Experiences with Asynchronous Communication Models in VEOS,
a Distributed Programming Facility for Uniprocessor LANSs.

Geoffrey P. Coco and Dav Lion

Human Interface Technology Laboratory
FJ-15, University of Washington, Seattle WA 98195, U.S.A.

Abstract

Like conventional multiprocessors,
workstation clusters can provide data
sharing and parallel computing. But unlike
multiprocessors, these clusters provide
flexible connectivity and can tolerate
heterogeneous processing elements.

Uniprocessor LANs are a common
choice for cost-effective computing. The
workstation nodes typically run a version of
Unix and support common Unix services
such as reliable networking, and
multiprogramming. We present VEOS, a
highly portable programming facility which
effectively utilizes common Unix services for
distributed and coarse-grain parallel
programs.

VEOS was designed for fast prototyping
of distributed Virtual Environment
applications across heterogeneous
workstation clusters. The VEOS
programming model emphasizes
asynchronous communication, and
distribution based on entities, a mechanism
for non-preemptive task decomposition.

1 Introduction

Many academic and research sites
employ Local Area Networks (LANs) of
uniprocessor workstations for cost effective
computing. The Human Interface
Technology Lab uses LANs of commodity
workstations to run Virtual Environment

applications. We developed the Virtual
Environment Operating Shell (VEOS) to
manage distributed computation in this
context.

Virtual Environment (VE) applications
often utilize diverse computing resources
simultaneously. For example, a single
program may employ a high-performance
graphics computer for binocular visual
display, a medium-power workstation to
track the user's position and gestures, a
specific workstation as interface to dedicated
voice 10 devices, and a high-power general
purpose workstation to compute spatial
collisions and dynamics. Also, it is often
desirable to include many users in the same
environment and to distribute a VE program
across a wider area to other sites. For these
reasons, VEOS 1is highly portable, relying
only on common Unix services.

The builders of VEs are designers,

teachers, experimenters, artists, and

programmers. Because the Human Interface

Technology Lab caters to the non-technical
user, VEOS attempts to provide novice
programmers with simple access to the

functionality though a high level (Lisp)
programming interface [XLisp]. Since VE
research is in a pioneering stage, many ideas

need to be implemented and explored. For

this reason VEOS was designed with fast
prototyping in mind.

Although preemptive processes have
become a dominant programming paradigm,
Unix processes are known to be inefficient



for practical multiprogramming. Thread
libraries require architectural specificity, so
are not easily portable. Instead of processes
or threads, VEOS manages collections of
user-programmed non-preemptive units of
distributed processing called entities. VEOS
uses a single Unix process on each network
node to form a pool of virtual processors
upon which entities run.

An additional reason for multiplexing a
single process is protection. Our network is
typical of uniprocessor installations, where
machines are shared among many users.
VEOS and other processes on the machine
are isolated and protected from each other by
Unix.

In this paper, we describe the VEOS
design focusing our attention on entity
communication. We report on experiences
programming and interacting with VEOS
distributed applications. We investigate the
tradeoff between potential parallelism and
costly inter-node communication. We
advocate asynchronous communication to
maximize coarse-grain parallelism across
processors, and utilization within processors.

2 Related Work

A distributed programming facility for
the topology described above would both
provide access to remote resources and
support parallel computation on them. For
such a system to be portable, it would need
to be built on top of the existing operating
systems.  While modern micro-kernel
architectures such as Mach [Mach] make
such a design inexpensive, most existing
workstation operating systems are not micro
kernels, so care must be taken to minimize
costly kernel-application interactions. The
widespread acceptance of user level threads
is one example of this constraint, as is the
trend towards user-level communications
management [MIT].

Even with user-level control of
communication, the cost of communication is
high relative to the cost of computation in
existing workstations, therefore it is essential
to overlap communication with computation
[Active]. The Active Messages system uses
asynchronous prefetching to overlap
communication with computation, but may
still block if an expected message is delayed
past its expected arrival time slot. Active
messages are like VEOS messages, which
invoke upcalls at the receiving end, however
VEOS messages may incur an expensive
method at the receiver, while Active
Messages are intended only to provide quick
access to retrieve remote data.

