INTERACTIVE COMPLEX SYSTEMS SIMULATION
William Bricken

Chris Langton Los Alamos National Laboratory, Santa Fe Institute
Bruce Sawhill Santa Fe Institute
June 1993

Statement of Purpose

The focus of the proposed research is non-linear computational environments
(complex and chaotic systems which include a human participant), the new
interactivity paradigms that they offer, the underlying mathematical and
interface theories, and the interactive experiences available to human
participants in complex computational environments. The title Interactive
Complex Systems Simulation (ICSS) was chosen to differentiate this research
effort from projects at other institutions which concentrate either on purely
computational issues or on purely human interface issues. We feel it is
necessary and desirable to advance the state of the art on both fronts
simultaneously in order to take full advantage of new computational technology
and new metaphors for the generation and comprehension of information.

1 Introduction

The advent of electronic computers has brought about a revolution in all areas
of science and engineering, and has opened up the possibility for scientific
investigations and technological accomplishments of a wholly new kind.
Computers have permitted the in-depth study and modeling of systems of great
complexity, such as stellar and galactic dynamics, atmospheric processes,
biological cells, brains, weather, the human immune system, ecologies, and
economies. The importance of understanding such systems is enormous: many of
the most serious challenges facing humanity (e.g., environmental
sustainability, economic stability, the control of disease), as well as many
of today’s most difficult scientific questions (such as the nature of
intelligence, the origin of life, and computational modeling of biological
systems) will require a deep understanding of complex systems. Computers have
also provided the ability to address previously intractable practical problems
such as large-scale combinatorial optimization, the automatic analysis of
complex data, the simulation of environments not accessible by experimental
means, and the creation of autonomous learning systems, all of which will have
tremendous significance for science and technology.

As research in such areas has progressed, the need for increasingly powerful
and sophisticated mathematical models, and their implementation as
computational systems, has become paramount. The recent development of
massively parallel computers has great potential for addressing these
problems. However, powerful hardware is rarely sufficient by itself for
making significant progress on the types of problems listed above. At present
the primary bottleneck lies in the creation of new computational methods

(algorithms, interfaces, analysis tools) that fit these problems in a more
natural way than do traditional computational and mathematical methods.

The central research issue is to develop a computational infrastructure that
supports the complexity of non-linear modeling while providing a seamless
interface to the human attempting to understand the inherent complexity of
global systems.

Truly complex systems are characterized by irreducibility, which means that
traditional analytic mathematical techniques cannot be used to reduce a system
to its constituent parts and still preserve the essential character of the
system. Complex systems consist of many parts that behave differently in each
other's presence than they do alone, hence invalidating the "divide and
conquer" approach that has been so successful in fields such as particle
physics. One might consider a single hydrogen atom in isolation and obtain
useful insight about the behavior of hydrogen gas, but it is very difficult to
consider a single cell in isolation and to obtain useful insight about the
dynamics of 1life, ecology, and evolution. To understand a complex system, we
must keep track of the net of interactions that tie the system together, a
task that is theoretically well proscribed but practically very difficult.

Before the existence of cheap and powerful computers, such complex systems
were simply mathematically intractable. Computers have changed the situation
completely by providing the capability for the synthesis, as well as the
analysis, of complex behavior. When complex behaviors are analyzed in the
traditional sense, they are decomposed into individual parts, but in doing so,
the interesting behavior vanishes, because it is inherent in the interactions
among the parts. A tractable way to study complex behavior is to synthesize
it, to put all of the parts and their interactions together and let the
collective behavior emerge from the resultant dynamics. This synthesis is an
inherently parallel activity, in which every part is updating itself
simultaneously with all of the others.

Mathematical simulation is not, in itself, sufficient for our comprehension of
complexity. In general, complex phenomena are extremely difficult to
understand. The synthetic techniques of non-linear modeling must also
incorporate the human in the synthesis, they must include a new participatory
paradigm for interface. Complex environments must present information
dynamics to the human in a manner which calls upon the native, intuitive
capabilities of our entire sensorium. Non-linear information is simply too
complex to be understood solely by intellectual abstraction. In particular,
we must call upon visualization, audio cueing, kinesthetic feedback, and the
full dynamics of participation within the complex environment 1in order to
develop a deep understanding of irreducible systems.

Computational modeling of global economies, of weather systems, of social
organizations requires both high performance parallel computing and high
bandwidth participatory interface.

What is required, then, is a methodology that:

e can be implemented to take advantage of massive parallel
processing,

e efficiently navigates through enormous, multidimensional
solution spaces using intelligent pattern-recognition abilities to
identify classes of satisficing solutions,

e permits complex behavior to emerge from the interaction of
simple parts (rather than being laboriously and most often
inadequately preprogrammed),

e is capable of self-adaptation in order to optimize performance
with respect to different users and to different problems, and

e provides an extraordinarily wide bandwidth of interaction with
human users, to the extent that data becomes experience.

A number of new approaches to computation that have been developed in recent
years, inspired by complex problems as diverse as understanding the reaction
of the human immune system to disease, piloting a supersonic aircraft under
enemy fire without looking at the controls, and developing models of world
resource usage. Neural networks, genetic algorithms, lattice gas methods,
simulated annealing, and virtual reality are examples of such novel
approaches. These approaches have been used both as models of natural
phenomena and as nature-inspired methods for solving practical problems.
Since new methodologies provide a contrast to traditional computational
methods, they lead to a broadening of traditional notions of how information
processing can take place.

Innovation in information processing methodologies also leads to an entirely
new set of challenges for creating, managing, and interpreting information
itself. As computational power increases, we will need to integrate theories
of understanding and of experience into our computational methodologies.

In a broad view, this proposal addresses the problem of human interaction with
the machines of the future. How will we understand information when it is
processed by emergent algorithms, in incomprehensible volume, over
inconceivably short times, blind to physical distance, and shifted through the
narrow window of a display device?

We suggest an innovative computational architecture, the Process Gas, coupled
to an intuitive environment, Virtual Reality, as a testbed for studying
interactive complex systems simulation. We then propose five applications to
aid in the iterative refinement of this architecture and to provide immediate
benefit from the infrastructure development.

