
VEOS: PRELIMINARY FUNCTIONAL ARCHITECTURE

William Bricken

April 1990

Copyright (C) 1990 All Rights Reserved by William Bricken

Virtual interface hardware sensors, such as the head-coupled unit, hand

sensors, joysticks, yolks, and other devices, provide a digital signal which

is generated by the physical actions of a participant (user) in a virtual

environment. VEOS is the software substrate which mediates the interface

between the symbolic computation generating the virtual environment and

natural behavior of the participant within the virtual environment.

FUNCTIONALITY

The primary subsystems of the Virtual Environment Operating System (VEOS)

include:

Interpretation
couples the input activities of the participant to computational

processes.

Modeling
manages the computational behavior and model of virtual environment

elements.

Display Integration
integrates output signals from the model and from other sources to drive

the display devices which create the virtual environment.

These three subsystems will perform the following functions:

The Interpreter

receives sensor signals,

screens errors,

initiates error correction and negotiation with participant,

integrates input into a common model representation, and

bypasses the model subsystem for signals that require rapid display,

do not interact with the model, or have specialized hardware.

The Virtual Environment Model

maintains and coordinates the representation, processing activity, and

interaction between model elements,

manages the long term memory, library access, history storage, and

database access associated with models,

manages the process allocation and load balancing between models

and available hardware processing resources,

coordinates the connectivity and model consistency between multiple

 participants.

The Display Integrator

receives standardized output from the modeling subsystem,

receives specialized output from model-independent hardware,

receives error messages from the Interpreter,

converts signals into a participant-centered viewpoint,

controls viewpoint, perspective, and other hardware generated display

 functions, and

integrates multiple sources of environmental images (such as video,

videodisc, digital libraries, and physical reality).

Our design philosophy is to assign a virtual processor to every distinct

object in the virtual environment. Objects are organized hierarchically, with

empty space itself as the root node. The architecture of the VEOS itself is

the same as the architecture of every object within the virtual environment.

Therefore, the properties of the operating system can be inherited by each

object. This morphism of processing capabilities provides a unified basis to

support arbitrary distribution of available processing power.

Internal Architecture

The primary organization within each modeled object is an input-process-output

loop. Input is identified by the object's sensors, which themselves are

subsystems. Output is defined by effectors. The structure of each

object/system consists of:

Input buffer (fed by sensors)

Priorities (the internal value system on input)

Disposition (rules triggered by selected input)

Knowledge (state collected by rules)

Output buffer (actions generated by rules)

Sensors store input in a buffer. A set of rules for attention select a single

input item to compare to the trigger clauses in the set of disposition rules.

When a particular rule is matched, the action it specifies is carried out. An

action may be to store the input as knowledge or to cause an effector to

change the state of the environment. Some rules may be contingent on stored

knowledge to be triggered. Some rules may be independent of input, they form

the internal processing disposition of the system.

This architecture allows situated responses. Objects can react to

environmental changes (as perceived by input sensors and filtered by

priorities) dynamically and opportunistically. Objects can also learn from

experience and internally abstract experiences to form idiosyncratic knowledge

bases. When rules include inference over the knowledge base, an object can

behave as an expert system.

Objects can be programmed by inserting rules into their disposition. The

process of programming can be linked to voice commands. A voice command (such

as "Add mass to this book") can trigger in the target object a metarule to

insert a rule into the disposition or the knowledge base. The template for

the ADD metacommand constructs a knowledge slot, queries for associated values

and for authorization to change, and constructs appropriate externally defined

sensors and effectors. The idea is to permit interactive, intuitive

programming of systems within a virtual environment.

In summary, the software architecture of the VEOS and of virtual objects

incorporates rule based logic programming locally in object-oriented

autonomous systems. Programs are reactive and situational (data-driven) when

internal priorities are satisfied by existing input, and autonomous and

learning (goal-driven) when there is not prioritized input. Disposition

rulebases are programmable by other systems (in particular by the

participant).

Software Tools

The VEOS will provide a wide range of software tools for construction of and

interaction with models. Our intent is to provide primitives which permit the

design of environments with arbitrary characteristics. We hope to be able

accommodate arbitrary predicate calculus theories and non-standard

experimental logics (temporal, modal, situational) by changing inference

engines within the VEOS. We are not addressing the development of the

theories themselves, rather we wish to provide an empirical environment for

theory exploration. The range of model programmability includes:

object construction and editing

spatial enumeration

assembly of primitives

constructive solid geometry

boundary models

sweeps

properties

constraints

rules

relations

space construction and editing

global properties (gravity, laws of motion)

topological functions and deformities

coordinate systems

spatial construction capabilities

global origins and world viewpoints

edges, backdrops and scenery

cleave objects out of background

abstraction construction and editing

hierarchical composition

process model and computational semantics

abstraction rules, functions and relations

abstract definition (generation, uniqueness, structural)

viewpoint control

glide through

scaling

jack-in (teleport)

multiple concurrent viewpoints (stereo)