Scheduler Activations are another
approach to overlapping computation and
communication. Tight coupling between
kernel and user-level allows the user-level
scheduler to deschedule threads blocked on
10 so that other threads may run. The
threads, however, still assume a synchronous
communications model [Sched].

Emerald [Emerald] supports distributed
computation on a loosely coupled network of
homogenous machines, Emerald uses
migration of objects as the distribution
mechanism, while VEOS passes messages
between machines. Emerald makes
extensive use of a specialized compiler and
compiled run-time system, while VEOS uses
an interpreted environment built on Lisp,
providing a dynamic run-time environment.
Like VEOS, Emerald was built on top of the
existing Unix kernel, and provides multiple
threads within a single heavyweight process.

Chores [Chores] provide low cost
virtual processors called workers, which like
entities have no stack. Workers are Presto
user-level threads which yield or block; there
is no time slice preemption. Entities are not
subject to preemption, but may not block.
Chores run on a single multiprocessor, while
VEOS runs across multiple uniprocessors.
Chores provides compiler support for



parallelization based on programmer hints,
VEOS provides run-time support for
parallelization based on explicit programmer
decomposition.

Nectar [Nectar] linked existing
heterogeneous workstations together to serve
as a multicomputer. Nectar recognized that
heterogeneous architectures provided more
variety of resource specialization. Nectar
used specialized auxiliary communications
hardware to link machines together, while
VEOS uses standard 10 MB/sec ethernet.

While newer network technologies like
ATM can make LANs of workstations
function as more tightly coupled parallel
architecture [Nectar][Efficient], it will take
time before ATM is as standard as TCP/IP is
over Ethernet. VEOS favors portability more
than performance, and existing bases of
commodity workstations more than
uncommon research boxes.

3 VEOS Overview

Though true parallelism is impossible
on a uniprocessor, VEOS provides thread-
like virtual processors, called entities ., which
may be distributed over the set of hosts
involved in an application. Entities, like
Presto threads, are non-preemptive; instead
they perform only short discrete tasks,
yielding quickly and voluntarily. Unlike
Presto, VEOS offers no support to detect a
blocked entity, therefore entities use
asynchronous IO to allow other entities a
chance to run, as well as reduce the chance
that the kernel will swap the entire node out,
incurring a performance penalty.

VEOS provides a distributed execution
environment for user-programmed entities.
The task of writing a VEOS program is
specifying the body of each entity in the
system. In this way, entities are similar to
objects in SmallTalk [Smalltalk].

Entities are the basic unit of process and
data abstraction and were designed for
flexibility. Every entity minimally consists of
a unique location transparent name called an
EntID. Entities use entIDs like capabilities to
reference one another. Additionally, entities
can have:

* Methods . These are like SmallTalk
methods in concept. Methods are called
from other entities asynchronously,
asynchronously with flow-control, or
synchronously, if necessary.

e Persistent processes. These are round-
robin scheduled by VEOS and run non -
preemptively on the node's single stack.

Entities receive messages through their
methods. These upcalls provide direct
object-oriented style communication.
Methods are written in LISP, allowing them
to be dynamically installed, deinstalled, or
modified. Furthermore, arguments to
methods can be any Lisp expression, giving
the user the flexibility to pass data or  code
fragments.

At the heart of many simulation
techniques is the concept of a frame.
Roughly, a frame is a cycle of computation
during which the entire simulation advances
one time step. Updates are propagated at the
end of a frame. VEOS embraces a flavor of
frames for VE computation.

Because the nodes in a given VEOS
invocation may have unequal workloads and
processing speeds, each node has an
independent notion of the frame rate. This
allows VE builders to plan their programs so
that the most critical components run on the
fastest nodes (no automatic load balancing).
There is a flow control mechanism for
passing messages between nodes on unequal
frame rates.

