
1

The VEOS Project1

William Bricken and Geoffrey Coco

Abstract

The Virtual Environment Operating Shell (VEOS) was developed at the
Human Interface Technology Laboratory as software infrastructure for the
lab’s research into virtual reality. VEOS was designed from scratch to provide
a comprehensive and unified management facility to support generation of,
interaction with, and maintenance of virtual environments. VEOS emphasizes
rapid prototyping, heterogeneous distributed computing, and portability.
This article presents the architecture of VEOS in the context of the generic
functionality of VR systems, the nature of presence, and the varieties of
semantics within a virtual environment. We then discuss the design,
philosophy and implementation of VEOS in depth. Within the Kernel, the
shared database transformations are pattern-directed, communications are
asynchronous, and the programmer’s interface is LISP. An entity-based
metaphor extends object-oriented programming to systems-oriented
programming. Entities provide first-class environments and biological
programming constructs such as perceive, react, and persist. The
organization, structure, and programming of entities is discussed in detail.
The article concludes with a description of the applications which have
contributed to the iterative refinement of the VEOS project

1 The HITL software development program is a group effort to create a satisfying
software infrastructure for the entire lab. The following discussion is based upon a
conceptual VR system architecture developed by Bricken over the last decade and
grounded in an implementation by Coco over the last three years (Bricken, 1991a).
VEOS supports parallel development of lab applications, technology demonstrations,
thesis projects, and software interaction tools (Coco, 1993). Dav Lion, Colin Bricken,
Andy MacDonald, Marc Cygnus, Dan Pirone, Max Minkoff, Brian Karr, Daniel Henry,
Fran Taylor and several others have made significant contributions to the VEOS project.
The VEOS project was supported by members of the HITL Industrial Consortium.

2

1. Introduction

Computer technology has only recently become advanced enough to solve the problems
it creates with its own interface. One solution, virtual reality (VR), immediately raises
fundamental issues in both semantics and epistemology.

Broadly, virtual reality is that aspect of reality which people construct from
information, a reality which is potentially orthogonal to the reality of mass. Within
computer science, VR refers to interaction with computer generated spatial
environments, environments constructed to include and immerse those who enter them.

VR affords non-symbolic experience within a symbolic environment.

Since people evolve in a spatial environment, our knowledge skills are anchored to
interactions within spatial environments. VR design techniques, such as scientific
visualization, map digital information onto spatial concepts. When our senses are
immersed in stimuli from the virtual world, our minds construct a closure to create the
experience of inclusion. Participant inclusion is the defining characteristic of VR.2
Inclusion is measured by the degree of presence a participant experiences in a virtual
environment.

We currently use computers as symbol processors, interacting with them through a
layer of symbolic mediation. The computer user, just like the reader of books, must
provide cognitive effort to convert the screen’s representations into the user’s meanings.
VR systems, in contrast, seek to provide interface tools which support natural behavior
as input and direct perceptual recognition of output. The idea is to access digital data in
the form most easy for our comprehension; this generally implies using representations
that look and feel like the thing they represent. A physical pendulum, for example,
might be represented by an accurate three dimensional digital model of a pendulum
which supports direct spatial interaction and dynamically behaves as would an actual
pendulum.

Immersive environments redefine the relationship between experience and representation,
in effect rendering the syntax-semantics barrier transparent. Reading, writing, and
arithmetic are hidden from the computer interface, replaced by direct, non-symbolic
environmental experience.

Before we can explore the deeper issues of experience in virtual environments, we must
develop an infrastructure of hardware and software to support “tricking the senses”3

into believing that representation is reality. The VEOS project was designed to provide a
rapid prototyping infrastructure for exploring virtual environments. In contrast to
basic research in computer science, this project attempted to synthesize known

2 Participation within information is often called immersion.
3 The description of VR as techiques which trick the senses embodies a cultural value:
somehow belief in digital simulation is not as legitimate as belief in physical reality.
The VR paradigm shift directly challenges this view. The human mind’s ability to
attribute equal credibility to Nature, television, words, dreams and computer-generated
environments is a feature, not a bug.

