
* *

* the 'talk' communication manager *

* *

* by Geoffrey P. Coco *

* *

DEFINITIONS

 Grouples, the VEOS all-purpose data elements, also serve as the smallest

units of VEOS inter-entity communication.

 All VEOS entities have a unique entity id (entity UID) associated with

them which is used for runtime entity discrimination. An entity UID is

always stored and passed as a string.

 Conveniently, the entity UID is also the internet address of the machine

that the entity is running on - plus the service name that the entity may be

associated with - plus the UNIX socket number that the entity is using for

incoming communication.

 An example of a entity UID is: (callay nil 9000), use string "nil" for

unspecified service.

 When any VEOS entity is invoked, the entity searches the grouplespace in

order to discover it's entity UID. So, the UID *must* be supplied in the

entity's .fig file.

 'talk' uses entity UIDs to completely and uniquely specify inter-entity

communication addresses. That is, an entity's UID is also it's 'talk'

address.

MODUS OPERANDI

 'talk' is contained within the 'talk' C library and is linked to each

entity shell. All entity shells automatically initialize their associated

talk code at startup. Thus, all VEOS entities are equipped with inter-entity

communication capabilities.

 When an entity shell is invoked, it initializes 'talk'. This consists of

setting up a private memory cache and opening a connection for incoming

messages from other entities.

 There are three configurable runtime entry points into the 'talk'

library. The entity can send a message (speakTalk entry point), pass

temporary control to the incoming message daemon (listenTime entry point), or

pass temporary control to the outgoing message daemon (speakTime entry

point).

 When the entity needs to send a message to another entity, the entity

generates a send message request to 'talk' (via speakTalk) in the two ways

described below. If there is already an outgoing connection established to

the specified entity and no messages are currently queued for that

destination, speakTalk sends the message directly. Otherwise, speakTalk

establishes and confirms the connection and queues the message for that

entity destination.

 Then, when the outgoing message daemon is allotted a slice of processing

time (via speakTime), 'talk' completes all pending outgoing message requests

to all entity destinations.

 Similarly, when the incoming message daemon is allotted a slice of

processing time (via listenTime), 'talk' retrieves all pending incoming

messages from all open incoming connections.

 Each incoming message is a single grouple. As 'talk' retrieves incoming

grouple messages, if the grouple contains a primitive, 'talk' dispatches the

primitive immediately. Otherwise, 'talk' posts the new grouple to the

grouplespace.

 When an entity shell terminates gracefully (e.g. user initiated), the

shell brings down 'talk'. This consists of closing all connections properly

so that entity shells that were connected may survive the change.

HOW TO USE TALK FROM WITHIN A VEOS ENTITY PRIMITIVE

 1. Generate outgoing messages by either of the two means described below.

 Nothing special is required to receive incoming messages, provided

 rule 4. is followed.

 2. When an entity at the other end of an outgoing connection is about to

 terminate (see entityRegister primitive in how_to_make_a_veos_entity)

 call speakClose() directly from C with that entity's UID as the only

 parameter.

 3. Link with: shell.o,

 with options: -ltalk.

 4. Give ample entity processing time to 'talk' by using 'talk' daemons.

Do this by placing the following grouples in the entity's .fig file:

 [$listenTime]

 [$speakTime]

HOW TO SEND A MESSAGE - TECHNICAL (two ways)

A. Make function calls to speakTalk() directly from C. speakTalk() takes a

 variable number of parameters. The parameters should look like:

speakTalk(int, /* number of parameters to follow */

 char *, /* the UID message destination */

 char *, /* variable # of message words */

 ...)

 example 1: { ...

 iSuccess = speakTalk(4,

 "callay nil 9000",

 "blah",

 "blah",

 "blah");

 ... }

 This direct call to the C function speakTalk() would cause 'talk' to

 send the grouple message: [(blah) (blah) (blah)] to the entity at

 internet address: (callay nil 9000).

 -- OR --

B. Post grouples to the grouplespace with first word - ("speakTalkPrim"),

 second word - (entity UID), and subsequent words - (message data).

 example 2: [(speakTalkPrim) (callay nil 9000) (blah) (blah) (blah)]

 The presence of the above grouple into an entity's grouplespace would

cause

 that entity's standard primitive - speakTalkPrim - to send the grouple

 message: [(blah) (blah) (blah)] to the entity at internet address:

 (callay nil 9000).

NOTE: each instance of a call to speakTalk() or a (speakTalkPrim) grouple

 generates a *single* inter-entity message, no matter how many message

 words are passed.

 These two methods of sending inter-entity messages are functionally

equivalent except for subtle performance differences...

 When speakTalk() is called directly from C, 'talk' gets processor control

immediately and can attempt to complete the message send request right away

as described above in MODUS OPERANDI.

 But, when a grouple is posted which contains the primitive speakTalkPrim,

that grouple, a potential message send request, sits in the grouplespace

until the primitive dispatcher (part of the VEOS shell) discovers it. Once

the primitive dispatcher does find the grouple, it invokes the primitive

speakTalkPrim which calls speakTalk() directly from within it's code.

 Although this latter method conforms to the general VEOS grouple model,

several other entity primitives may execute before the request is even found,

thus delaying actual message transmission several entity shell processing

cycles (0 - 2 seconds, depending on the entity processing load).

 Furthermore, if it is sure that the entity will be terminating after the

next shell processing cycle, it is safer to call speakTalk() from C to assure

that the message is sent before termination.

HOW TO SEND A MESSAGE - PHILOSOPHICAL

 As is emphasized in how_to_make_a_veos_entity, primitives have a

fundamental obligation to the world to be hasty and efficient (self-enforced

time sharing). To be sure that primitives uphold this obligation with respect

to inter-entity communications, keep these tenets in mind.

1. Do not place importance on whether a sent message arrived at the

destination. In other words, acknowledgement and send-reply paradigms are

highly discouraged. Two reasons:

First, VEOS primitives perform network duties at or above the session layer of

the ISO network model. Error-free transmission is the duty of lower level

layers. For VEOS, error-free transmission is ensured by unix tcp protocol and

by 'talk' - not by entity level code.

Second, and more important, in order to simplify deadlock issues, 'talk' was

designed for half-duplex protocols only. 'talk' purposely does not provide a

mechanism for an entity to suspend itself until a message arrives - a full-

duplex feature. The result is that 'talk' provably excludes the hold-and-wait

deadlock condition from ever occurring.

NOTE: Two-way transmission between two entity shells can be achieved with two

half-duplex connections in opposite directions.

 Consequently, it may take considerable time for a message to reach it's

destination and undergo processing before a return message is transmitted.

 Return messages may lag between 10,000 ms and 2 seconds or more from

 transmission time.

2. Send no more than one message per destination per entry into a

 primitive. This allows for easy world calibration, and network sanity.

 The destination entity can only process one message per cycle (average,

 depending on entity load, etc.).