To make the frame concept work
without preemption, VEOS entities perform
discrete, atomic and repeatable tasks called
persist procs. A node's frame rate is



determined primarily by the amount of work
involved in performing all persist procs once.
An example of a persist proc is:

;; poll physical device for data from dataglove
(setq raw-data (read-data-from-hand))

;; quickly update user’s view
(send-to renderer raw-data)

;; parse the gesture
(setg cooked-data (parse-gesture raw-data))

;; dispatch command, if any
(send-to command-engine cooked-data)

)

For local entity communication, VEOS
queues messages and interleaves message
delivery with persist proc execution. For
remote communication, VEOS uses Unix
socket services to deliver messages to the
proper node where message are queued as if
they were local.

Although an entire VEOS application
can be written in LISP, performance critical
portions of entity code are rewritten in C by
programmers after many experimental
iterations in LISP by designers. In the
billiard application described below, the
collision detection routines were prototyped
in Lisp, and rewritten in C to maximize
performance. C functions are bound in with
LISP for a consistent application
programmer interface.

4 VEOS Primitives

In this section, we describe some
fundamental system services and show their
minimum execution times. In the next
section, we describe how to build useful
programming semantics out of these basic
services.

Basic services include creating and
disposing entities and sending messages. As
a fair comparison to starting a null thread,
we create an entity with an empty persist

4

proc. For message passing, we use a round
trip semantic to measure performance.

Although, VEOS programs rarely use
synchronous semantics, we show the data as
the minimum round-trip time possible with
our message passing implementation.

. sync async

fork join msg msg
local 10.6 1.4 2.0 7.2
remote 28.0 1.2 8.6 14.5

times in milliseconds

The column for fork show the time to
create an entity locally and remotely. Times
for non-trivial forks vary greatly because
application specific entity initialization code
is executed during the create. This could
include defining methods, defuning LISP
functions, initialization of devices, etc. The
column for join shows low times because
unlike the create operation, the entity
dispose operation occurs asynchronously.
The measured time is the time to dispatch a
dispose request.

The column for sync message shows the
round trip time for a synchronous method
call. For the remote case, VEOS spin-waits
for the reply. In the local case, a the function
is executed immediately and the result is
returned. The column for async message  show
the round trip time for asynchronous send
reply semantics. This scheme is described
further in section 5.



S5 Asynchronous

Communication Models

¢ Client-Server

This model is based on request-reply
semantics. Though similar to RPC [RPC], the
sender inserts the request onto the network

(asynchronous method call to server entity)

but does not wait for the reply. Instead, the

reply is passed by upcall to the client entity's

dedicated reply method. The requesting
entity must yield before the reply can be
received.

The reply-catching method can have various
semantics. It can restart a persist proc that
was halted when the request went out, set a
flag that a persist proc continually checks, or
locally handle the reply in a more complete
fashion, possibly generating new messages.

* Causal Ring

Messages act as tokens among the
participating entities. Once an entity has
received a message, it generates another
message (asynchronous method call). Since
method calls are guaranteed to be reliable,
one initial method call (bootstrapping the
token ring) will cause the token to pass
perpetually.

The Causal ring also manages flow control
by definition; there are only k messages
among the entities where k is the number of
tokens in the ring. We have found that with
k>1, throughput is increased, but message
convoying tends to occur which produces
sporadic data flow.

* Transmit Only

This model is different from client-server and
token communications because it involves
one-way messaging. The transmit-only
semantic is useful when sending data to

output devices which are data sinks, such as

graphical renderers or sound servers. Since

the system interface guarantees reliable
communication, the sender does not need a

receipt for delivery of message. This scheme
can be used for a purely data-flow
application.

* Fully Connected Causal Mesh

This is a generalized causal ring.
Asynchronous processes regulate their
actions according to incoming messages,
without an explicit token. Each incoming
message drives some event, which may
cause an outgoing message. Each entity in
the mesh receives many messages and
computes with each one. When the entity

has received N updates from its neighbors, it

then sends its update to N neighbors.