2 Interactive Complex Systems Simulation (ICSS)
2.1 Complex Systems and the SFI

The charter of the Santa Fe Institute (SFI) is the study of Complex Systems.
SFI has become one of the world's leading institutions for the study of
complex systems, attracting researchers from all over the world to work in its
interdisciplinary atmosphere and to create new tools and new metaphors to
manipulate and describe the common phenomena that underlie different complex
systems. The current research programs at the SFI include adaptive
computation, theoretical biology, theoretical immunology, economics,
artificial life, and time-series forecasting. While each program sponsors
research on a particular, specialized topic, there is a great deal of
interaction among the programs, as well as mutual feedback between research on
specific topics and research on general questions about complex systems.
Fostering such interactions is a primary purpose of the Institute.

These interactions provide a means by which commonalities among the various
disciplines can be discovered. Ideas and techniques from one discipline
(e.g., economics) can often be successfully exploited in another discipline
(e.g., artificial intelligence), and these interactions often produce wholly
new ideas and insights. The SFI has been the catalyst for a number of very
non-traditional collaborations, for example, between economists and physicists
applying new results from dynamical systems theory to economic systems;
between economists and artificial intelligence researchers applying ideas from
economics to machine learning systems; between computer scientists and
physicists, applying concepts of formal language theory to complex many-body
systems; among computer scientists, biologists, and operations-research
scientists studying optimization in computational and in biological contexts;
and among scientists from many disciplines bringing different techniques to
bear on the problem of economic, social, and environmental sustainability.

The important and novel results growing out of these collaborations are
attracting more and more interest to the SFI, from academia, industry, and
education, as well as from the popular media.

Though the SFI studies many different kinds of complex systems, we have sought
universal principles underlying such diverse "complex" phenomena as national
economies and mammalian immune systems. Since the founding of the Institute
in 1984, we have come to recognize the existence of a number of such universal
principles, but none more striking than that many complex phenomena share a
common architecture. This commonality is based upon the observation that
similar dynamical phenomena arise in many fields, fields which on the surface
appear to be completely unrelated, such as transitions to chaos, evolution by
punctuated equilibria, economic cycles of prosperity, scaling laws, etc.

The vast majority of the complex natural phenomena we study are characterized
by having large numbers of different varieties of "agents" (objects capable of
storing, processing, and transmitting information) interacting with and

modifying each other, with no single agent having complete knowledge of all of
the rest of the agents. These agents are, in general, semi-autonomous and
relatively simple. Their local, nonlinear interactions with one another cause
the entire collection to self-organize, to develop structures and
characteristics at the aggregate level that were not explicit in the
individual agents. These agents might be firms in an economy or antibodies
in the immune system or quantum states in a lattice of atoms.

Thus, to obtain a practical quantitative understanding of a particular complex
system, we must first construct a computational simulation that abstracts the
common unifying architecture across complex systems. We can then constrain
the simulation to the particular case and observe the resultant phenomena.

It is obvious that such simulations could not practically be constructed until
powerful parallel computer technology became cheap and available. This
construction of simulations is often called experimental mathematics, except
that it is not an experiment in the traditional sense of the particle
accelerator or the Petri dish, but rather one that takes place inside a
computer's core. It is synthetic mathematics in which analytic simplification
is not the ultimate goal, as it is in the traditional field of mathematical
analysis. Often these experiments deal with systems that are not available
for systematic physical experimentation because of their uniqueness, such as
the Earth's ecology or the American economy. In these cases, simulation
provides the only avenue for quantitative understanding of observed behavior.

Therefore the ability to synthesize behavior is essential to develop an
understanding of complex systems, and the only practical way to achieve this
synthesis is through computer simulation. The particular form of computer
simulation that is required is a direct consequence of the common architecture
shared by most complex systems: they are large collections of semi-autonomous
agents interacting with one another in the context of a shared environment.
The ideal realization of complex systems architecture on a computer would be a
parallel object oriented programming language running transparently on a
massively parallel computer. One could view such a programming system as a
"gas" of computational processes interacting with one another within an
"aether" of processors. 1In fact, we refer to our version of this
computational vision as a Process Gas simulation system.

2.2 Virtual Reality

Virtual reality (VR) applies advances in computing speed, graphics display,
sensor sciences, and programming techniques to immerse a participant within a
computer generated space called a virtual world. Virtual worlds may or may not
be analogues of physical space; virtual environments can be realistic, extra-
sensory, telepresent, abstract, or hybrid.

The sensation of immersion is accomplished by peripheral devices such as head-
mounted visual and auditory displays with motion trackers. The impression of

an environment is generated by a model of a three dimensional world populated
by objects obeying their local behavioral rules, within the context of a
physics governing the space which embeds both objects and participants. A
participant can move around the virtual environment, while interacting with
other virtual objects. One can just as easily play virtual tennis with a
partner as move around inside an abstract representation of HIV epidemiology
data. There are many applications of such virtual worlds, but the most
important aspect of the technology is the vastly improved interface between
human and computer.

The computational implementation of a VR system is a significant departure
from previous approaches to computation. The need to effectively construct
and manage a environment populated by a large number of entities and an
arbitrary number of human participants puts heretofore intractable demands on
an operating system. A VR operating system must operate in parallel on a
variety of platforms distributed over networks, while integrating internal
information with input generated by human participants consistently and in
real-time.

In order to deal with the computational requirements of VR, we have developed
a first-generation version of an operating system (the Virtual Environment
Operating System, VEOS) that addresses most of the computing environment
challenges of virtual reality. In addition to software development, we are
actively developing new interface technologies including tools for navigation
of virtual spaces, for representation of human physiology in the virtual body,
for mapping sensor inputs into arbitrary outputs, for modeling of behaviors,
for embedding narrative and dramatic tension into a series of interactions,
for rapid construction of virtual environments, for integration of MIDI sound
and voice recognition capabilities, and for programming semi-autonomous
entities.

