
;;---

;; The Application Programmer's Interface to the Fern System.

;;

;; FERN is the Fractal Entity Relativity Node.

;;

;; creation: August 10, 1992

;; last edits: October 20, 1992

;;

;; by Geoffrey P. Coco and Colin Bricken

;; Software Engineering by Geoff Coco

;;---

;;---

;; Copyright (c) 1992, Washington Technology Center

;;

;; This program's use is restricted under the terms of the WTC LICENSE

;;---

|||

 Specification of The FERN Distributed Environment

|||

- Create the fern distributed computing environment -

(fern-init <:host-pool host-list> <:display-host host-name>)

 <host-list> - list of host-args, hosts in run pool.

 <host-name> - STRING, host to display node windows

 returns: - T/NIL

Once running, fern provides a homogenous, parallel

computation environment. The host-pool defines the nodes

which make up fern's distributed multiprocessor. In other

words, the host-pool is the maximal set of hosts that your

distributed fern program will require for this invokation.

Each item in the host-list must be either:

1) a string that names the chosen host, or

2) a list containaing the string from (1) and a

 string naming the binary executable to run as the node.

For example,

(fern-init :host-pool '("slithy"

 ("iris2" "/home/cygnus/bin/imager")

 ("water" "/home/cocteau/bin/swarmer")

 "hal")

On hosts slithy and hal, the default veos binary executable

will be used. On hosts iris2 and water, the named custom

binaries will be used. In any case, the startup lisp file

is /home/veos/ote/veos2.2/src/tabula_rasa.lsp

A fern program should call (fern-init ...) only once. The

node that begins a program by calling (fern-init ...) is

called the 'console' node. fern-init automatically

launches and initializes nodes on all the remaining hosts

in the host-pool (the 'console' is always in the pool).

If the :host-pool argument is not specified, the default

host-pool contains only the console node.

If the :display-host argument is not specified, all node

xterm windows automatically display on the console's host.

A running fern pool can stay running through many runs of

the same program. As long as the nodes haven't crashed

(bus error, etc..), programs can run again and again

without making new calls to (fern-init ...).

- Takedown the entire distributed computing environment -

(fern-close)

 returns: - does not return

Takes down each node in the fern pool including itself.

Other nodes must still be in (fern-go) to respond properly.

- Join with separately running node-pools.

(fern-merge-pool <terminal-node>)

 <terminal-node> - any node (uid) in remote pool

 returns - T/NIL

Used when fern application is composed of separate modular

running node-pools. This is useful for devoting pools to

significant application tasks (e.g. participant suite,

entire self-sufficient worlds, etc..).

The pool that results from starting a fern-program with

(fern-init ...) is the native pool for those entities

within that program.

Upon merge, join with the native node pool associated with

the given node. Once a merge is completed, all nodes in

the remote pool become reachable from the native pool also.

All nodes in the new aggregate pool are on equal terms for

entity communication. Note, for accountability purposes,

Fern programs can only create or destroy entities in the

original pool created with (fern-init ...).

- Detatch native pool from the aggregate pool.

(fern-detatch-pool <terminal-node>)

 <terminal-node> - any node (uid) in remote pool

 returns - T/NIL

Detatch from the native pool named by the remote node.

There is exactly one native pool for every entity - the

pool which was created directly with (fern-init ...).

Relinquish access to all entities within the remote pool.

- Find out if the pool is still alive

(fern-ping-pool <terminal-node>)

 <terminal-node> - any node (uid) in remote pool

 returns - T/NIL

Send tickle packet liveness. The timeout is the same for

(fern-seq-send ...).

|||

Invokation of FERN Entities

|||

- Run a fern program -

(fern-run <spore-ent> <:file-host filehost> <:run-host runhost>)

 <spore-ent> - entity definition for initial entity

 <filehost> - name of host to find init ent description

 <runhost> - name of host on which to run init ent

 returns - does not return

Every fern program begins with an initial 'spore' entity.

The only required argument to (fern-run ...) is the entity

definition of your program's spore entity. This entity can

make further entities, install processes for itself, etc.

This initial entity is the main() of the fern distributed

program.

The arguments pertaining to the spore entity (init-expr,

file-host, run-host) have the same semantics as in

(fern-new-ent ...).

Once you've called (fern-run ...), EVERYTHING is done

within an entity context...

1. Fern performs pattern matches from the perspective of

 the calling entity. Each entity sees a customized version

 of the grouplespace.

2. All process in fern is associated with some entity in

 the form of 'methods', 'persist procs', or 'react procs'.