projection

boundary integrity

collision detection

contact maintenance

joint articulation

surface travel

sensory ports

personal space

boundary self-maintenance

multiple concurrent participants

initialization of common worlds

uniqueness enforcement

consistency maintenance and contradiction partitioning

negotiation of mutual relationships

inhabitation

sensor and effector mapping

communication ports and input/output maps

functional constraints

control of time

parameterized animation speeds

variable rate parallel clocks

parameterized display rate and lag

history

time-tagged communication

instant replay and backtracking

display and resource control

successive display abstraction (wire-frame, hidden line

removal, shading, texture, photorealism)

variable polygons within a region

foveal refinement

distance object filters

allocation of processors

simulation interweaving

internal processes

priorities

computational and inferential mechanisms

pattern matching

constraint management

short and long term memory

behavior and experience storage

hypothesis testing and information seeking

history and statistics

store experience (categorical, ordinal, time-stamped)

generalization

classification

distribution statistics

correlational statistics

trend analysis

HIGH-LEVEL TOOLS

Three examples of tools constructed from the VEOS functionality follow:

The Wand

The Wand is an interface tool which uses a simple physical device for a wide

range of functions. The physical device is a rod with a 6 degree-of-freedom

sensor on one end which supplies position and orientation information to the

model. The sensor information inhabits a virtual rod held by a virtual hand.

We assign functionality to the Wand by attaching a voice sensor to it and

inserting rules into its set of dispositions. The general form of the

response rule is "if recognize-input then generate-associated-output". Some

functions of the Wand include:

Ray on/off:
A ray emanates from the end of the virtual rod, collinear with it.

Identify:
The first object which the ray penetrates returns its name.

Distance:
The length of the ray vector, expressed in the metric of the

 intervening space, is returned.

Connect:
Construct a communications port between the rod and the identified

object.

Jack:
Teleport the viewpoint of the rod (along the ray vector) to the

 identified point on the object.

Grasp:
Attach the end of the ray to the identified object. When the Wand

is moved, the object stays attached. When the Wand is rotated,

the object rotates.

Normal:
Rotate the identified object so that the intersecting ray is

normal to the object's surface.

Sight:
Jack into the Wand; the viewpoint of the participant issuing the

command is linked to the ray vector.

Move faster/slower:
Move the viewpoint of the participant along the ray vector.

The Virtual Body

Since the participant is included within the virtual environment, the

representation of self is fundamental to virtual interface design. The

Virtual Body is the primary reference point, the interface between the user

and the virtual environment. It provides direct access to computational

graphic objects; it is the channel of direct action and control. Monitoring

the Virtual Body provides the computational system with a complete record of

actions taken by the participant.

The Virtual Body is a software toolkit for

-- attaching arbitrary hardware input devices to arbitrary

representations of components of our body. Usually the linkage

will emphasize naturalness.

-- making psychometric measurements of behavior in a virtual

environment, and

-- maintaining coherence between the participant's model of physical

activity and the virtual representation of that activity.

The unique aspects of the Virtual Body are:

1. The sensor measuring participant activity is designed to be

transparent. Natural physical movement directly affects the computation;

there is no apparent interface. The Virtual Body software maintains the

illusion of direct interaction.

2. Mapping between physical action and computational effect is flexible

and dynamic. A spoken word, for example can change the computational effect

of shifting one's gaze from "Identify that object" to "Transport me to that

object."

3. Physical actions in a virtual environment furnish psychometric data

on performance, resource expenditure (load), and cognitive model. Since

action can be taken literally (there is no symbolic transcription filtering

the meaning of behavior), performance in a virtual environment mimics

performance in reality. As long as the representation of the task is valid,

the user's behavior directly indicates the user's ability to perform.

Components of the Virtual Body

Sensors are physical devices which sense natural movement. Sensors furnish a

data stream to the computational environment. Sensors that are under

development include:

Head tracking,

Eye tracking,

Voice recognition,

Hand movement (right and left),

Body movement(torso, arms, legs),

Touch locales (fingertips).

The Virtual Body includes software for:

-- mapping this data stream to representations of body components in

a virtual environment display,

-- interpreting the data stream as instructions to change the virtual

environment, and

-- collecting and analyzing the data stream as psychometric

information.

SIMSTAT, an empirical programming environment

SIMSTAT is a virtual environment which provides statistical design and

analysis fully integrated into a general simulation capacity which

incorporates the scientist as a participant. During a physical experiment,

the participant can enter the simulation of the experiment. The virtual

display is driven by data streams which may originate from mathematical

models, from other processes within the simulation, or from the physical

experiment itself. The virtual environment is fully under the control of the

designer, so that experimental factors can be varied with precision. The

history mechanism within each object generates a stream of behavioral data

which is linked to a general statistical analysis package. Correlational

analysis is achieved by linking two objects to a common clock which time-

stamps their respective behaviors.

SCHEDULE

Year 1: Development of VEOS for independent objects, prototype of

interpretation and integration modules, simple models, viewpoint control, Wand

and Virtual Body tools.

Year 2: Hierarchical objects, object, space, and abstraction editors,

prototype for multiple concurrent participants, inhabitation.

Year 3: Complex models, boundary integrity, integration of several input

devices, prototype parallelism.

Year 4: Display, resource, and time control, history and statistics, large

world models.