3

techniques into a unique functionality, to redefine the concept of interface by providing
interaction with environments rather than with symbolic codes.

This chapter presents some of the operating systems techniques and software tools
which guide the early development of virtual reality systems at the University of
Washington Human Interface Technology Lab. We first describe the structure of a VR
system. This structure is actually the design basis of the Virtual Environment Operating
Shell (VEOS) developed at HITL. Next, the goals of the VEOS project are presented and
the two central components of VEOS, the Kernel and FERN, are described. The chapter
concludes with a description of entity-based programming and of the applications
developed at HITL which use VEOS. As is characteristic of VR projects, this chapter
contains multiple perspectives, approaching description of VEOS as a computational
architecture, as a biological/environmental modeling theory, as an integrated software
prototype, as a systems-oriented programming language, as an exploration of
innovative techniques and as a practical tool.

2. Component Technologies

Computer-based VR consists of a suite of four interrelated technologies:

Behavior Transducers: hardware interface devices
Inclusive Computation: software infrastructure
Intentional Psychology: interaction techniques and biological constraints
Experiential Design: functionally aesthetic environments

Behavior transducers map physically natural behavior onto digital streams. Natural
behavior in its simplest form is what two-year-olds do: point, grab, issue single word
commands, look around, toddle around. Transducers work in both directions, from
physical behavior to digital information (sensors such as position trackers and voice
recognition) and from digital drivers to subjective experience (displays such as
stereographic monitors and motion platforms).

Inclusive computation provides tools for construction of, management of, and
interaction with inclusive digital environments. Inclusive software techniques include
pattern-matching, coordination languages, spatial parallelism, distributed resource
management, autonomous processes, inconsistency maintenance, behavioral entities
and active environments.

Intentional psychology seeks to integrate information, cognition and behavior. It
explores structured environments that incorporate expectation as well as action, that
reflect imagination as well as formal specifications. It defines the interface between the
digital world and ourselves: our sensations, our perceptions, our cognition, and our
intentions. Intentional psychology incorporates physiological models, performance
metrics, situated learning, multiple intelligences, sensory cross-mapping, transfer
effects, participant uniqueness, satisficing solutions, and choice-centered computation.

Experiential design seeks to unify inclusion and intention, to make the virtual world
feel good. The central design issue is to create particular inclusive environments out of

4

the infinite potentia, environments which are fun and functional for a participant. From
the perspective of a participant, there is no interface, rather there is a world to create
(M. Bricken, 1991). The conceptual tools for experiential design may include wands,
embedded narrative, adaptive refinement, individual customization, interactive
construction, multiple concurrent interpretations, artificial life, and personal, mezzo
and public spaces.

Taxonomies of the component technologies and functionalities of VR systems have only
recently begun to develop (Naimark, 1991; Zeltzer, 1992; Robinett, 1992), maturing
interest in virtual environments from a pre-taxonomic phenomenon to an incipient
science. Ellis (1991) identifies the central importance of the environment itself,
deconstructing it into content, geometry, and dynamics.

VR unifies a diversity of current computer research topics, providing a uniform
metaphor and an integrating agenda. The physical interface devices of VR are similar
to those of the teleoperation and telepresence communities. VR software incorporates
real-time operating systems, sensor integration, artificial intelligence, and adaptive
control. VR worlds provide extended senses, traversal of scale (size-travel), synesthesia,
fluid definition of self, super powers, hyper sensitivities, and meta physics. VR requires
innovative mathematical approaches, including visual programming languages, spatial
representations of mathematical abstractions, imaginary logics, void-based axiomatics,
and experiential computation. The entirely new interface techniques and software
methodologies cross many disciplines, creating new alignments between knowledge
and activity.

VR provides the cornerstone of a new discipline: Computer Humanities.

3. The Structure of a VR System

As a technology matures, the demands on the performance of key components increase.
In the case of computer technology, we have passed through massive mainframes to
personal computers to powerful personal workstations. A growth in complexity of
software tasks has accompanied the growth of hardware capabilities. At the interface,
we have gone from punch cards to command lines to windows to life-like simulation.
Virtual reality applications present the most difficult software performance expectations
to date. VR challenges us to synthesize and integrate our knowledge of sensors,
databases, modeling, communications, interface, interactivity, autonomy, human
physiology, and cognition -- and to do it in real-time.