As the technology of VR becomes more sophisticated, it becomes conceivable and
desirable to use it as a scientific research tool. While current VR research
is primarily concerned with constructing worlds that simulate real three-
dimensional physical environments, there is no significant technological
hurdle to using the technology to explore abstract representational spaces
such as might be encountered in complex systems simulations. One could "enter
into" a computer simulation, interact with it, modify it, create appropriate
tools for the acquisition of data, and then take data as one would in a normal
scientific laboratory. The introduction of such a powerful tool could change
the basic way that science is done in the 21st century, and do for complex
systems research what the microscope did for biology or the telescope for
astronomy.

2.3 The ICSS Program

One of the challenges facing the SFI is that it has become impractical in
terms of manpower and resource costs to write special purpose software for

each simulation task, a fact which makes a goal of a "general simulation
engine" based on the Process Gas architecture reasonable and desirable.
Perhaps not surprisingly, many different disciplines concerned with the
generation of complex phenomena are converging on this same computational
architecture. 1In particular, researchers in branches of the computer sciences
(such as AI, operating systems, computer networks, databases, computer
animation, and virtual reality) share a common vision that computation in the
future will be implemented as a parallel, distributed aggregate of
computational processes interacting with one another concurrently in the
context of a shared environment. Because of this shared vision of the future
of computation, there are many ongoing research efforts intended to bring such
a vision into reality.

Most of the groups implementing parallel object-oriented systems are focusing
too narrowly on specific engineering goals, while not paying enough attention
to the requirements for a truly general purpose implementation of the
computational architecture we all seek. The SFI has found it necessary to
become actively involved in a major research and development effort in order
to ensure the development of a Process Gas computational implementation that
will be useful for the general scientific investigation of complex systems.
Furthermore, the SFI's understanding of the workings of complex systems is of
critical importance to the achievement of some of the research and engineering
goals that are motivating these different implementation efforts.

The SFI has carefully reviewed the various research efforts aimed at realizing
distributed computational architectures, concluding that two research efforts
are of direct relevance: Virtual Reality and Distributed Object-Oriented
Operating Systems. The unification of these two topics is best represented by
the VEOS Project. The computational architecture of the Virtual Environment
Operating System (VEQOS) is remarkably similar to that of the SFI.

Many of the technical challenges in constructing a general purpose virtual
environment are the same problems facing the SFI in constructing a general
purpose complex systems simulation engine. A virtual environment might
consist of many different agents, all of which have different rules and
constraints for interacting with each other, just as a simulated complex
system has to allow for many different agents and their interactions.
Furthermore, a virtual environment has to be able to be continuously modified
"on the fly", since it must accommodate human interaction in real time. To be
able to modify a complex simulation in real time would vastly increase the
efficiency of exploring possible dynamics; 1i.e., to experiment with a complex
system in a natural and intuitive way. A VR system must also be
computationally portable so that worlds can be run on many different types of
machines and concurrently accommodate several distributed human participants,
just as a simulation engine must be able to make use of a wide variety of
available resources and be accessible to multiple participants and analysis
programs.

The VEOS system satisfies the requirements of a general simulation engine.
VEOS is designed to manage the maintenance and interactions of all of the
entities in a virtual world and to allow a human participant to interact with
them; 1its operative metaphor is distributed object oriented computation. Its
architecture is very similar to that of the Process Gas, and in fact both
ideas can trace their intellectual heritage to early computational problems
encountered in constructing artificial ecologies and artificial life.

At the SFI, the emphasis thus far has been on creating accurate simulations
rather than on interacting with them. As the simulations become more complex,
the issue of interaction changes from a point of convenience to an essential
part of the scientific method. Without human interaction, simulations tend to
become meaningless since it is impossible to ascertain salient results because
of the information overload generated by the simulation. Conventional methods
for interacting with computers are beginning to prove inadequate for the task
at hand, for presentation of massive amounts of data in a form comprehendible
to humans. Many simulations and data sets exist in a large number of
dimensions, making it difficult to explore them with a flat screen and a
keyboard. Often simulations have a large number of adjustable parameters, and
to obtain a qualitative understanding of the phenomena being generated
requires "twiddling the knobs", an impractical exercise if a large computer
simulation has to be stopped, modified, and recompiled thousands of times.

The bandwidth of communication between simulation and participant must be
increased, through adding additional sensory modalities for output, through
the provision of real-time interaction with the simulation, and by including
the participant dynamically and spatially within the simulation.

2.4 The Proposal

The SFI is concerned with synthesizing accurate simulations of complex systems
and VEOS is concerned with interacting with complex generated simulations.

The wealth of knowledge at the SFI about the workings of complex systems will
aid significantly in the construction of complex virtual realities, while the
vastly enhanced capabilities for scientific visualization and interactive
exploration of such artificial worlds will greatly enhance the SFI's ability
to synthesize and experiment with the dynamics of complex systems.

We therefore propose to unify the two approaches into a powerful cognitive
tool with the potential to transform the role of the computer in scientific
research. This collaboration, which shall be called the Interactive Complex
Systems Simulation (ICSS) program, will have three main research thrusts which
will be described in greater detail in the next section of this proposal.

1. The implementation of the Process Gas model using the VEOS architecture.

2. The creation of a General Simulation Engine by applying a Virtual Reality
interface to the Process Gas implementation.

3. Application of the General Simulation Engine to outstanding problems in
complexity, and in particular to Global Sustainability.

3. Proposals for Research Projects

In this section we present five proposals for research under the ICSS program
that span these three areas. The topics of these proposals are:

1. Development of a General Simulation Engine using the Process Gas model,
the VEOS architecture, and VR interaction techniques.

2. Installation of the Process Gas on the CM-5 at LANL.
3. Installation of the Process Gas on a KSR.

4. Application of the General Simulation Engine to simulation of Global
Information Systems

5. Application of the General Simulation Engine to modeling scenarios of
global sustainability and global decision making, in conjunction with the
Global Sustainability Program at SFI.

3.1 Research Proposals
Proposal 1: The General Simulation Engine

In order to most effectively pursue the study of complex systems, we need to
abstract out their common underlying architecture--a distributed set of
autonomous agents interacting in parallel in the context of an environment--
and realize it in a general purpose simulation tool, ideally on a parallel
computer. We refer to this computational architecture as a Process Gas,
because it resembles a "gas" consisting of a large collection of computer
processes that move around and interact with one another within an "aether" of
processors.