The Bounce sample application uses such a
construct to lock-step the ball computations.
Each ball considers a frame finished when it
has heard from all other balls (the full set is
the equivalent of a token). Within a frame,
messages cause the ball to recompute its
velocity based on potential collisions. When
the frame is finished, the ball computes its
next movement step and sends an update to

each other ball.

6 Example Application

Bounce, our billiard ball simulation, is
intended to show how VEOS facilities can be
used to implement a distributed program,
and where the tradeoffs between parallelism
and message passing overhead lie.

Bounce runs on our LAN of
heterogeneous workstations, and makes use
of specialized resources on the network. A
Silicon Graphics 4D/320 VGX provides
graphical output, while several DEC
5000/240s provide collision and movement
computation for the balls. There are fifteen



billiard balls, each one modeled by an entity.

One entity provides an interface to the
rendering engine, another access to a
spaceball input device, and another provides

a command console. All entities
communicate via asynchronous messages

which trigger methods on the receiving end.

The rendering and spaceball entities
update as fast as possible. Balls compute a
new update during each frame. Within a
given frame, each ball checks for collisions
upon receiving updates from other balls.
Since frames are the granularity of time, all
forces acting in a given frame are assumed to
be coincident in time.

Note how the balls use asynchrony to
maximize parallelism. Balls do not have to
wait for all messages to begin acting upon
them. They determine their new velocity
iteratively.  This process is driven by
incoming updates from other balls. Once a
ball determines that it has processed all
messages in a frame, it computes its new
position based on its already computed new
velocity. The ball then sends out its updated
position to the other balls and begins a new
frame.

Communication between balls is an

fully connected causal mesh.

Communication between balls and rendering
entity is a linear set of transmit-only links.

Logic for all entities is implemented in
Lisp. Ball collision detection and movement
code, though simple, was rewritten in C to
reduce overhead.

Parallelism and message size are varied
in the following four experiment
combinations. In each case, the same logic
and message traffic is generated. The
differences are how the entities are
distributed and how many message must
travel between nodes.

e Sequential: all entities are on the
rendering machine, sharing the VEOS

process there. There is no parallelism.
Communication overhead is minimal.

* Distributed: the renderer and spaceball
are on the SGI, all balls are on one
DECS5000. Coarse-grain parallelism, with
increased inter-node communication
overhead, 1 small message per ball per
frame.

e Wholesale: like distributed, but an
auxiliary entity runs with the balls on one
DEC to bundle the single messages
headed to the renderer into one large
message. Inter-node communications
overhead is 1 large message per frame.
Slightly more processing overhead on the
DEC to manage the large message.

e Parallel: renderer and spaceball on SGI,
balls distributed over two DECS5000s.
Increased fine-grain parallelism,
increased inter-node communication as
each ball now must send n/2 more
messages across machine boundaries
each frame.

Y IS )
QD Y AN N
& & ¢
<> & & i
.54 1.21 1.17 97

frames per second

As expected, the Sequential condition
had the worst performance. Communication
overhead was minimal, but the lack of
parallelism was fatal.  Unexpectedly,
Distributed had the best frame rate, clearly
beating the Parallel condition, and just
slightly above the Wholesale condition. We
infer from this data that the increased
number of messages in the Parallel condition
negated the benefits of increased processing
resources, showing that the ratio of
communication to computation needs to be
lower than in our sample application to
achieve parallel speedups with VEOS.



Sending a single large packet seems
similar in cost to several small packets. We
had hoped that sending one large packet
would be faster; however, we infer from this
data that the network protocol overhead
saved by reducing number of messages is
negated by the increased overhead of large
packet composition and decomposition.

7 Summary

In this paper we described VEOS, a
system for prototyping distributed Virtual
Environment applications on uniprocessor
LAN:S.

VEOS combines object-oriented
programming methodologies, non-
preemptive task management, and
asynchronous communications models to
utilize clusters of non-dedicated
heterogeneous workstations.

In the interest of portability across
diverse commodity hardware, VEOS relies
only on common Unix services such as
sockets.

In order to utilize these workstation
clusters without disrupting other users,
VEOS links one Unix process per node to
form a virtual multiprocessor.