VR software attempts to restructure programming tools from the bottom up, in terms of
spatial, organic models.4 The primary task of a virtual environment operating system is to
make computation transparent, to empower the participant with natural interaction. The
technical challenge is to create mediation languages which enforce rigorous
mathematical computation while supporting intuitive behavior. VR uses spatial
interaction as a mediation tool. The prevalent textual interface of command lines and

4 Later in this chapter, we outline the entity model implemented in VEOS which
provides both spatial and organic programming metaphors.

5

pull-down menus is replaced by physical behavior within an environment. Language is
not excluded, since speech is a natural behavior. Tools are not excluded, since we
handle physical tools with natural dexterity. The design goal for natural interaction is
simply direct access to meaning, interaction not filtered by a layer of textual
representation. This implies both eliminating the keyboard as an input device, and
minimizing the use of text as output.

3.1 Functional Architecture

Figure 1 presents a functional architecture for a generic VR system; Figure 1 is also the
architecture of VEOS. The architecture contains three subsystems: transducers, software
tools, and computing system. Arrows indicate the direction and type of dataflow.5

Participants and computer hardware are shaded with multiple boxes to indicate that the
architecture supports any number of active participants and any number of hardware
resources.6 Naturally, transducers and tools are also duplicated for multiple
participants.

This functional model, in addition to specifying a practical implementation architecture,
provides definition for the essential concepts of VR.

The behavior and sensory transducing subsystem (labeled participant, sensors and
display) converts natural behavior into digital information and digital information into
physical consequence. Sensors convert our actions into binary-encoded data, extending
the physical body into the virtual environment with position tracking, voice
recognition, gesture interfaces, keyboards and joysticks, midi instruments and
bioactivity measurement devices. Displays provide sensory stimuli generated from
digital models and tightly coupled to personal expectations, extending the virtual
environment into the realm of experience with wide-angle stereo screens, surround
projection shells, head-mounted displays, spatial sound generators, motion platforms,
olefactory displays, and tactile feedback devices.

5 In actual implementations, the operating system is involved with all transactions.
Figure 1 illustrates direct dataflow paths, hiding the fact that all paths are mediated by
the underlying hardware.
6 Existing serial computers are not designed for multiple concurrent participants or for
efficient distributed processing. One of the widest gaps between design and
implementation of VR systems is efficient integration of multiple subsystems. VEOS is
not a solution to the integration problem, nor does the project focus on basic research
toward a solution. Real-time performance in VEOS degrades with more than about ten
distributed platforms. We have experimented with only up to six interactive
participants.

6

sensation

display stream

negotiations

world updates

coordination information

process events

process management

state retrieval

behavior

memory management

memory events

interactions

model transactions

safe world events

digital event stream

PARTICIPANT(S)

SENSORS

PHYSICAL
MODEL

SOFTWARE TOOLS

MODEL

OS COMMUNICATION

OS
PROCESS

OS
MEMORY

COMPUTING HARDWARE

DISPLAYS

VIRTUAL
BODY

Figure 1. VEOS System Architecture.

The behavior transducing subsystem consists of these three components:

The participant. VR systems are designed to integrate the human participant
into the computational process. The participant interprets the virtual world
perceptually and generates actions physically, providing human transduction
of imagination into behavior.

Sensors (input devices) convert both the natural behavior of the participant
and measurements of events occurring in the physical world into digital
streams. They transduce physical measurement into patterned
representation.

7

Displays (output devices) convert the digital model expressed as display
stream instructions into subjective sensory information perceived as sensation
by the participant. They physically manifest representation.

The virtual toolkit subsystem (the physical model, virtual body, software tools and
model) coordinates display and computational hardware, software functions and
resources, and world models. It provides a wide range of software tools for
construction of and interaction with digital environments, including movement and
viewpoint control; object inhabitation; boundary integrity; editors of objects, spaces and
abstractions; display, resource and time management; coordination of multiple
concurrent participants; and history and statistics accumulation.