 I. Methods are user-defined entry-points for inter-entity

 communication. Entities can call their own or each other's

 methods with (fern-send ...). A Method call is

 accountable to the calling entity.

 II. Persist Procs are user-defined processes associated

 with fern entities. An entity can install multiple

 persist procs which execute in that entity's context.

 See fern-persist for more details.

 III. React Procs are user-defined functions associated with

 data-update events. An entity can install multiple react

 procs which execute in that entity's context when new data

 arrives from other entities. See fern-perceive for more details.

- Create and invoke a new fern entity -

(fern-new-ent <init-expr> <:run-host runhost> <:file-host filehost>)

 <init-expr> - list of lisp expressions or filename

 <filehost> - name of host to find init ent description

 <runhost> - name of host on which to run init ent

 returns: - new entid

The init-expression is a list of user-defined lisp

expressions that will prepare the entity for normal

execution. See (fern-entity ...) below for more.

Alternatively, the init-expr can be the filename of an

initial entity definition. These files follow the same

format - expressions which when evaluated determine an

entity's character. Fern entity definition files must end

in ".fent", and (fern-new-ent ...) automatically appends

the ".fent" suffix onto filenames. Always use full

pathnames for best portability.

To get emacs to edit ".fent" files as lisp, put this line in

your .emacs file:

(setq auto-mode-alist

 (cons '("\\.fent" . lisp-mode) auto-mode-alist))

The optional :file-host argument can be used to instruct

fern where to look for the named entity definition file.

If the file-host is not specified, fern looks for the file

on the console node.

The :run-host argument is also optional. It tells fern

where to run the new entity. If run-host is not specified,

it currently runs on a random host in the pool.

When the entity has been created and the initial expression

has been evaluated, the new entid is returned to the caller.

- Takedown a fern entity and free all its resources -

(fern-dispose-ent <entid>)

 <entid> - optional entid of entity to dispose

 returns: - T/NIL

The entid argument is optional. If an entid is not given, the

entity which made call has requested self-disposal.

- Generate an initial expression for a fern entity -

(fern-entity <expr> <expr> <expr> ...)

 <expr> - unevaluated lisp expressions

 returns: - an unevaluated list of the exprs

The argument expressions are quoted lisp code which a new

Fern entity will evaluate upon startup. (fern-entity ...)

returns an expression suitable to pass (fern-new-ent ...)

for creating an entity with Fern.

These normally include:

1. Creating self attributes with (fern-put.bndry.attr ...)

2. Staking out private workspace with (fern-put.locl ...)

3. Creating methods of behavior with (fern-def-meth ...)

4. Creating entity processes with (fern-persist ...)

5. Declaring active database needs with (fern-perceive ...)

6. Initializing any peripheral connections, e.g. (sensor-init ...)

7. Defining functions behind the methods, e.g. (defun ...)

|||

 Object-Oriented Aspects of Entities

|||

- Define fern entity behavior -

(fern-def-meth <name> <lambda-expr>)

 <name> - name of method, STRING argument

 <lambda-expr> - lambda which defines method behavior

 returns: - T/NIL

A method is a well-defined entry point to a fern entity.

Entity can communicate and pass data directly using method

calls.

(fern-def-meth ...) adds the given method to the calling

entity. Other entities can use (fern-send ...) to have

the entity perform a method on behalf of the calling

entity.

Ex: let's say ent1 defines a method:

 (fern-def-meth "print-plus" (lambda (x) (print (+ x 1))))

 then, ent2 can use the method:

 (fern-send ent1 "print-plus" 2)

 the screen when ent1 is running should print '3'.

- Undefine fern entity behavior -

(fern-undef-meth <name>)

 <name> - name of method, STRING argument

- Asynchronous method call -

(fern-send <entid> <method-name> <arg1> <arg2> ...)

 <entid> - id of destination entity

 <method-name> - STRING name of method

 <args> ... - the arguments to the method

Entities may call their own methods by passing 'self' as the

entid.

- Synchronous method call -

(fern-seq-send <entid> <method-name> <arg1> <arg2> ...)

 <entid> - id of destination entity

 <method-name> - STRING name of method

 <args> ... - the arguments to the method

The calling semantics are the same as (fern-send ...)

except that (fern-seq-send ...) dispatches the destination

entity's named method immediately. (fern-seq-send ...)

returns only when the method has completed and has returned

a result. (fern-seq-send ...) returns the result of the

method call.