A substantive amount of work has been done identifying the computational
issues involved in the process gas model. We have implemented, for example, a
couple of specific (not general-purpose) simulations on a massively parallel
64,000 processor Connection Machine, built by Thinking Machines Corp. These
hard-wired process gas prototypes have helped to identify many of the
properties we would like to see in a general purpose version. For instance,
one not only needs a general purpose utility for implementing a multi-agent
system, but one also needs tools for analyzing the resulting behavior;
creating, editing, and saving initial states of such a system; setting and
altering parameters of the system interactively; altering the rules for
individual agents interactively; displaying the behavior of the system if
appropriate, and so forth. Our plan is to construct a General Simulation
Engine, containing these tools, that would be generally applicable to any
complex-systems modeling project. Such a system would be invaluable to the
modeling efforts within the Adaptive Computation program at the SFI, as well
as in other programs, such as the Artificial Life program, the Theoretical
Biology program, and the Economics program.

There are a growing number of other groups that have recognized the need for
such a simulation system and are in the initial stages of developing one. A
great deal of effort would be saved by pooling our efforts in the construction
of a common simulation utility that would serve the needs of the entire
research community. The initial list of interested participants includes

e Apple Computer Corporation's Advanced Technology Group, in
particular, the Classroom of Tomorrow project,

e Jean Jouis Denoubourg's group in Brussels, who are working on a
simulation system for studying insect colony dynamics,

e Orbital Sciences Corporation, who are working on an operating

system to manage computer processes running on, and moving among,
several hundred satellites,

10

e Los Alamos National Laboratory, in particular, the Lattice Gas
group in the Theoretical Division, who are working on computational
models of fluid dynamics,

e UCLA, in particular, the Artificial Life group of the Computer
Science and Biology Departments, who are working on models of insect
colonies, population genetics, and ecological dynamics, and

e MIT, in particular, the Media Lab and the Mobile Robot Lab, who
are working on managing the collective dynamics of large ensembles of
real and simulated mobile robots.

The Virtual Environment Operating System is proposed as the initial model for
the General Simulation Engine. The initial version of VEOS was stable in
February 1990, with capabilities of managing and displaying multiple
participant virtual realities running over a distributed network of UNIX
platforms. The current VEOS 2.2 includes a programming interface, real-time
interactive editing of the virtual environment, a sensor library, and a
virtual body which perceives the world between 20 and 30 frames per second.
The initial step in constructing the General Simulation Engine will be to
adapt the VEOS system to the Process Gas architecture, with special emphasis
on parallel computation.

Virtual Environment Operating System: Design

The VEOS project is the responsibility of Dr. William Bricken and a team of
half-a-dozen graduate students led by Geoffrey Coco. VEOS is designed to
integrate the diverse components of a virtual environment.

VEOS consists of several software subsystems.

The kernel manages processes, memory, and communication.

The entity interface permits modeling objects in the environment,
and the environment itself, in a consistent, object-oriented manner.

The interaction tools empower a participant within the virtual
environment.

As a research vehicle, VEOS emphasizes functionality at the expense of
performance. We believe that code is best improved after it is functioning.
Since a research prototype must prepare us for the future, VEOS is designed to
be as generic as possible; it places very little mechanism in the way of
exploring diverse and unexpected design options.

A VR system is far too ambitious an undertaking to begin from scratch. We
have conceptualized VEOS as primarily a synthesis of known and understood

11

techniques. The VEOS team has assembled disparate software ideas into a
tightly integrated system with new functionality.

VR is characterized by a rapid generation of applications ideas; it is the
potential of VR that people find exciting. However, complex VR systems take
too much time to reconfigure. VEOS was designed for rapid prototyping, a
feature that makes it a natural choice as the operating system for the General
Simulation Engine. The VEOS interface is interactive, so that a programmer
can enter a new command or world state at the terminal, and on the next frame
update, the virtual world display will change.

Any real-time interactive system requires immediate accessibility. VR systems
must avoid hardwired configurations, because a participant in the virtual
world is free to engage in almost any behavior. For this reason, VEOS is
reactive, it permits the world to respond immediately to the participant (and
the programmer).

The broad-bandwidth display and the multisensory interaction of VR systems
create severe demands for sensor integration. Visual, audio, tactile, and
kinesthetic display require the VR database to handle multiple data formats
and massive data transactions. Position sensors, voice recognition, and high
dimensional input devices overload traditional serial input ports. A VR i/o
architecture must incorporate asynchronous communication between dedicated
device processors in a distributed computational environment. The database
must accommodate updates from multiple processors. In VEOS, we have adopted a
communication model which cleanly partitions communication between processes
from the computational threads within a process.

The characteristics of the virtual world impose several design considerations
and performance requirements on a VR system. The design of the virtual world
could readily overwhelm a programmer if the programmer were responsible for
all objects and interactions. Virtual worlds are simply too complex for
monolithic programming. Entities within the virtual world must be modular and
self-contained. The designer should be able to conceive of an entity, say an
artificial ant, independent of all other aspects of the world. VEOS is
structured so that each entity is designed to be independent and autonomous.
The system itself takes care of the lower level details of inter-entity
communication, coordination, and data management.

In VEOS, all entities are organizationally identical. Only their structure,
or internal detail, differs. This means that a designer needs only one
metaphor, the entity, for developing all aspects of the world. Changing the
graphical image, or the behavioral rules, or even the attached sensors, is a
modular activity. Entity modularity is particularly important when one
recognizes that hardware sensors, displays, and computational resources are
themselves first class entities. The entity model provides integration
modularity for any new components to the VR system, whether they are graphical
images, added CPUs, or new input devices. Entities can be run independently,

12

as worlds in themselves, or they can be combined into complex worlds. This
means that devices and models can be tested and debugged modularly.

