
MERCURY LISP INTERFACE

Andrew MacDonald

February 1993

Copyright (C) 1993 Andrew MacDonald

and the Washington Technology Center

This is preliminary documentation for an xlisp interface to Mercury.

Mercury is designed to run with a front end which communicates between the

native environment of the virtual world and the Mercury Participant System

software. This document describes an xlisp front end tailored for used with

FERN II. As such, many of the commands depend on knowing entity identifiers,

and all functions expect data to be in FERN standard formats.

Every Mercury function can be identified by the prefix hg-; Hg is the symbol

for atomic mercury.

Currently, Mercury is mostly an information consumer. It produces only one

set of information: values of sensor data, both raw and processed. Mercury

sends this data back to the front end periodically, and the front end must

read this data by calling hg-get-data. More frequent calls to this function

will cause Mercury to send data to the front end more often, to a maximum

rate of 30 updates a second.

Every function but hg-init and hg-shutdown rely on Mercury being initialized

by a call to hg-init, but currently they do no checking to see that Mercury

is indeed initialized. If these functions are called without Mercury having

been started, results are unpredictable. Please initialize before running.

Functions are broken into three categories: commands, attribute settings, and

data receivers. Commands are functions which tell Mercury to change

participant or environment state and are prefixed by "hg-poke-" (some have

other prefixes). Attribute settings operate specifically on attributes of

FERN II entities and are prefixed by "hg-set-". Currently there is only one

data receiver function, hg-get-data. (hg-add-processor also returns data, but

is a special case, see below.)

All entity identifiers passed to Mercury are assumed to be valid. Mercury has

no access to FERN II databases except through this lisp interface, so it

cannot check whether things which claim to be entities actually are. Passing

phony Eids may result in erratic behavior.

Most functions return T if they complete successfully, nil otherwise;

exceptions are noted below.

These are the ccommands:

(hg-init <run-host>

 :display-host <display-host>

 :binary <binary>

 :sound-file <sound-file>

:config-file <config-file>

 :participant <participant-number>)

 Start and establish communications with the Mercury Participant

 Entity on <run-host>. The display is normally on the invoking

 host, but can be changed with the :display-host key. The binary

 is normally /home/mercury/mercury, but can be changed with the

 :binary key. Descriptions of what sound samples are available

 and which key triggers them is normally found in the file

 "/home/mercury/sound.data"; this filename can be changed with the

 :sound-file key. Mercury sensor configurations are described in

 the configurations file, which is selected with the :config-file

 key. See /home/mercury/standard.config on the iris for more

 detail. The :participant key selects which machine the sound

 renderer will run on; this should be set to 0 for the current

 configuration. The hg-init function can be called multiple times,

 but only the first call from any node has any effect.

 Hg-init returns configuration data from Mercury. This consists of

 a vector of two elements, the raw sensors, and the sensor

 processors. The raw sensors are a vector of triples #(0 :TYPE <index>)

 where :TYPE is either :6D or :SWITCH, and index is a unique index

 into the raw sensors. #(0 :6D 0) is the position of the sensor

 source in the world. The sensor processors are a vector of

 triples #(:TYPE #(consumption counts) #(production counts)), where

 :TYPE is the type of processors (currently only :DISPLACER), and

 the consumption and production counts specify how many of a given

 sensor type are consumed and produced by this processor. Example

 of a return value:

#(#(#(0 :6D 0) #(0 :6D 1) #(0 :6D 2) #(0 :SWITCH 0) #(0 :SWITCH 1))

 #(#(:DISPLACER #(2 0) #(1 0))))

(hg-shutdown)

 Close communications to and terminate current Mercury Human

 Interface. If called when there is no active Mercury, there is no

 effect. This is called automatically by the xlisp (exit) function.

These next three commands manipulate the MMovement Pyramid of the sensor

source. For a full explanation of Movement Pyramid concepts, see the file

movement.pyramid.

(hg-poke-source-velocity <velocity>)

 Set the velocity of the participant's sensor source. Velocity is

 a vector triple #(dx dy dz) of speed in each of the x, y and z

 directions. Calling this function with a velocity of nil is

 equivalent to, but of higher performance than, calling with a

 velocity of #(0.0 0.0 0.0).

(hg-poke-source-origin <Eid>)

 Make the position of the entity indicated by the argument be the

 origin about which the sensor source moves. If the argument is

 nil, set the sensor source to move relative to the world origin.