- Asynchronous method call -

- using streams for flow control -

(fern-str-send <entid> <method-name> <arg1> <arg2> ...)

 <entid> - id of destination entity

 <method-name> - STRING name of method

 <args> ... - the arguments to the method

 returns: - T/NIL

The calling semantics are the same as (fern-send ...)

except that (fern-str-send ...) only performs the send if

all outstanding sends to this destination have been serviced.

Fern uses a message pacing algorithm called streams. A

stream is an logical connection from one entid to another

that has a maximum carrying capacity. In other words,

streams ensure that sender entities only send messages as

fast as their receiver entities can digest them.

(fern-str-send ...) sends the given method call only if

the stream to that entity is clear. A return value of true

means that the method call was sent. A return value of NIL

may mean that the stream was full and the caller should try

again later. A return value of NIL could suggets others

errors as well.

Fern users can save much overhead and ambiguity in using

this pacing mechanism by testing the stream _before_

calling (ferr-str-send ...). To test a stream for

clearness, use (fern-str-clrp entid) as described below.

- Test a stream -

(fern-str-clrp <entid>)

 <entid> - stream destination

 returns: - T/NIL

This function quickly checks whether the logical channel

between the calling entity and the destination entity is

sufficiently clear for passing messages.

- Asynchronous informal entity process call -

(fern-as <entid> <expr>)

 <entid> - id of destination entity

 <expr> - quoted evaluable expression

 returns: - T/NIL

Same semantics as (fern-send ...), but without the method

formality. The given expression is evaluated in the

context of the named entity.

- Synchonous informal entity process call -

(fern-seq-as <entid> <expr>)

 <entid> - id of destination entity

 <expr> - quoted evaluable expression

 returns: - T/NIL

Same semantics as (fern-seq-send ...) revised as above.

- Asynchronous informal entity process call -

- using streams for flow control -

(fern-str-as <entid> <expr>)

 <entid> - id of destination entity

 <expr> - quoted evaluable expression

 returns: - T/NIL

Same semantics as (fern-str-send ...) revised as above.

|||

 Specification of Entity Process

|||

- Lightweight task creation -

(fern-persist <expr> <:name procname>)

 <expr> - repeatable lisp expression.

 <procname> - optional STRING name of proc

 returns: - new proc name

Installs a new persist proc in the calling entity's proc

table. This is similar to forking a process.

The persist concept implements a form of cooperative

multitasking. To ensure proper multitasking and to

approach the effect of parallelism, your persist

expressions should:

1. Be fast-evaluating.

If the proc represents an ongoing process, try to break the

task into discrete tasks which each take a small slice of

time. Use quick state checks to exit the proc early in

case there is no work to do. Watch out for loops where

the number of iterations can become large at times.

2. Be atomic.

The job of one proc should be conceptually neat. This is

so that when procs are evaluated in different orders, their

relative behaviors remain consistent. If there's a job

that two procs collectively perform, they should be one

proc.

3. Never block.

A proc that blocks will starve other procs of valuable time

slices. Remember, since frames rates in veos aren't

enforced, please be a 'good citizen'.

There are indeed situations where it makes no sense to

continue without a certain resource (like data from a

remote query, or data from a hardware driver). But instead

of freezing up the persist cycle while waiting for your

resource, use an asynchronous method.

For example, when polling hardware, use a non-blocking

scheme - if there's no data, return and check again next

cycle. Also, when waiting for a remote query reply, send a

request and check for the reply each cycle until it

arrives.

- Lightweight task disposal -

(fern-desist <procname>)

 <procname> - optional name of persist proc to kill

 returns - the deleted proc-name

Terminate the given persist proc. If no proc is specified,

terminate the calling proc.

If a procname is not specified, fern removes the currently

running persist proc from the system proc list. That

running proc is allowed to complete it's last evaluation

normally.

(fern-desist ...) returns the name of the proc that was

deleted from the run queue.

|||

 Configuration of Trademark FERN Virtual Grouplespace

|||

- Enter a fern space -

(fern-enter <space-entid>)

 <space-entid> - the unsuspecting entity

 returns: - T/NIL

Request to becoming a 'subling' of the named entity. You

would do this to instigate an implicit and automatic

awareness of other entities that may also be 'entered' in

the same space. An entity entered in another entity (a

space by virtue of this relationship), will 'see' other

entities also in that space.

Entities that are entered in the same space are 'siblings'.

Siblings 'see' each other through fern's automatic database

propogation. When one sibling changes its local database

(its boundary), these changes are automatically propogated

to others siblings' databases (their externals).