Because entities consist of both data and operating system processes, an
entity can use other software modules available within the larger operating
system. An entity could, for instance, initiate and call a statistical
analysis package to analyze the content of its memory for recurrent patterns.
The capability of entities to link to other systems software make VEOS
particularly appealing as a software testing and integration environment.

Entity autonomy is best implemented by assigning a separate processor to each
entity. This approach makes VEOS essentially a distributed operating system.
Distributed resources arise naturally in VR, since the virtual environment is
a social place, accommodating multiple concurrent participants.

When more than one person inhabits a virtual world, the perspective of each
participant is different. This can be reflected by different views on the
same graphical database. But in the virtual world, divergent perspectives can
be embodied in divergent databases as well as divergent viewpoints. That each
participant can occupy a unique, personalized worlds makes VR essentially
different than physical reality.

In summary, VEOS is a significant effort to provide transparent low-level
database, process, and communications management for arbitrary sensor suites,
software resources, and virtual world designs. VEOS is the glue under VR. As
such, it provides a strong integration environment for any team wishing to
construct, experiment with, and extend VR systems in particular, and
simulation engines in general.
Virtual Environment Operating System: Implementation
The VEOS kernel consists of four tightly integrated components:
1. TALK manages interprocess communications.
2. SHELL manages entity initialization and links distributed resources.
3. NANCY manages the distributed parallel database.

4. FERN manages entity processes.

VEOS 2.2 also incorporates several interface utilities, including:

e LISP and C programming languages,

e VOGL, a public domain graphics library,

e MIDI interface and rendering entities,

e Imager interface and light rendering entity,

13

e Earmager interface and sound rendering entities,
e Sensor library and driver entities,

e Voice recognition driver entity,

e Mouse, spaceball, and other device entities, and

e UM, an entity specification tool.

VEOS 1is currently being used in several world construction projects. A
central advantage of VEOS is that the insertion of a declaration into the
database during runtime will change the display environment immediately. VEOS
provides real-time interaction with the virtual world, which permits very
rapid prototyping of world designs and construction of virtual objects while
an application is running.

All operations generated by a VEOS process are implemented by a single
computational algorithm: match-and-substitute. Elements which are have a
complex syntactic description (such as “3x + 4x”) are identified by syntactic
pattern matching. Then a simpler expression (7x in the example) 1is
substituted for the complex one. This methodology is commonly called
algebraic (substitution of equals for equals).

Algebra provides a particularly appealing mathematical model for a
computational engine, for several good reasons:

1) The technique is common and well understood.

2) Equations from any standard textbook can be programmed directly by
copying. For example, to implement a concept of force, objects are first
assigned mass and acceleration properties. Then the force an object exerts in
the direction of its acceleration is identified simply by asserting the
equation

Force = Mass * Acceleration
into the database for that object. By simple pattern matching and
substitution, when Mass = 5, the Force equation is constrained by the partial
information,

Force = 5 * Acceleration
3) In contrast to logical deduction and data-driven programming, equations
are bi-directional and constraint-based. The computational process does not
need to wait for the values of every variable to be known in order to make
progress. When we have partial knowledge (Force < 25, for example), match-

and-substitute will generate

25 > 5 * Acceleration

14

which simplifies by another substitution to
Acceleration < 5

The partial knowledge automatically generates a constraint on the value of
Acceleration, it is never greater than 5.

VEOS must also address multiple data transactions for multiple active entities
and participants. To manage the coordination of interprocess communication,
VEOS uses a variant of the Linda parallel database model developed by
Gelernter. In Linda-like languages, communication and process are treated as
independent, relieving the programmer from having to choreograph multiple
processes.

Structurally, an entity database consists of a collection of fragments of
information, labeled with unique syntactic identifiers. Collections of
related data (such as all of the current properties of cube-3) can be rapidly
assembled by invoking a parallel pattern match on the syntactic label which
identifies the sought after relation (in the example, matching all fragments
with the label “cube-3” creates the complete object known as cube-3).

In object-oriented programming, object attributes and inheritance hierarchies
commonly must be constructed by the programmer in advance. Efficiency in
object-oriented systems requires compiling objects. This means that the
programmer must know in advance all the objects in the environment and all
their interactions. 1In effect, the programmer must be a god. Virtual worlds
are simply too complex for such monolithic programming. Although object-
oriented approaches provide modularity, in large scale applications they
result in complex property and method variants, generating hundreds of object
classes and forming a complex inheritance web. In many cases, a principled
inheritance hierarchy is not available, forcing the programmer to limit the
conceptualization of the world. In other cases, the computational interaction
between objects is context dependent, requiring attribute structures which
have not been preprogrammed. Attributes can be generated interactively and
related structures of objects can be identified based on arbitrary pattern
structures, such as partial similarities, unbound attribute values (i.e.
abstract objects), and ranges of attribute values.

In summary, our mathematical computational model is parallel algebraic
pattern-matching and substitution on partitioned databases which support
multiple concurrent interactions.

Entities

Entities are the primary organizational structure within VEOS. Entities

provide a uniform, singular metaphor and design philosophy for the
organization of software resources and displays.

15

An entity is a collection of resources that can accomplish a specific task.
VEOS itself is the prototype entity.

The internal process of an entity consists of a sense-process-act loop. This
loop is called a behavioral cycle.

The analogy to human behavior is not strong. An entity senses by gathering
relevant data from the database. Relevance is the key. Each entity has a
filter on the database which limits the amount and the type of data that the
entity must process on each behavioral cycle. Filters are patterns which must
be matched for a data fragment to be relevant to the entity. For example, an
entity configured with a sound play-back capability, can sense any sound bits
stored in the database. If it lacks a sound capability, it will ignore all
data labeled as sound.

The processes internal to an entity are controlled by two separate processing
loops. The React loop reads sensed data and immediately responds by posting
modified data to the common database. This cycle handles all real-time
interactions and all reactions which do not require additional computation or
local storage. The Persist loop runs on a clock local to the specific entity,
and is not responsive in real-time. Persist loop computations typically
require local memory, function evaluation, and inference over local data.
Persist functions can copy data for the shared database and perform local
computations in order to gather information, but there is no time constraint
on returning results. By decoupling local computation from environmental
reactivity, entities can respond in a timely manner while complex responses
can still be evaluated whenever computational resources permit.

