensus that something _needs_ to be changed, then it will be,

 but otherwise I guarantee the stability of the functions herein.

The two exceptions to this rule are new functions under development

 (marked `fragile') and temporary functions used only during debugging

 (marked `temporary'). Fragile functions may be used at your own risk until

 they become stable. Temporary functions may be used for debugging (if for

 some strange reason they're useful to you), but are not intended for

 general use and will likely go away sooner or later.

Several functions below are marked fragile only because small changes

 need to be made before they're stable. If this is the case, the intended

 change will be documented so that you may plan for it.

im-imager-init &optional <videosplitter_flag>

Initializes the imager internals and *must* be called before any

 other functions may be used. If the optional arg is t, the videosplitter

 hardware will be used (if present) when im-stereo-view is called.

 Ex: (im-imager-init)

(im-imager-init nil) ; same as above

(im-imager-init t) ; use videosplitter

im-stereo-view <iod> <offset_x> <offset_y> <offset_z> [Fragile]

Sets up a stereo viewport pair in the lower (default) or upper two

 screen quadrants. The perspective projections are calculated to match the

 physical characteristics of the VPL EyePhones(tm).

 <iod> is the interocular distance of the user given in meters. The last

 three args comprise a 3D offset vector which relates the center of the

 headtracking sensor to a point midway between the two eyes of the EyePhone

 (see external diagram). The offset is given in meters.

The function's operation is stable. The only thing which is to change

 is the offset specification. Currently, stereo-view expects three reals

 for the offset. The offset should really be a true vector, however.

 Ex: (im-stereo-view 0.06 0.0 0.18 0.06) ; 6 cm interocular,

; sensor is 18 cm up and 6 cm back from EyePhone reference pt.

; this will change to: (im-stereo-view 0.06 '#(0.0 0.18 0.06))

im-set-ocular <iod>

Changes the interocular distance for the current stereo view. <iod>

 is the new interocular distance to use, given in meters.

This function only works with stereo views; it is ignored if used

 with a mono view.

 Ex: (im-set-ocular 0.065) ; set interocular to 6.5 cm

im-window-view &optional <width> [<x-loc> <y-loc>]

Sets up a nonresizable mono viewport in an IRIX window. With no

 arguments, creates a 600 x 400 window which approximates the view one would

 get looking through EyePhones(tm). If <width> is given, the window will

 be <width> wide and 0.66*<width> high (3:2 aspext ratio). If <x-locl>

 and <y-loc> are specified after <width>, the window will be automatically

 placed with its upper left corner at (<x-loc>, <y-loc>).

 Ex: (im-window-view) ; open a user-placed 600 x 400 mono window

(im-window-view 1000) ; open a user-placed 1000 x 667 mono window

(im-window-view 300 200 100)

; auto open a 300 x 200 mono window at (200,100)

im-new-object <groupID> <def-or-path>

Creates one or more new graphical objects. <groupID> specifies the

 initial group membership for all objects defined during one call to the

 function. Presently, objects may be members of only one group at a time.

 <groupID> may be up to 31 bits long (unsigned).

Objects are collections of graphical primitives specified in DOG

 format (see the revised DOG documentation, and also the Conceptual Issues

 documentation). <def-or-path> is a string which may be either the actual

 DOG text or a pathname to a file. If a pathname is specified, it must be

 either an absolute pathname or it must be literally referenced from the

 directory current at runtime (ie: it must begin with "/" or "./").

Returns a list of dotted pairs, one for each object defined by the

 given DOG text, or nil if an error occurred. If one or more objects were

 successfully defined, each dotted pair in the returned list will contain

 the name of the object as given in the DOG text (or nil if no name was

 given) and the object identifier which must be used to refer to the object

 in all future imager operations on that object. The object ID is generated

 by the imager internals and is a 31 bit unsigned quantity unique to each

 object.

 Ex:

(im-new-object 0 "object testObject { ... }")

; DOG text given literally.

; returns ((testObject . ##)), where ## is a unique ID

(im-new-object 8118 "/home/ernie/good.dog")

; good.dog might contain:

; object { ... }

; object second-object { ... }

; object LastObject { ... }

; returns:

; ((nil . #1)

; (second-object . #2)

; (LastObject . #3)

;)

; ...where #1, #2, and #3 are unique IDs for each object.