Entities in spaces can express particular interests or

filters, to limit the automatic database propogation to the

necessary data streams. These data interests are called

'in-senses'. In-senses are hints to fern about what kind

of data a subling wishes to receive (see fern-perceive)

When any entity enters a space, the entity will appear in

its own external as a sibling. This virtual representation

is filtered however through the entity's in-senses (see

fern-perceive).

A space entity need not have any special behavior to

function properly as a space. All fern entities are equally

equipped to serve as spaces. Space entities perform very

little computational legwork. Instead, they provide a

conceptual meeting ground for entities having particular

relationships.

- Exit a fern space -

(fern-exit <space-entid>)

 <space-entid> - the unsuspecting entity

 returns: - T/NIL

Relinquish all services of the named space entity. The

calling entity will no longer 'see' siblings that were

entered in this space. Those siblings will no longer 'see'

the calling entity in their external.

- Subscribe to data flows -

(fern-perceive <attr-name> <:react (lambda (entid attr-val) ...)>)

 <attr-name> - attribute of interest

 <lambda> - optional react proc

 returns: - T/NIL

Declare an in-sense. By calling this function once, the

calling entity declares that whenever it is entered in a

space, it would like to 'see' entities in that space which

have the named attribute. You can perceive many attributes

with multiple calls to (fern-perceive ...).

Likewise, if another entity sharing a space with your

entity has declared an in-sense as above, then it will

'see' data in your entity's boundary.

Exactly how the caller 'sees' other entities is determined

by the optional :react argument. In the regular case where

no :react argument is given, the calling entity's

'siblings' partition will be automatically updated by

fern when sibling entities make changes to their boundaries.

If a :react lambda argument is given, fern calls this

lambda function when sibling changes occur. The lambda

function must take two arguments: the entid of the sibling

that's changing its boundary and the new attribute.

In this mode, fern does not automatically update the siblings

partition. To achieve the normal fern auto-grouplspace behavior

and _also_ use this :react feature, your react proc should call

(fern-put.sib.attr entid attr) before it returns.

- Unsubscribe to data flows -

(fern-unperceive <attr-name>)

 <attr-name> - attribute of interest

 returns: - T/NIL

Eradicate an in-sense. The calling entity's external will

be rid of all references to this attribute.

- Produce data flows (explcitly) -

(fern-exude <attr>)

 attr - ("attr-name" attr-val)

 returns: - T/NIL

Create inter-entity data flows manually. The same behavior

automatically occurs when an entity calls fern-put.attr.

Normally, after an entity calls fern-put.attr, fern passes

these boundary changes to the entity's siblings at some

later time. With fern-exude, the changes bypass the

grouplespace and flow directly to perceiving siblings.

NOTE: entities that use this function must call

fern-put.attr to initialize the sibling-to-sibling

connections. For example, during entity initialization,

call fern-put.attr once for each attribute you plan to

exude.

|||

 Accessing The FERN Perception Partition

|||

- Put, Get, Copy to the entity groueplspace -

Here are the most useful fern grouplespace pattern matches.

To see what the grouplespace looks like in FernII, load up

an entity or two with the works (boundary-attrs, in-senses,

procs and methods) and then call (dump).

;; E X T E R N A L

- Source -

(fern-copy.src)

 returns: - source entid

if you are an entity, the entity that created you is your

'source'. All entities in a program have a source except

- Space -

(fern-copy.sps <:test-time test-time>)

 test-time - optional nancy timestamp

 returns: - list of current space entids

- Siblings -

(fern-copy.sibs <:test-time test-time>)

 test-time - optional nancy timestamp

 returns: - list of perceived entities

Each sib is of the form: (entid (attr-list)).

(fern-copy.sibs) returns a list of these structures, one

for each sibling which shares a fern space with the calling

entity. These attr-lists are comprized of only attributes that

the calling entity has perceived via (fern-perceive...).

This function is the bread & butter of reactive

programming. It is common practice during a persist proc

to perform a (fern-copy.sibs ...) with a timestamp, and

parse the resulting sparse structure of sibling changes to

compute new reactive behavior.

(fern-copy.sibs.entids <:test-time test-time>)

 test-time - optional nancy timestamp

 returns: - list of entids

 Returns the entids of all the calling entity's siblings.