The entity editor (not yet fully implemented) will provide templates for
standard objects and their hierarchies. Entities can be modeled statically in
any modeling system which supports standard file formats such as DXF, PICT and
Postscript. Of course objects designed for a three dimensional environment
require 3D specifications, but 2D objects can easily be incorporated into
three dimensional virtual spaces, and three dimensional scenes can be
projected into two dimensions for display on screens.

Entity dynamics is achieved by associating behavior functions with sensory
input and with internal processes. Functional actions are associated with
sensed and internally generated data through rules.

The space entity manages field effects and environmental influences. By
partitioning a virtual world into objects and spaces, computational load can
be carefully balanced. Every VEOS entity has a spatial aspect, so that each
entity not only manages its own behavior, it dlso serves to coordinate
interaction between its components. Space entities define measure theory,
metrics, coordinate systems, continuity and consistency effects, opacity,
fields, and granularity of the immediate environment.

16

The Process Gas Model and VEOQOS

The first goal of the project is to use the VEOS system to implement the
Process Gas computing architecture. The initial effort will not integrate the
VR human interface capabilities of VEOS, but instead utilize VEOS as a
specification language for setting up complex simulations on various
configurations of machines, from a single workstation to a network of
workstations to selected super computers. VEOS is designed to allow rapid
prototyping and characterization of entities in a computational environment.
We believe that the time gained in setting up a complex simulation quickly
more than balances the loss in computing efficiency incurred by not writing
special-purpose optimized code.

Potential test applications of the Process Gas include:

-- verification of the laws of thermodynamics by accumulating empirical
data from the bottom up, from the behaviors of individual molecules,

-- modeling predator/prey cycles by generating populations of animal
models in a virtual environment

The General Simulation Engine

Once several examples of the Process Gas have been created and executed on
different hardware configurations, the emphasis will shift to building
interface tools for the analysis of and interaction with complex simulations.
This will utilize the VR capabilities of the VEOS system. Using VEOS,
computational entities can be given visual and audio characteristics, and
these will serve as cognitive aids in identifying, analyzing, and modifying
the structure of a complex simulation. Moreover, the outputs generated by
these complex simulations can be given audiovisual representations, and these
can be customized to the nature of the simulation and to the specific needs
and analysis requirements of the researcher. Since VEOS supports simultaneous
virtual presence of multiple participants, it will allow the construction of
simulations that incorporate dynamic computation and multiple human
interaction simultaneously and in real time. This then sidesteps the
longstanding AI problem of translating human behavioral characteristics into
static algorithms by putting real humans "in the loop".

Proposal 2: Installing the Process Gas on a CM-5

In the pursuit of a better theoretical understanding of distributed systems in
general, and distributed computation in particular, we propose to implement
the VEOS parallel, entity-oriented programming environment on the Connection
Machine (CM-5) at LANL. We are calling this implementation a Process Gas by
analogy with the Lattice Gas systems developed at LANL for the numerical
analysis of fluid dynamics.

17

In a lattice gas, local rules written from the perspective of fixed lattice-
sites dictate the motion of "particles" consisting solely of a simple state-
variable, like momentum. This approach works fine if there are very few
different kinds of particles and if the particles carry very little internal
state information.

There are many interesting physical phenomena that have the same basic
architecture - a great many entities moving around in some environment and
interacting with each other - but which may involve hundreds or thousands of
different types of particles, each of which might have complicated internal
states. Such phenomena include ecosystems, economies, epidemics, traffic,
immune systems, and so forth. Lattice gas approaches in which the rules are
written from the perspective of fixed lattice points will not work for such
systems. Such systems are more appropriately modeled by rules written from
the perspective of the constituent entities themselves, i.e., from the
particle's point of view.

This shift in the point of view from which the rules controlling the system
are written is the essential feature underlying the Process Gas model. 1In a
process gas, the frame of reference is shifted from fixed lattice-sites to the
moving particles themselves (now more generally termed processes). Thus,
processes contain rules for their own behavior, including rules for motion,
and for interactions with other processes and the environment. The
environment has rules for its own behavior and for its effects on, and
responses to, the processes moving around within it. Such systems can be
viewed as a "gas" of processes.

A Process Gas system is effectively an operating system for managing a large,
distributed, communicating, and even changing population of computational
processes over a large network of computers or on a parallel computer. It
must also include a set of tools for allowing researchers to easily create
agents, create environments, set up initial states of simulations, perform
real-time analysis and data-collection and on simulation runs, and edit and
change the state of the simulation and/or the rules for any of the agents or
the environment interactively.

Thus, the primary tasks of the Process Gas operating system will be
1) to manage the execution of all of the agent objects,
2) to manage communication between agent objects, and

3) to manage the interactions between the agent objects and the environment
object.

All of this must be accomplished in the context of a large distributed

computing network, in which agent-processes themselves may migrate from
machine to machine or processor to processor.

1R

This can be most quickly and effectively implemented by making use of the
results of the VEOS project. In VEOS, every object is a computational entity,
including the contents of objects. Thus, as in real biological organisms,
agent-objects may be composed of simpler agent-objects, which in turn are
composed of simpler agent-objects, and so forth. Since the environment is
also an entity, there is essentially only one kind of entity that the system
needs to manage: a computational object.

The simple point to make about a process gas system is to distinguish between
a virtual computational object (the process) and a physical computational
object (the processor), and to realize that the relation between the two is
strictly arbitrary and solely a matter of convenience and efficiency. On a
large network of computers, the relationship between the set of virtual
computational objects and the set of physical computational objects can be
constantly changing. Processes that are producing a lot of communication
traffic between themselves can migrate to the same processor. Processes that
become inactive for long periods of time can migrate out to virtual memory on
disk, to be pulled in again when an attempt is made to communicate with them.
This gives rise to a "virtual physics" in which some processes generate an
"attractive force", causing their computational distance to diminish, and
other processes "settle out of solution” because they are only rarely
interacted with.