; All objects will have initial group membership of 8118.

(im-new-object 456 "./cow.dog")

; cow.dog is in the directory which is current at runtime.

im-instance-object <groupID> <template-objID> [Fragile]

Creates a new object directly from an existing "template" object,

 given by <template-objID>, which must exist. <groupID> specifies the

 object's initial group membership. Returns the new object's ID (a single

 fixnum).

For the moment, this call is effectively a copy-object-geometry call,

 since the template object and the newly formed object have independent

 attributes (color, transform, polymode, etc). In fact, the new object

 will have all its attributes set to default values; for example, if the

 template object has had a scaling and transformation applied to it, the

 new object will be created with the same untransformed geometry, but with

 unity scaling and identity transform (ie: don't let this surprise you).

This function is marked `fragile' because it's new and some things

 don't work quite correctly yet, namely texturing. Undefined behavior

 will result if either the template object is textured or you attempt to

 texture the new object.

 Ex: (im-instance-object 33 12)

; returns a unique ID for the new object, which will be

; an instance of object 12, in group 33, with its attributes

; set to default values.

im-delete-object <objID>

Deletes graphical object <objID>.

im-xform-object <objID> <absmatrix>

Transforms object <objID> by absolute matrix <absmatrix>; <absmatrix>

 replaces the object's position/orientation matrix.

 Ex: (im-xform-object 2 '#(...))

im-xform-object-delta <objID> <deltamatrix>

Transforms object <objID> by delta matrix <deltamatrix>; the object's

 position/orientation matrix is preconcatenated with <deltamatrix>.

 Ex: (im-xform-object-delta 2 '#(...))

im-xform-group <groupID> <absmatrix>

Transforms all objects belonging to group <groupID> by absolute

 matrix <absmatrix>. Works just like im-xform-object, except that all

 objects are transformed before a new frame is generated (ie: if there are

 ten objects in group <groupID>, im-xform-group guarantees that all ten

 objects will be in their new positions before a new graphical view is

 drawn).

If <groupID> does not exist, the function is essentially a no-op.

im-xform-group-delta <groupID> <deltamatrix>

Transforms all objects belonging to group <groupID> by delta matrix

 <deltamatrix>. Works just like im-xform-object-delta, except that all

 objects are transformed before a new frame is generated, as with

 im-xform-group.

im-scale-object <objID> <scale-vector> [Fragile]

Scales object <objID> in object coordinates by the 3D scale vector

 <scale-vector>, which is (sx sy sz) where scales are reals. The scaling

 effects occur before any world-coordinate transforms specified by the

 im-xform-* commands.

 Ex: (im-scale-object 3 '#(2.0 1.0 1.0)) ; scales object x2 in X dir.

im-set-obj-group <objID> <groupID> [Fragile]

Specifies a new group membership <groupID> for object <objID>, which

 must already exist.

This function is marked fragile pending a decision on whether or not

 to support general, arbitrary grouping. Presently, an object may be a

 member of only one group at a time.

im-drawframe

Allows the rendering process to begin a new frame. This function

 should be called repeatedly, preferably once through each "modelling"

 loop and at a known location in time. Object operations occurring after

 a given im-drawframe are guaranteed not to be displayed until the next

 im-drawframe.

 Ex: (loop ...

 ...

 (im-drawframe))

im-set-void-color <r> <g>

Sets the absolute color of the void (ie: the `background' of the

 drawing area). <r>, <g>, and are normalized to [0.0,1.0], and

 specify the color of the void in terms of proportions of the primary

 colors.

im-set-obj-color <objID> <r> <g>

Sets the ambient and diffuse reflectivity of object <objID>, which

 must already exist. <r>, <g>, and are normalized to [0.0,1.0], and

 represent the percentage of a given primary color the object will reflect

 diffusely.

This function will be expanded in the near future to accept either

 three reals or a single three-element vector as the color specification.

 The function does not currently accept a vector, only three separate reals.

 Ex: (im-set-obj-color 2 0.0 1.0 0.0) ; saturated, high intens. green

; this function will be expanded so that you may alternately do:

; (im-set-obj-color 2 '#(0.0 1.0 0.0))

im-set-group-color <groupID> <r> <g>

Sets the ambient and diffuse reflectivity of all objects belonging

 to group <groupID>. Works just like im-set-obj-color, except that all

 objects are colored before a new frame is generated.