(fern-copy.sib <entid> <:test-time test-time>)

 test-time - optional nancy timestamp

 returns: - the named entity's attr-list

(fern-copy.sib.attr <entid> <attr-name>)

 entid - entid of sibling

 attr-name - name of sibling's attribute

 returns: - given attr value

(fern-copy.sib.attr-names <entid> <:test-time test-time>)

 entid - entid of sibling

 test-time - optional nancy timestamp

 returns: - list of named entity's attribute names

(fern-copy.sib.attr-if-attr-name <must-name> <gimme-name>)

 must-name - name of attribute which must appear

 gimme-name - name of attribute to retrieve

 returns: - value of gimme-name

If there is a sibling to the calling entity which has the

must-name attribute and the gimme-name attribute,

return the value for the gimme-name attribute.

(fern-copy.sib.attr-if-attr <must-attr> <gimme-name>)

 must-attr - attribute which must match

 gimme-name - name of attribute to retrieve

 returns: - value of gimme-name

If there is a sibling to the calling entity which

matches the must-attr (name and value) and the

has gimme-name attribute, return the value for the

gimme-name attribute.

(fern-copy.sib.entid-if-attr <must-attr>)

 must-attr - attribute which must match

 returns: - entid of matching entity

If there is a sibling to the calling entity which

matches the must-attr (name and value) ,return its entid.

;; B O U N D A R Y

- Entire boundary -

(fern-copy.bndry <:test-time test-time>)

 test-time - optional nancy timestamp

 returns: - list of calling entity's attributes

- Boundary attributes -

(fern-put.attr <attr>)

 <attr> - ("attr-name" attr-val)

 returns: - old attr, if any; or T/NIL

 This function inserts and replaces. No need to

 get-then-put.

(fern-copy.attr <attr-name>)

 <attr-name> - name of desired attribute

 returns: - attribute value

(fern-get.attr <attr-name>)

 <attr-name> - name of desired attribute

 returns: - old attr val, if any

Instead of deleting the attribute from the boundary completely,

this function actually replaces the current value of the

attribute with "%", the 'skull-and-crossbones' symbol.

The reason for keeping 'dead' data in this way is fairly

obscure. The "%" is like an ordinary attribute value and

so fern will propogate it to siblings as such. It has

become customary to reserve the "%" attribute value to

signify data that was but is no more.

(fern-copy.attr.names)

 returns: - list of the entity's attr-names

;; I N T E R N A L

- Subs -

Sublings are the entities for whom your entity is acting as

a space.

(fern-copy.sub.entids <:test-time test-time>)

 test-time - optional nancy timestamp

 returns: - list of subling entids

- Entire Local -

The local partition is an entity's private grouplspace

area. It is only accessed by the user's code. The local

is the user defined grouplespace partition.

This is your chance to write your own nancy grouplespace

patterns. Do some experimenting with these functions to

make sure you understand how to use the local partition.

(fern-put.locl <data> <pat> <:freq frequency>)

 data - any veos compatible expr

 pat - any single element pattern

 frequency - "one"/"all" default is "one"

 returns: - old data; or T/NIL

(fern-copy.locl <pat> <:test-time test-time> <:freq frequency>)

 pat - any single element pattern

 test-time - optional nancy timestamp

 frequency - "one"/"all" default is "one"

 returns: - matched data

(fern-get.locl <pat> <:freq frequency>)

 pat - any single element pattern

 frequency - "one"/"all" default is "one"

 returns: - removed data

- Local Attributes -

Although the local partition is user-defined, user's may

use the standard 'attribute' regime for organizing their

entitys' local partitions.

(fern-put.locl.attr <attr>)

 attr - ("attr-name" attr-val)

 returns: - old attr, if any; or T/NIL

(fern-copy.locl.attr <attr-name>)

 attr-name - name of desired attribute

 returns: - attribute value, if any

(fern-get.locl.attr <attr-name>)

 attr-name - name of desired attribute

 returns: - old attr, if any

To understand the purpose of 'local attributes', think of

each entity as a program which may need its own global

variables. Since many entities may inhabit the same lisp

environment (i.e. node), lisp global variables are not

suitable for this purpose.

Imagine what happens when two entities in the same lisp

environment use a global named cur_pos. Each entity will

use the cur_pos variable in its own way, thus altering each

other's state unpredictably. Using local attributes

ensures that entities have exclusive use of their memories.

|||

 Additional Features of the FERN Distributed Envionment.

|||

- Read a file, from anywhere in the fern pool -

(fern-read-file <file-name> <:host hostname>)

 <file-name> - name of file to load

 <hostname> - name of host from which to load file

 returns: - unevaluated list of all exprs in file

Load the given file from somewhere in the pool. If no hostname

is given, fern attempts to load the file from the console node.