In a platform-independent fashion,
VEOS multiplexes the uniprocessors with
entities and provides asynchronous message
passing between entities. Asynchronous
communication maximizes Pprocessor
utilization by overlapping communication
with computation.

Entities are flexible non-preemptive
units of task decomposition designed around
frame based computation, the model
currently employed in simulations and VEs.

8 Conclusion

Our experiences show that
asynchronous communication with non-
preemptive task decomposition (entities) is a
viable strategy when preemptive task
management cannot be used.

In VEOS, inter-node communication is
very expensive compared to local
communication. Within one node, fine-grain
task decomposition is useful and efficient as
a structuring tool. Across multiple nodes,
only coarse-grain decomposition is practical
because the network communication
overhead overwhelms the potential benefit
of parallelism.

As our example application
demonstrated, VEOS entities can be used to
model both fine and coarse-grain task
decomposition. This flexibility, together
with the ease of prototyping distributed
program makes VEOS a useful development
environment.

9 References

[Active] T. von Eicken, D.E. Culler, S.C.
Goldstein, K.E. Schauser; Active
Messages: a Mechanism for Integrated
Communication and Computation;

University of California at Berkeley;
ACM July 1992, pp 256-266.

[Chores] D. Eager et, J. Zahorjan; Chores:
Enhanced Run-Time Support for
Shared-Memory Parallel Computing;
Computer Science, University of
Washington; class reading.

[Efficient] C.A. Thekkath, H. Levy, E.
Lazowska;  Efficient Support for
Loosely Coupled Multicomputing on
ATM Networks; Computer Science,
University of Washington; December
1992; not yet published.

[Emerald] E. Jul, H. Levy, N Hutchinson, A.
Black; Fine-Grained Mobility in the



Emerald System; University of
Washington; ACM Transactions on
Computer Systems, Vol. 6, No. 1,
Frebruary 1988, pp 109-133.

[Mach] D. Black, D. B. Golub, D. P. Julin, R.
F. Rashid, R. P. Draves, R. W. Dean, A.
Forin, J. Barrera, H. Tokuda, G. Malan,
D. Bohman; Microkernel Operating
System Architecture and Mach;
Proceedings USENIX Workshop on
Microkernels and Other Kernel
Architectures. April, 1992; pp 11-30

[MIT] D. S. Henry, C. F. Joerg; A Tightly
Coupled Processor-Network Interface;
Proc. 5th International Conference on
Architectural Support for Programming

Languages and Operating Systems;
October, 1992; pp 111-122.

[Nectar] H.T. Kung, R. Sansom, S. Schlick,
P. Steenkiste, M. Arnould, F.J. Bitz, F.
Christianson, E.C. Cooper, O.
Menzilcioglu, D. Ombres, B. Zill;
Network-Baed Multicomputers: An
Emerging Parallel Architecture;
Computer Science, Carnegie Mellon
University; ACM July 1991, pp 664-673.

[Presto] B. Bershad, E. Lazowska, H. Levy;
PRESTO: A System for Object-oriented
Parallel Programming; Computer
Science, University of Washington,
Software-Practice and Experience, Vol.
18(8), August 1988, pp 713-732.

[RPC] A. Birrel, B. Nelson; Implementing
Remote Procedure Calls; Xerox Palo
Alto Research Center; ACM
Transactions on Computer Systems,
Vol. 2, No. 1, February 1984, pp 39-59.

[Sched] T. E. Anderson, B. N. Bershad, E.
D. Lazowska, H. Levy; Scheduler
Activations: Effective Kernel Support
for the User-Level Management of
Parallelism. ACM Transactions on
Computer Systems 10, 1; February,
1992; pp 53-79

[Smalltalk] A. Goldberg; Smalltalk-80; Xerox
Corporation; Addison Wesley, 1984;

[VPL] Virtual Reality data-flow language
and runtime system, Body Electric
Manual 3.0; VPL Research, Redwood
City, CA; February 1991.

[XLisp] XLISP 2.1 by David Betz, User's
Manual.