As with im-set-obj-color, this function will be expanded in the near

 future to accept either three reals or a single three-element vector as

 the color specification.

im-set-obj-polymode <objID> <mode> [Fragile]

Sets the polygon drawing mode of object <objID>, which must already

 exist. <mode> must be one of:

 2 - draw solid filled polygons

 1 - draw wireframe polygons

 0 - only draw points at polygon vertices [Fragile option]

 Ex: (im-set-obj-polymode 12 1) ; set obj 12 to wireframe

im-xform-view <absmatrix>

Transforms the viewpoint by absolute matrix <absmatrix>; <absmatrix>

 replaces the current view orientation matrix.

Viewpoint transformation is identical to object transformation. That

 is, if a matrix M transforms an object forward two meters, the same matrix

 M applied to the viewpoint will move the view forward two meters, not the

 world.

 Ex: (im-xform-view '#(...))

im-xform-view-delta <deltamatrix>

Transforms the viewpoint by delta matrix <deltamatrix>; the view

 orientation matrix is preconcatenated with <deltamatrix>.

 Ex: (im-xform-view-delta '#(...))

im-crystaleyes-view <iod> <scrw> <scrh> <scrd> <vout> [Fragile]

Sets up a stereo viewport pair for the CrystalEyes LCD shutter

 system. See external documentation for information on specifying view

 volume parameters.

This function is experimental. It has been tested and appears to

 work with no problems, however. If you have an opportunity to use it,

 please do and report any bugs to cygnus@hitl.washington.edu, but it is

 not extremely high on the immediate to-do list.

im-new-texture <tex-path> &optional <alpha-path> [Fragile]

Defines a new texture map. <tex-path> and <alpha-path> if given are

 pathnames to PPM, PGM, or PBM files.

This function currently supports four different texture types:

 one-component, one-component plus alpha, three-component, and

 three-component plus alpha.

The texture ID of the newly defined texture is returned on success,

 nil otherwise.

This function by default will cause the texture to be wrapped

 in the s and t directions; in the future, wrapping or clamping behaviour

 may be specified by additional optional parameters.

im-set-obj-texture <objID> <texID>

Associates a texturemap <texID> with an object <objID>. This

 function may be called more than once to change object/texturemap

 associations.

im-set-obj-tex-mapping <objID> <tg-point> <tg-s-vector> <tg-t-vector>

Enables automatic texture vertex generation for object <objID> and

 specifies the origin and orientation of the texture plane in 3-space,

 which determines how a texture is applied to an object (for more

 information on texturemapping and automatic texture application, see the

 Conceptual Issues documentation).

im-enable-obj-texture <objID> &optional <flag>

Enables or disables texturing for object <objID>, which must exist.

 If called with only <objID>, it will enable texturing; otherwise, the

 optional argument <flag> specifies whether to enable or disable texture

 (t or nil, respectively).

In order for an object to actually appear with texture, however, a

 texture must have been defined with im-new-texture and applied with

 im-set-obj-texture.

 Ex: (im-enable-obj-texture 12) ; enables texturing for obj 12

(im-enable-obj-texture 12 t) ; same as above

(im-enable-obj-texture 15 nil) ; disables texturing for obj 15)

im-xform-obj-texture <objID> <absmatrix>

Transforms the origin and orientation of the texture mapping plane

 associated with object <objID>, which must already exist. Automatic

 texture vertex generation must already have been enabled for the object

 (ie: im-set-obj-tex-mapping must have been called). The texture plane

 is transformed by absolute matrix <absmatrix>, which specifies a new

 position and orientation relative to the plane's original position as

 given in the call to im-set-obj-tex-mapping. (for more information on

 texturemapping and automatic texture application, see the Conceptual

 Issues documentation)

im-xform-obj-texture-delta <objID> <deltamatrix>

Transforms the origin and orientation of the texture mapping plane

 associated with object <objID>; works like im-xform-obj-texture (see

 above), except <deltamatrix> specifies a new texture plane position

 and orientation relative to the plane's current position and orientation.

im-scale-obj-texture <objID> <s-scale> <t-scale>

Specifies a texturemap scale factor, in the texture's s and t

 directions, for object <objID>, which must already exist. Texture scaling

 only works when automatic texture vertex generation has been enabled for

 an object. <s-scale> and <t-scale> are reals. (for more information on

 texturemapping and automatic texture application, see the Conceptual Issues

 documentation)

im-set-obj-visible <objID> <visibility>

Changes the visibility of object <objID>, which must already exist.