- Read and evaluate a file, from anywhere in the fern pool -

(fern-eval-file <file-name> <:host hostname>)

 <file-name> - name of file to load

 <hostname> - name of host from which to load file

 returns: - T/NIL

Retrieve the named file and evaluate each expression contained

within. Uses (fern-read-file ...) to offer extension of the

standard lisp (load ...) function. NOTE: Always use full pathnames

so that the calling code will behave the same on different hosts.

- Write a file, to anywhere in the fern pool -

(fern-write-file <file-name> <expr-list> <:host hostname>)

 <file-name> - name of file to write

 <expr-list> - list of data

 <hostname> - name of host on which to write file

 returns: - T/NIL

Write the given expressions to the named file. This file

can later be accessed though (fern-read-file ...).

|||

Attention to Node Operation

|||

- Fern Node Global Variables:

home <read-only>

The host name where symbol is evaluated.

self <read-only>

The entity-id of the evaluating entity.

fern-display <read-only>

The hostname where all node xterms display.

fern-debug <set-at-will>

Enables verbose general fern operations.

as-debug <set-as-will>

Enables tracing of entity context switching.

frame-debug <set-at-will>

Enables display of frame rate statistics.

flow-debug <set-at-will>

Enables tracing of automatic data flow.

str-debug <set-at-will>

Enables tracing of stream message operations.

file-debug <set-at-will>

Enables tracing of file operations.

fmaxclog <set-with-caution>

The maximum msg width of inter-host streams from this node.

Use these heuristics to tune for specific application:

high values (4-50) yield

 best thruput (best processor utilization and parallism)

 worst latency (lots of msgs are getting queued)

 very clumpy flow (msgs tend to caravan through system)

low values (2-3) yield

 better thruput (some parallism, good processor utilization)

 not-so-good latency (some msgs are getting queued)

 clumpy flow (msgs tend to caravan through system)

minimum value (1) yields

 worst thruput (little parallism, lots of idle waiting)

 best latency (msgs get serviced right away)

 most consistent transmission (msgs flow at even pace)

the default setting is: 1

|||

 Major Confusions

|||

1. Idea of entities and methods.

Entities are smart little optimizers. They do their jobs,

you do yours. Share the responsibility, and the

abstraction. Let the entity model encourage a high degree

of modularity, mobility and correctness in your programs.

Everything happens from within _some_ entity's context,

except the first call to (fern-run ...). I mean

everything!!

When matches don't work, take the perspective of the

entity. What does _it_ see? A quick (dump) will reveal

each entity's grouplespace perspective. It helps to become

familiar with object-oriented thinking.

2. The entity concept has new meaning.

Users of FernI will find that the old notion of an entity

has been rightly reshaped in FernII into the concepts of

the entity and node.

The FernI entity was a heavyweight unix process usually

programmed for a discrete task. A FernI program could run

several entities on a host machine calling on unix to

simulate parallelism by context switching between them.

Entities could pass messages to each other via heavyweight

unix network sockets.

In FernII, each participating host machine runs exactly one

unix process called a FERN node. The need for costly unix

context switching is diminished because each node works

within one unix process.

The FernII entity is still programmed for a discrete task;

but the entity has become lightweight. Many entities run

on a single node sharing the unix process. FernII's nodes

simulates paralellism by performing lightweight context

switching between entities.

3. The entity definition.

An entity definition is an unevaluated list of lisp

expressions which when evaluated by fern-new-ent will

define a fern entity. The lisp expressions will normally

consist of calls to: (defun ..) (fern-put.attr ..)

(fern-perceive ..) (fern-persist ..) (fern-def-meth)

(fern-put.locl ..) and any other setup your entity needs

to do.

4. Fern spaces are an entity grouping facility.

The FERN virtual grouplspace features are designed to

define a crude world 'perspective' for an entity.

Furthermore, spaces provide a mechanism for grouping

entities into relational sets. Consider the following

canonical example:

EntityA is earmarked as the 'gravity' space. Currently

entered in EntityA are Entity1, Entity2, Entity3, and

EntityGrav. EntityGrav is entered in this space only (by

design), and so can easily perceive all entities in the

gravity space. The EntityGrav entity is thus equipped to

affect its sibling entities with gravity.

Note that in this example, Entity1, Entity2 and Entity3

would need to exude the proper attributes (like "mass" and

"6D") to be acted upon by EntityGrav. However, they would

not need to perceive anything special to enjoy gravity

space influence - they are acted upon by virtue of their

membership in that space.