The virtual toolkit subsystem consists of four software components:

The physical model maps digital input onto a realistic model of the
participant and of the physical environment the participant is in. This model
is responsible for screening erroneous input data and for assuring that the
semantic intent of the input is appropriately mapped into the world database.

The virtual body customizes effects in the virtual environment (expressed as
digital world events) to the subjective display perspective of the participant.7
The virtual body is tightly coupled to the physical model of the participant in
order to enhance the sensation of presence. Differences between physical
input and virtual output, such as lag, contradiction, and error, can be
negotiated between these two components of the body model without
interacting with the world model. The physical model and the virtual body
comprise a participant system (Minkoff, 1993).

Virtual world software tools program and control the virtual world, and
provide techniques for navigation, manipulation, construction, editing, and
other forms of participatory interaction. All transactions between the model
and the system resources are managed by the tool layer.

The virtual world model is a database which stores world state and the static
and dynamic attributes of objects within the virtual environment. Software
tools access and assert database information through model transactions.
During runtime, the database undergoes constant change due to parallel
transactions, self-simplification, canonicalization, search-by-sort processes,
process demons, and function evaluations. The database is better viewed as a
turbulent fluid than as a stable crystal.

The computational subsystem (the operating system and hardware) customizes the VR
software to a particular machine architecture. Since machine level architecture dictates

7 A graphics rendering pipeline, for example, transforms the world coordinate system
into the viewpoint coordinate system of the participant. Since renderers act as the
virtual eye of the participant, they are part of the participant system rather than part of
the operating system.

8

computational capacity and operating system architecture dictates computational
efficiency, this subsystem is particularly important for ensuring real-time performance,
including update rates, complexity and size of worlds, and responsiveness to
participant behavior.

The computational subsystem consists of these components:

The operating system communications management (messages and
networking) coordinates resources with computation. The intense
interactivity of virtual worlds, the plethora of external devices, and the
distributed resources of multiple participants combine to place unusual
demands on communication models.

The operating system memory management (paging and allocation)
coordinates data storage and retrieval. Virtual worlds require massive
databases, concurrent transactions, multimedia datatypes, and partitioned
dataspaces.

The operating system process management (threads and tasks) coordinates
computational demands. Parallelism and distributed processing are
prerequisite to VR systems.

The computational hardware provides digital processing specified by the
operating system. Machine architectures can provide course and fine grain
parallelism, homogeneous and heterogeneous distributed networks, and
specialized circuitry for real-time performance.

Operating systems also manage input and output transactions from physical sensors
and displays. Some data transactions (such as head position sensing used for viewpoint
control) benefit from having minimal interaction with the virtual world. Real-time
performance can be enhanced by specialized software which directly links the input
signal to the output response.8

3.2 Presence

Presence is the impression of being within the virtual environment. It is the suspension
of disbelief which permits us to share the digital manifestation of fantasy. It is a
reunion with our physical body while visiting our imagination.

The traditional user interface is defined by the boundary between the physical
participant and the system behavior transducers. In a conventional computer system,
the behavior transducers are the monitor and the keyboard. They are conceptualized as

8 The Mercury Project at HITL, for example, implements a participant system which
decouples the performance of the behavior transducing subsystem from that of the
virtual world through distributed processing. Even when complexity slows the internal
updates to the world database, the participant is still delivered a consistently high
frame rate.

9

specific tools. The user is an interrupt. In contrast, participant inclusion is defined by the
boundary between the software model of the participant and the virtual environment.
Ideally the transducers are invisible, the participant feels like a local, autonomous agent
with a rendered form within an information environment.

The degree of presence achieved by the virtual world can be measured by the ease of
the subjective shift on the part of the participant from attention to interface to attention
to inclusion. For example, a standard mouse-driven cursor feels more like an extension
of self than does a pull-down menu because the cursor is always active (it does not
require a selection to activate), it is one-to-one with the movement of our hand, and it
does not have textual mediation. The cursor has more presence. When we attach a
force-feedback system to the cursor, so that we can feel the edges of windows, presence
is significantly enhanced, the cursor feels more like we are holding it.