Proposal 3: Installing the Process Gas on a Kendall Square

The VEOS architecture is inherently parallel in that entities are semi-
autonomous processes. We have examined several strategies for coordination of
entities and for information exchange between entities. The CM-5 provides
many powerful processors which communicate via message passing and provides an
excellent architecture of complex interactions between many computationally
intensive entities.

We wish to examine a completely different architecture in order to arrive at
an understanding of appropriate machine architectures and communication styles
for the Process Gas model.

The Kendall Square Research (KSR) platform is a massively parallel shared
memory machine. Shared memory architectures are scalable and well-suited for
many parallel light-weight computational processes. 1In particular, the Linda
model of parallel database management, upon which VEOS is based, is a shared
memory architecture and is very well suited for implementation on the KSR.

We propose to identify classes of complex problem spaces which are well suited

for the KSR shared memory architecture, and to contrast these results with
similar studies conducted on the CM-5.

19

Proposal 4: Global Information and Simulation Systems

The amount of information available about the state of our planet with all of
its subsystems increases dramatically each year. The data comes both from
direct observations as well as from computer simulations and more traditional
methods of mathematical modeling. The representation and structuring of this
rapidly changing information flood is a challenging and unsolved problem.

From the theory of chaotic dynamics and the study of complex adaptive systems
we have a sophisticated mathematical and computational tool-box that can be
used to understand global structures that are generated by the interaction of
large numbers of simple components, the effect of perturbations on complex
systems, and the mapping out of stable, unstable, and sustainable modes of
dynamic behavior. These tools have been applied and tested for the analysis
and modeling of a number of systems in a large variety of contexts. From a
different angle they have been most successfully applied in the virtual
realities of educational computer games, such as SimEarth of Maxis Corp.
Common to both of these examples is that they deal with a closed environment
of theoretical or game pragmatic assumptions and parameters. What has been
lacking is some efficient interface to the real world of global dynamics. The
technology for such an interface is currently developed as global
communication and information systems, high speed computer networks, wide area
information servers and other areas of global networks become commonplace and
inexpensive.

Modeling global sustainability is made more challenging by the constant
interaction of a changing and evolving net of external data sources. An
efficient interaction with this net is a vital component of any model of
sustainability. The Global Information and Simulation Systems project
represents an initial phase of the Global Sustainability Program at SFI. An
interactive pilot demonstration called EarthStation allows the user to access
media services, construct a simple simulation on a computer screen in a
graphic, object-oriented manner, and evaluate the results of the simulation.
This represents an important first step in the construction of complex global
models which are adaptive, process input from external data sources, and
interact with human participants in real time.

Proposal 5: Modeling Global Sustainability using the GSE

It is arguable that the most challenging problem facing science in the coming
years is the issue of global sustainability of human civilization. Not only
is it extremely important in terms of relevance to all human 1life on this
planet, but it is also a scientific problem of a different nature than
previous "grand challenge" problems. The problem of sustainability is
inherently complex. The questions involved cannot be reduced to single issues
of technology or theory, as in the manned moon landing, the development of the
atomic bomb, the discovery of subatomic particles, or the isolation of the
human genome. The study of sustainability involves at the very least

20

economics and ecology. Other relevant scientific fields include psychology,
game theory, and anthropology. The challenge facing the scientific community
is to integrate the observations of these different fields and to create a
means of generating predictions about possible future evolutions of the global
civilization and the influence of present actions on those outcomes.

The SFI is one of the few scientific institutions in the world where
distinguished researchers from all of the above fields assemble and discuss
the issue of sustainability amongst themselves. One of the emergent
realizations that has come of this "cross-fertilization" of academic
disciplines is that it has become useful to consider ecology and economy as
not only intimately related, but perhaps as different manifestations of a
common underlying dynamics. Both ecology and economy deal with the exchange
of matter and information among complex semi-autonomous agents. Both are
dissipative systems, i.e., they do not conserve energy but rather generate
dynamics from a flow of energy through the system. Both appear to yield their
structure more easily to a bottom-up approach, the synthesis of complex
behavior from aggregates of relatively simple agents. This suggests a new
term for the unified field of ecology and economy: "Ecolonomic Systems"”

The challenge, then, is to scientifically analyze a unique system that is not
available for systematic experimentation. It is a fundamentally different
problem than the study of immune responses to disease or the behavior of
electrons in magnetic fields, as bacteriological cultures and electrons are
available in great abundance for use in systematic experiments. There is only
one Earth. Thus the issue is one of accurate modeling, and of generating an
ecolonomic model of Earth that is sufficiently complex yet still tractable in
terms of computational resources and in terms of conciseness of the results.
To find a model that preserves the salient features of the real system while
discarding the details that are irrelevant is a tremendously difficult task.
It is clear that the model itself must be highly adaptable so that it can be
evolved to its most effective configuration, as it is highly unlikely that
human intuition will get it right the first time. This evolution will require
actions that are both self-programmed and actions that come from human input,
as either mode by itself is not capable of a complete and efficient generation
of possible scenarios.

To make rigorous scientific progress on the issue of global sustainability
therefore requires progress on three fronts:

1) The development of sufficiently complex computational models of the
ecolonomic system that are easily configurable and easily modified and that
have the capability of modifying themselves in response to external data.

2) The development of information management systems to allow the interaction

of the model with a flow of world-wide generated data and to allow the
efficient interpretation of the model's output.

21

3) The development of sophisticated human-interaction metaphors to allow the
interaction of human participants with the model in real time so as to avoid
the extremely difficult issue of programming human characteristics into the
model.

The General Simulation Engine (GSE) that we propose would be the logical next
step in bringing computational resources to bear on the problem of global
sustainability. The main challenge is no longer the development of adequate
computational power, but rather the development of modeling and interaction
techniques for the constructing and analyzing of different sustainability
scenarios. The GSE will provide a means by which complex simulations can be
rapidly constructed, modified, and executed. It will also provide for the
interaction of human participants with the model in real time using the
virtual reality interface, either for the purpose of passively taking data or
for actively generating model dynamics.