(hg-poke-void-color <color>)

 Set the void color (i.e., the background color of the screen) to

 be the indicated red-green-blue triple #(r g b). All values

 should be normalized to [0.0 - 1.0].

(hg-poke-source-delta <6D>)

 Use the indicated point-quaternion <6D> to compute a new position

 and orientation for the sensor source by composing the position

 and orientation of the sensor source's current origin with <6D>.

(hg-poke-fogginess <density> <color>)

 If <density> is greater than 0.0, turn on fog with indicated

 density and color, setting the void color to be the fog color for

 image consistency. If <density> equals 0.0, turn off fog and

 restore original void color.

(hg-bind-entity <Eid> <sensor triple>)

 Associate the sensor triple with the entity specified. Currently

 this only works for :6D sensors. Binding a :6D sensor to an

 entity causes the entity to be moved to the position specified by

 the sensor. Example: (hg-bind-entity 3 #(1 :6D 0)) would

 move entity 3 to the position indicated by the first output of the

 first sensor processor.

(hg-bind-head <Eid>)

 Specify which entities position and orientation to use for moving

 the participant's head in the virtual world.

(hg-add-processor <processor-type> #(<sensor0> <sensor1> ... <sensor-n>))

 Add a new processor of the given type to Mercury. The sensors

 specified are the ones to be used to feed the processor. This

 function returns a vector of new sensor triples which identify the

 sensor streams which have just been created. Example, assuming no

 other processors have been specified:

(hg-add-processor :DISPLACER #(#(0 :6D 0) #(0 :6D 1)))

 returns:

#(#(1 :6D 0))

(hg-specify-packet #(<sensor0> <sensor1> ... <sensor-n>))

 Tell Mercury what data to send to the front end. The data

 cooresponding to the sensors specified is sent back in that order.

 This function returns a packet, which is a lisp vector for holding

 the data when it is retrieved with hg-get-data (see below).

(hg-statistics <flag>)

 If flag is t, turn on reporting of frames-per-second update rate.

 If flag is nil, turn off such reporting.

(hg-reset)

 Currently does nothing.

(hg-calibrate)

 When this call is issued, Mercury immediately calibrates all the

 sensors. Specifically, it sets the current sensor orientations to

 be the zero-orientation, i.e., Mercury assumes all sensors are

 facing negative Z axis.

(hg-delete-entity <Eid>)

 Remove this entity and any pictures, sounds or other attributes of

 it from Mercury's environment.

(hg-poke-delta-limit <bounding box>)

 Constrain the source's position delta to remain bounded by two

 points, a minimum and a maximum. <bounding box> format is

 #(<minimum triple> <maximum triple>). <bounding box> value of

 nil removes the constraint.

(hg-poke-detach-radius <distance>)

 Set a distance beyond which the source ceases to follow the object

 to which it is currently origined. The effect of this is to reset

 the source's origin attribute to nil and the source's delta

 attribute to be current world position. Setting <distance> to nil

 disables detaching.

(hg-poke-aural-control <midi command>)

 Send a MIDI command to the sound renderer. A <midi command> is

 a vector of four integer values in the range [0, 127] which encode

 the standard MIDI protocol.

(hg-poke-aural-ambience <channel> <id> <value>)

 This command is provided for backward compatibility and should

 not be used.

These are the aattribute setters. Each takes the entity id of the entity to

work on and a value to set. If the value is the skull string ("%"), the

attribute is considered deleted, and Mercury resets its internal value for

the attribute to the default.

(hg-set-6d <Eid> <6D>)

 Default: #(#(0.0 0.0 0.0) #(1.0 #(0.0 0.0 0.0)))

 Move picture and sound of entity <Eid> to the position and

 orientation indicated by the point-quaternion <6D>.

(hg-set-origin <Eid> <Oid>)

 Default: nil

 Make the position and orientation of the entity <Eid> to be

 perpetually that of the entity <Oid>. If <Oid> is nil, cancel the

 current origin, if any.

(hg-set-6d-delta <Eid> <6D>)

 Default: #(#(0.0 0.0 0.0) #(1.0 #(0.0 0.0 0.0)))

 Offset the picture and sound of the entity from the object it is

 origined to (or the world origin of the entity's origin is nil) by

 the given position and orientation deltas. Note that having both

 a 6D-delta and a 6D may cause the entity to seem to jump around as

 Mercury renders the object first based on one position and then

 another. Please be careful to have only one position specifier

 active at a given time.