An interface is a boundary which both separates and connects. Traditional interface
separates us from direct experience while connecting us to a representation of
information (the semantics-syntax barrier). The keyboard connects us to a
computational environment by separating concept from action, by sifting our intention
through a symbolic filter.

Interface provides access to computation by first objectifying processes and then
displaying the objective encodement. Displays, whether command line, window or
desktop, present tokens which we must interpret through reading. Current multimedia
video, sound and animation provide images we can watch and interact with within the
two dimensional space of the monitor. VR provides three dimensional interaction we
can experience.

Conventionally we speak of the "software interface" as if the locale of human-computer
interaction were somehow within the software domain. The human interface, the
boundary which both separates and connects us, is our skin. Our bodies are our interface.
VR inclusion accepts the entirety of our bodily interface, internalizing interactivity
within an environmental context.

The architectural diagram in Figure 2 is composed of three nested inclusions (physical,
digital, virtual). The most external is physical reality, the participant's physical body on
one edge, the computational physical hardware on the other. All the other components
of a VR system (software, language, virtual world) are contained within the physical.
Physical reality pervades virtual reality.9 For example, we continue to experience
physical gravity while flying around a virtual environment.

9 The apparent dominance of physical reality is dependent on how we situate our
senses. That is to say, physical reality is dominant only until we close our eyes.
Situated perception is strongly enhanced by media such as radio, cinema and television,
which invite a refocusing into a virtual world. The objective view of reality was
reinforced last century by print media which presents information in an objectified,
external form. Immersive media undermine the dominance of the physical simply by
providing a different place to situate perception.

10

Physical PARTICIPANT

Physical
SENSORS

Digital
PHYSICAL MODEL

Virtual SOFTWARE TOOLS

Virtual
MODEL

Digital OS COMMUNICATION

Digital OS
PROCESS

Digital OS
MEMORY

Physical COMPUTING HARDWARE

Physical
DISPLAYS

Digital
VIRTUAL BODY

presence

physical
interface

virtual
interface

inclusions

virtual

digital

physical

Figure 2: Presence and Inclusion

One layer in from the physical edges of the architecture are the software computational
systems. A participant interfaces with behavior transducers which generate digital
streams. The hardware interfaces with systems software which implements digital
computations. Software, the digital reality , is contained within physical reality, and in
turn, pervades virtual reality.

The innermost components of the architecture, the virtual world tools and model, form
the virtual reality itself.10 Virtual software tools differ from programming software
tools in that the virtual tools provide a non-symbolic look-and-feel. Virtual reality
seemlessly mixes a computational model of the participant with an anthropomorphized

10 To be manifest, VR also requires a participant.

11

model of information. In order to achieve this mixing, both physical and digital must
pervade the virtual.

Humans have the ability to focus attention on physicality, using our bodies, and on
virtuality, using our minds. In the VR architecture, the participant can focus on the
physical/digital interface (watching the physical display) and on the digital/virtual
interface (watching the virtual world). Although the digital is necessary for both focal
points, VR systems make digital mediation transparent by placing the physical in direct
correspondence with the virtual.

As an analogy, consider a visit to an orbiting space station. We leave the physically
familiar Earth, transit through a domain which is not conducive to human inhabitation
(empty space), to arrive at an artificial domain (the space station) which is similar
enough to Earth to permit inhabitation. Although the space station exists in empty
space, it still supports a limited subset of natural behavior. In this analogy the Earth is,
of course, physical reality. Empty space is digital reality, the space station is virtual
reality. A virtual environment operating system functions to provide an inhabitable
zone in the depths of symbolic space. Like the space station, virtual reality is pervaded
by essentially alien territory, by binary encodings transacted as voltage potentials
through microscopic gates. Early space stations on the digital frontier were spartan, the
natural behavior of early infonauts (i.e. programmers) was limited to interpretation of
punch cards and hex dumps. Tomorrow's digital space stations will provide human
comfort by shielding us completely from the emptiness of syntactic forms.