 <visibility> is t or nil, and makes the object visible or invisible,

 respectively.

 Ex: (im-set-obj-visible 11 nil) ; set obj 11 invisible

im-set-group-visible <groupID> <visibility>

Changes the visibility of all objects belonging to group <groupID>.

 Works just like im-set-obj-visible, except that all objects are updated

 before a new frame is generated.

If <groupID> does not exist, the function is essentially a no-op.

im-set-obj-visible-default <def-visibility>

Sets the default visibility of objects created with im-new-object.

 <def-visibility> is t or nil. If t, all new objects appear automatically

 after they are defined with im-new-object. If nil, new objects are

 defined and may be transformed, but they are invisible and must be made

 visible via a call to im-set-obj-visible (or im-set-group-visible) before

 they will be rendered.

im-statistics <stats-flag> [Fragile]

This function currently prints an estimate of rendered frames-per-

 second in the center of the output window. The characters are too small

 currently to be very useful in the EyePhones(tm), however.

In the future, it will control miscellaneous statistics such as

 current rendering frame rate, object polygon count reporting, etc.

im-set-global-light <dir-vector> <color> <ambient-color> [Fragile]

Changes the direction and color of the single (global) light source.

 For now, there is only one light source in all scenes. It is an infinitely-

 distant point light source (think of the sun). You may control the

 direction from which light appears to be coming, the color of the light,

 and the color of the ambient (nondirectional) light in the environment.

<dir-vector> is a vector pointing in the direction of the light

 source; it does not need to be unit-length. For example, if <dir-vector>

 is #(0.0 13.0 0.0), the light source will be directly `overhead', ie: light

 will be `travelling' in the direction <0.0, -1.0, 0.0>.

<color> is a vector specifying in rgb the color of the light. The

 rgb components are normalized to [0.0,1.0], and specify proportions of

 primary colors emitted by the light source.

<ambient-color> is a vector specifying in rgb the color of the ambient

 light present in the environment.

 Ex: (im-set-global-light '#(10.0 80.0 10.0)

 '#(0.9 0.0 0.74)

 '#(0.3 0.3 0.35))

; Makes the light appear to be coming from above and a little to

; the right and behind, assuming one is looking down the negative-z

; axis. The light is a purplish color (90% red, 74% blue, no green).

; The ambient light in the environment is bluish, but not very bright

; (30% red and green, 35% blue).

(im-set-global-light '#(-123.0 0.0 0.0)

 '#(1.0 1.0 1.0)

 '#(0.0 0.0 0.0))

; Makes the light appear to be coming from the left, again assuming

; one is looking down the negative-z axis. The light is fully white.

; There is no ambient light in the environment. This setting will

; give a kind-of `outer-spacey' look to objects; since there's no

; ambient light whatsoever, the `dark side' of an object will reflect

; no light and appear completely black.

im-set-viewer-scale <scale> [Fragile]

Experimental. Effects a viewer scaling of <scale> by scaling the

 environment by 1/<scale>.

im-set-fog <density> <color> [Fragile]

Experimental. Enables SGI-specific fog effects. <density> is fog

 density and is in the range [0.0,1.0]. A density of 0.0 disables fog.

 <color> is a vector specifying in rgb the color of the fog (ie: the color

 to which rendered objects fade as they move off into the distance).

For fog to work correctly, the void (background) color must be set

 to <color>, too, because fog only affects objects. Use im-set-void-color

 to do this.

im-open-struct <...> [Temporary]

im-close-struct <...> [Temporary]

im-delete-struct <...> [Temporary]

im-show-struct <...> [Temporary]

im-show-structlist <...> [Temporary]

im-protect-frame <...> [Temporary]

im-testy <...> [Temporary]

im-fix-matrix <...> [Temporary]

im-hack <...> [Temporary]

All these functions are for debugging purposes only and should not be used.