The three issues outlined above are connected very strongly to programs
already in place at the SFI and collaborating institutions. The program most
relevant to this program is the "2050 Project", a joint project between the
World Resources Institute, the Brookings Institution, and the Santa Fe
Institute. This program has already been funded at the level of $3,000,000
over the next three years by the MacArthur foundation. The following
statement of research goals is taken from the synopsis of the 2050 Project as
described in the project's grant proposal.

Overview of the 2050 Project

The 2050 Project is designed to explore one of the most complex and difficult
problems facing humanity, the achievement of a sustainable existence on this
planet.

The project will be a serious first effort to examine the concept of
sustainability in an integrated way, exploring both desirable future
conditions and the transitions needed to reach them. It will use a
combination of policy studies and computer modeling and simulation, taking
advantage of developments in the study of complex nonlinear dynamical systems,
and making the results known to policymakers and the public as well as expert
audiences.

"Sustainability" means creating a world in which the quality of life is
improving and in which present threats to the quality of life - and to the
environment that sustains life - have been brought under control. These
threats include potentially irreversible changes in the biogeophysical
environment, such as changes in climate, degradation of fertile soils,
destruction of biodiversity, and buildup of toxic materials in the
environment. The concept of sustainability employed here also involves social
and political factors, including such threats to the quality of life as rapid
increases in human population, the persistence of widespread poverty, and the

22

continuing potential for military conflict and political repression. Thus the
concept acknowledges the undesirability and likely infeasibility of
biogeophysical sustainability achieved at the expense of human freedom or
coexisting with a large global underclass cut off from prosperity and the
benefits of modern technology.

Under the direction of a project director selected by the three sponsors,
substantive work of the project will proceed in two major phases, each lasting
two years. In the first phase, an early step will be to provide measurable
quantitative content to the concept of sustainability used here. The project
will then turn to the main work of the first phase by commissioning a series
of "base level" studies to answer these questions:

1. To what extent can the linked challenges of world hunger, world food
production, and environmental sustainability in the agricultural sector be met
by 20507 What measures and what resources would be needed to achieve these
outcomes?

2. To what extent can the interrelated challenges of world energy needs,
global climate change, and energy-related environmental pollution be met
between now and 20507 What measures and what resources would be needed to
achieve these outcomes?

The second phase of the project - the integration and synthesis phase - will
draw on the base level studies and other modeling and analytic work in an
effort to answer a series of extraordinarily important questions. Will it be
possible to achieve by 2050 the improved conditions associated with
sustainability, as defined in the first phase of the project? Which
conditions appear more easily attainable and which are more difficult? Which
are mutually supportive and which are antagonistic? How much time is needed
to make smooth transitions from current situations to these conditions? Are
we already too late in some cases to achieve certain of these conditions by
2050, or ever?

Modeling will be an essential tool in achieving a synthesis that combines many
different areas - from energy and agriculture to toxification and security -
and in creating self-consistent scenarios. We have no illusions that our
models will be able to predict the future; instead, simple models and
conventional types of analysis will enable us to be explicit about the
consequences of our assumptions.

Yet we dare dall too aware that the assumptions embodied in our conventional
analysis are very restrictive, even if useful for the analysis to proceed
quickly. We know that the world is a complicated system with strong
interactions among its parts and that it exhibits highly nonlinear behavior.
Such systems cannot be successfully understood merely by studying the various
sectors separately and then combining those studies to get a picture of the
whole. Moreover, in such systems certain small changes at particular times
can trigger very large effects, sometimes with system-wide ramifications.

23

Fortunately, an emerging set of modeling techniques that encompass nonlinear
effects and behavior of complex adaptive systems may lend themselves to the
study of the phenomena we wish to understand, even if at a preliminary level.

The project will work through a group of modelers convened by the Santa Fe
Institute to develop nonlinear modeling and simulation techniques that explore
these features of real-world processes and that utilize the growing body of
information about complex adaptive systems. The results of this work will be
used in the policy analyses and synthesis. There is some hope, also, that
through this modeling some simplification might emerge, so that the gross
features of the transition to sustainability would be largely determined by a
few key parameters, or at least by a few crucial aspects of the world
situation. Though the sponsoring institutions recognize that this effort is
the most "experimental" part of the project, they are hopeful that it can
contribute to a deeper understanding of the problem of achieving
sustainability by offering promising insights and valuable new concepts.

Integration with the ICSS Program

It is the above modeling issues that the ICSS Program intends to address.
This project provides the first context through which modeling techniques
adequate to the task at hand can be developed. Answering the questions posed
by the 2050 Project will require the timely development of Process Gas
techniques. Applying these techniques to the questions of global
sustainability will provide an important demonstration for the viability of
the General Simulation Engine.

Furthermore, the ICSS Program will borrow findings and techniques from two
other programs currently being instigated at the SFI. The first and most
general of these is the Adaptive Computation (AC) Program. The AC Program is
a large-scale long-term program to develop and apply biological metaphors of
evolution and adaptation to complex computational processes. These techniques
include neural nets, genetic algorithms, simulated annealing, artificial life,
game theory, and learning theory. Since it is not clear a priori what form a
model of global sustainability should take, great computational gains stand to
be made by employing techniques in which a model adapts and evolves itself to
fit the problem.

The implementation of the General Simulation Engine to explore extremely
complex sustainability scenarios is a challenge that goes beyond the bounds of
adaptive computation. Adaptive methods are primarily techniques in which a
computer program adapts itself to best solve a well-stated problem. Global
sustainability is not a well-understood problem, nor are the desired results
necessarily rigorously quantifiable beforehand. Sustainability is also an
issue in which human factors play an important role in such areas as politics,
conflict resolution, subjective quality of life, human freedom, etc. The task
of programming a computer to use these ill-defined but important concepts to
optimize a scenario is extremely daunting. The artificial-intelligence issues

24

presented by this problem can be sidestepped by putting humans into the loop,
which is where virtual reality comes in. An extremely large tree of possible
scenarios can be pruned to yield scenarios of merit by immersing a human
participant in the evolving model in real time to make branching decisions.
This technique has been used to spectacular effect by Karl Sims of Thinking
Machines, Inc., to prune LISP constructs so as to generate graphic patterns
that are subjectively interesting.

75