Another way to view the architecture of a VR system is in terms of meaning, of
semantics (Figure 3). A VR system combines two mappings, from physical to digital
and from digital to virtual. When a participant points a physical finger, for example,
the digital database registers an encoding of pointing. Physical semantics is defined by
the map between behavior and digital representation. Next, the "pointing" digit stream
can be defined to fly the participant's perspective in the virtual environment. Virtual
semantics is defined by the map between digital representation and perceived effect in
the virtual environment. Finally, natural semantics is achieved by eliminating our
interaction with the intermediate digital syntax. In the example, physical pointing is
felt to “cause” virtual flying.

By creating a closed loop between physical behavior and virtual effect, the concepts of
digital input and output are essentially eliminated from perception. When natural
physical behavior results in natural virtual consequences, without apparent digital
mediation, we achieve presence in a new kind of reality, virtual reality. When I knock
over my glass, its contents spill. The linkage is direct, natural, and non-symbolic.
When I type into my keyboard, I must translate thoughts and feelings through the
narrow channel of letters and words. The innovative aspect of VR is to provide, for the
first time, natural semantics within a symbolic environment. I can literally spill the
image of water from the representation of a glass, and I can do so by the same sweep of
my hand.

12

PHYSICIAL

DIGITAL

VIRTUAL

physical semantics

virtual semantics

natural semantics

Figure 3: Types of Semantics

Natural semantics affords a surprising transformation. By passing through digital
syntax twice, we can finesse the constraints of physical reality.11 Through presence, we
can map physical sensations onto imaginary capacities. We can point to fly. Double-
crossing the semantics/syntax barrier allows us to experience imagination.

Natural semantics can be very different from physical semantics because the virtual
body can be any digital form and can enact any codable functionality. The virtual
world is a physical simulation only when it is severely constrained. We add collision
detection constraints to simulate solidity; we add inertial constraints to simulate
Newtonian motion. The virtual world itself, without constraint, is one of potential.
Indeed, this is the motivation for visiting VR: although pervaded by both the physical
and the digital, the virtual is larger in possibility than both.12

The idea of a natural semantics that can render representation irrelevant (at least to the
interface) deeply impacts the intellectual bases of our culture by questioning the nature
of knowledge and representation and by providing a route to unify the humanities and
the sciences. The formal theory of VR requires a reconciliation of digital representation
with human experience, a reconstruction of the idea of meaning.

4. The Virtual Environment Operating Shell (VEOS)

The Virtual Environment Operating Shell (VEOS) is a software suite operating within a
distributed UNIX environment that provides a tightly integrated computing model for
data, processes, and communication. VEOS was designed from scratch to provide a
comprehensive and unified management facility for generation of, interaction with, and

11 Crossing twice is a mathematical necessity (Spencer-Brown, 1969).
12 A thing that is larger than its container is the essensce of an imaginary configuration,
exactly the properties one might expect from the virtual.

13

maintenance of virtual environments. It provides an infrastructure for implementation
and an extensible environment for prototyping distributed VR applications.

VEOS is platform independent, and has been extensively tested on the DEC 5000, Sun 4,
and Silicon Graphics VGX and Indigo platforms. The programmer's interface to VEOS is
XLISP 2.1, written for public domain by David Betz. XLISP provides programmable
control of all aspects of the operating shell. The underlying C implementation is also
completely accessible.

Within VEOS, the Kernel manages processes, memory, and communication on a single
hardware processor, called a node. FERN manages abstract task decomposition on each
node and distributed computing across networks of nodes. FERN also provides basic
functions for entity-based modeling. SensorLib provides a library of device drivers. The
Imager provides graphic output.13

Other systems built at HITL enhance the performance and functionality of the VEOS
core. Mercury is a participant system which optimizes interactive performance. UM is
the generalized mapper which provides a simple graph-based interface for constructing
arbitrary relations between input signals, state information, and output. The Wand is a
hand-held interactivity device which allows the participant to identify, move, and
change the attributes of virtual objects.

We first provide an overview of related work and the design philosophy for the VEOS
architecture. Then we present the central components of VEOS: the Kernel, FERN, and
entities. The chapter closes with a description of some applications built using VEOS.14

In contrast to previous sections which discuss interface and architectural theory, this
section addresses issues of software design and implementation.