(hg-set-picture <Eid> <Dog Description>)

 Default: nil

 Give the entity <Eid> the picture indicated by the <Dog Description>.

 The picture description should be a string, either a pointer to a

 file on the Mercury Participant Entity host, or a direct object

 describer. Currently Mercury can only handle descriptions 1000

 bytes long or shorter.

(hg-set-color <Eid> <RGB>)

 Default: #(1.0 1.0 1.0)

 Set the color of the picture of the entity <Eid> to be <RGB>. The

 color should be a red-green-blue vector triple, with all values

 normalized to [0.0 - 1.0].

(hg-set-visible <Eid> <visible-flag>)

 Default: T

 If <visible-flag> is t, make the picture of the entity <Eid>

 visible. If <visible-flag> is nil, make the picture of the entity

 <Eid> invisible.

(hg-set-wireframe <Eid> <wireframe flag>)

 Default: nil

 If <wireframe flag> is t, the picture of entity <Eid> is rendered

 in lines. If <wireframe flag> is nil, the picture of entity <Eid>

 is rendered in polygons.

(hg-set-scale <Eid> <scale-triple>)

 Default: #(1.0 1.0 1.0)

 Change the size of the picture of the entity by multiplying each

 of the vertices of the object by the given factor in the <x y z>

 triple.

(hg-set-texture <Eid> <Texture Name> &optional <Alpha Name>)

 Default: nil

 To the picture of the entity <Eid> attach the texture indicated

 by <Texture Name>, with an optional transparency component

 indicated by <Alpha Name>. Both texture and alpha arguments

 must be strings naming files residing on the Mercury Participant

 Entity host.

(hg-set-tex-map <Eid> <Texture Mapping>)

 Default: #(#(0.0 0.0 0.0) #(1.0 0.0 0.0) #(0.0 0.0 1.0))

 Map any textures applied to the picture of entity <Eid> according

 to <Texture Mapping>. A texture map is a vector triple of three

 vector triples, the first of which is the origin point for the

 texture (relative to object origin), the second is the S vector

 direction, and the third is the T vector direction.

(hg-set-tex-scale <Eid> <Texture Scale>)

 Default: #(1.0 1.0)

 Scale any textures applied to the picture of entity <Eid> according

 to <Texture Scale>. A texture scale is a vector pair of floats, the

 first being the S scale, and the second is the T scale.

(hg-set-sound <Eid> <Sound Name>)

 Default: nil

 Give the entity <Eid> the sound named by <Sound Name>.

(hg-set-loudness <Eid> <Loudness>)

 Default: 1.0

 Set the loudness of the sound of the entity <Eid> to be <Loudness>.

 A loudness is a float in the range [0.0 - infinity). In practice,

 the upper limit is about 1.3, 1.0 being "normal" loudness (that at

 which the sound was sampled). Loudness of 0.0 turns the sound off.

(hg-set-audible <Eid> <audible flag>)

 Default: T

 If <audible flag> is t, the sound of entity <Eid> is made audible.

 If <audible flag> is nil, the sound of entity <Eid> is made inaudible.

(hg-set-source <Eid> <source number>)

 Default: nil

 Associate a sound source with this entity. Four sources are

 currently supported, labeled 0 through 3. Any sound whose key

 ties it to the given source will be heard to play from the place

 where the entity is.

(hg-set-doppler <Eid> <doppler flag>)

 Default: nil

 If <doppler flag> is t, all sounds played through the source

 associated with this entity will bend their pitch based on

 their velocity relative to the ears to produce doppler shifts.

 Set <doppler flag> to nil to turn off pitch bending.

(hg-set-rolloff <Eid> <rolloff>)

 Default: 0.65

 Set the distance attenuation exponent for the source associate

 with this entity. Larger numbers produce faster rolloff.

This is the ddata receiver:

(hg-get-data <packet>)

 Fill <packet> with new position and button data from the Mercury

 Participant System. This function should be called as often as

 possible for smooth operation, but Mercury has a built-in pacing

 mechanism which allows the front end to slow down considerably

 without being clogged with data.

 <packet> is the vector returned by hg-specify-packet.

 hg-get-data returns the packet if new data is successfully

 acquired. If there is a transmission error, or no new data is

 available, nil is returned.

