
VEOS DESIGN GOALS

William Bricken

August 1992

Copyright (C) 1992 All Rights Reserved by William Bricken

As a technology matures, the demands on the performance of key components

increase. In the case of computer technology, we have passed through massive

mainframes to personal computers to powerful personal workstations. A growth

in complexity of software tasks has accompanied the growth of hardware

capabilities. We have gone from command lines to windows to life-like

simulation. Virtual reality applications present the most difficult software

performance expectations to date. VR challenges us to synthesize and

integrate our knowledge of sensor fusion, databases, modeling, communications,

interface, interactivity, and autonomy, and to do it in real-time.

The Virtual Environment Operating System (VEOS) is currently under development

at the Human Interface Technology Lab at the University of Washington. The

VEOS project is the responsibility of Dr. William Bricken and a team of

several graduate students lead by Geoffrey Coco. VEOS is designed to

integrate the diverse components of a virtual environment.

VEOS consists of several software subsystems. The kernel manages processes,

memory, and communication. The entity interface permits modeling objects in

the environment, and the environment itself, in a consistent, object-oriented

manner. The interaction tools empower a participant within the virtual

environment.

The design of VEOS reflects multiple objectives, many practical constraints,

and some compromises. Most importantly, VEOS is a research prototype,

intended to show the way rather than to be sold for profit. VEOS is supported

by a consortium of industrial partners and is developed in the high turnover

environment of a university research lab. Thus it is constantly undergoing

revision and iterative refinement.

As a research vehicle, VEOS emphasizes functionality at the expense of

performance. Premature optimization is the most common source of difficulty

in software research. We believe that code is best improved after it is

functioning. So our efforts are directed toward demonstrating that a thing

can be done at all rather than demonstrating how well we can do it. Since a

research prototype must prepare us for the future, VEOS is designed to be as

generic as possible; it places very little mechanism in the way of exploring

diverse and unexpected design options.

A central consideration for the VEOS project was to respect and integrate with

existing and about-to-be-released commercial software. As a research

organization, we sought to avoid duplicating what could be bought. VEOS looks

five to ten years ahead. It sets an expectation that can be met by the

commercial software marketplace through diligent refinement of basic

principles.

However, a VR system is far too ambitious an undertaking to begin from

scratch. We have conceptualized VEOS as primarily a synthesis of known and

understood techniques. Since VEOS is designed for technology transfer, we

engage in very little basic research. Instead, we assemble disparate software

ideas into a tightly integrated system with new functionality.

===

Research prototype, 5-10 years ahead of marketplace

Functionality rather than efficiency

Incorporate commercially available software

Synthesis of known software technologies

Rapidly reconfigurable

===

TABLE I: VEOS Practical Design Decisions

VR is characterized by a rapid generation of applications ideas; it is the

potential of VR that people find exciting. However, complex VR systems take

too much time to reconfigure. VEOS was designed for rapid prototyping. The

VEOS interface is interactive, so that a programmer can enter a new command or

world state at the terminal, and on the next frame update, the virtual world

display will change. Any real-time interactive system requires immediate

accessibility. VR systems must avoid hardwired configurations, because a

participant in the virtual world is free to engage in almost any behavior.

For this reason, VEOS is reactive, it permits the world to respond immediately

to the participant (and the programmer).

The broad-bandwidth display and the multisensory interaction of VR systems

create severe demands for sensor integration. Visual, audio, tactile, and

kinesthetic display requires the VR database to handle multiple data formats

and massive data transactions. Position sensors, voice recognition, and high

dimensional input devices such as the Spaceball, the Flying Mouse, and the

Wand overload traditional serial input ports. A VR i/o architecture must

incorporate asynchronous communication between dedicated device processors in

a distributed computational environment. The database must accommodate update

from multiple processors. In VEOS, we have adopted a Linda-like communication

model which cleanly partitions communication between processes from the

computational threads within a process.

The characteristics of the virtual world impose several design considerations

and performance requirements on a VR system.

===

Coordination between distributed, heterogeneous resources

Interactive rapid prototyping and reconfiguration

Entity-based modeling

Multiple participants

Concurrent divergent worlds

===

TABLE II: VEOS Functionality

The design of the virtual world could readily overwhelm a programmer if the

programmer were responsible for all objects and interactions. Virtual worlds

are simply too complex for monolithic programming. Entities within the

virtual world must be modular and self-contained. The designer should be able

to conceive of an entity, say a cow, independently of all other aspects of the

world. VEOS is structured so that each entity is designed to be independent

and autonomous. The system itself takes care of the lower level details of

inter-entity communication, coordination, and data management.

In VEOS, all entities are organizationally identical. Only their structure,

or internal detail, differs. This means that a designer needs only one

metaphor, the entity, for developing all aspects of the world. Changing the

graphical image, or the behavioral rules, or even the attached sensors, is a

modular activity.

Entity modularity is particularly important when one recognizes that hardware

sensors, displays, and computational resources are themselves first class

entities. The entity model provides integration modularity for any new

components to the VR system, whether they are graphical images, added cpus, or

new input devices. Entities can be run independently, as worlds in

themselves, or they can be combined into complex worlds. This means that

devices and models can be tested and debugged modularly.

Because entities consist of both data and operating system processes, an

entity can use other software modules available within the larger operating

system. An entity could, for instance, initiate and call a statistical

analysis package to analyze the content of its memory for recurrent patterns.

The capability of entities to link to other systems software make VEOS

particularly appealing as a software testing and integration environment.

Entity autonomy is best modeled by assigning a separate processor to each

entity. This approach makes VEOS essentially a distributed operating system.

Distributed resources arise naturally in VR, since the virtual environment is

a social place, accommodating multiple concurrent participants.

When more than one person inhabits a virtual world, the perspective of each

participant is different. This can be reflected by different views on the

same graphical database. But in the virtual world, divergent perspectives can

be embodied in divergent databases as well as divergent viewpoints. That each

participant can occupy a unique, personalized world makes VR essentially

different than physical reality.

Software development is often rocky. In a graduate school environment where

the programming staff is part-time and transient, a software project must

exhibit both modularity and redundancy. The MOSES (Meta-Operating System and

Entity Shell) project is a self-contained and independent duplicate of VEOS.

The MOSES team has focused on detailed specification of system functionality,

scalability of the conceptual design, fault tolerant shared memory, and

heterogeneous communication. MOSES also brings hybrid vigor to the VEOS

project.

In summary, VEOS is a significant effort to provide transparent low-level

database, process, and communications management for arbitrary sensor suites,

software resources, and virtual world designs. VEOS is the glue under VR. As

such, it provides a strong integration environment for any team wishing to

construct, experiment with, and extend VR systems.