4.1 VR Software Systems

Virtual reality software rests upon a firm foundation built by the computer industry
and by academic research over the last several decades. However the actual demands
of a VR system (real-time distributed multimedia multiparticipant multisensory
environments) provide such unique performance requirements that little research exists
to date that is directly relevant to whole VR systems. Instead, the first generation of VR
systems have been assembled from many relevant component technologies available in
published academic research and in newer commercial products.15

13 Only the VEOS Kernel and FERN are discussed in this chapter.
14 For a deeper discussion of the programming and operating system issues associated
with VEOS, see Coco (1993).
15 Aside from one or two pioneering systems built in the sixties (Sutherland, 1965;
Furness, 1969), complete VR systems did not become accessible to the general public
until June 6, 1989, when both VPL and Autodesk displayed their systems at two
concurrent trade shows. Research at NASA Ames (Fisher, 1986) seeded both of these
commercial prototypes. At the time, the University of North Carolina was the only
academic site of VR research (Brooks, 1986).

14

The challenge, then, for the design and implementation of VR software is to select and
integrate appropriate technologies across several areas of computational research
(dynamic databases, real-time operating systems, three-dimensional modeling, real-
time graphics, multisensory input and display devices, fly-through simulators, video
games, etc.). We describe several related software technologies that have contributed to
the decisions made within the VEOS project.

As yet, relatively few turnkey VR systems exist, and of those most are entertainment
applications. Notable examples are the multiparticipant interactive games such as
LucasArt's Habitat™, W Industries arcade game system, Battletech video arcades, and
Network Spector™ for home computers. Virtus Walkthrough™ is one of the first VR
design systems.

Architectures for virtual reality systems have been studied recently by several
commercial (Blanchard et al, 1990; VPL, 1991; Grimsdale, 1991; Appino et al, 1992) and
university groups (Zeltzer, 1989; Bricken, 1990; Green et al, 1991; Pezely et al, 1992;
Zyda et al, 1992; West et al, 1992; Kazman, 1993; Grossweiler et al, 1993).

Other than HITL at the University of Washington, significant research programs that
have developed entire VR systems exist at University of North Carolina at Chapel Hill
(Holloway, Fuchs & Robinett, 1992), MIT (Zeltzer et al, 1989), University of Illinois at
Chicago (Cruz-Neira et al, 1992), University of Central Florida (Blau et al, 1992),
Columbia University (Feiner et al, 1992), NASA Ames (Wenzel et al, 1990; Fisher et al,
1991), and within many large corporations such as Boeing, Lockheed, IBM, Sun, Ford,
and AT&T.16

More comprehensive overviews have been published for VR research directions (Bishop
et al. 1992), for software (Zyda et al, 1993), for system architectures (Appino et al, 1992),
for operating systems (Coco, 1993), and for participant systems (Minkoff 1993). HITL
has collected an extensive bibliography on virtual interface technology (Emerson 1993).

VR development systems can be grouped into tool kits for programmers and integrated
software for novice to expert computer users. Of course some kits, such as 3D modeling
software packages, have aspects of integrated systems. Similarly, some integrated
systems require forms of scripting (i.e. programming) at one point or another.

4.1.1 Toolkits

The MR Toolkit was developed by academic researchers at the University of Alberta for
building virtual environments and other 3D user interfaces (Green et al, 1991). The
toolkit takes the form of subroutine libraries which provide common VR services such
as tracking, geometry management, process and data distribution, performance
analysis, and interaction. The MR Toolkit meets several of the design goals of VEOS,
such as modularity, portability and support for distributed computing. MR, however,
does not strongly emphasize rapid prototyping; MR programmers use the compiled
languages C, C++, and FORTRAN.

16 Of course the details of most corporate VR efforts are trade secrets.

15

Researchers at the University of North Carolina at Chapel Hill have created a similar
toolkit called VLib. VLib is a suite of libraries that handle tracking, rigid geometry
transformations and 3D rendering. Like MR, VLib is a programmer’s library of C or
C++ routines which address the low level functionality required to support high level
interfaces.

Sense8, a small company based in Northern California, produces an extensive C
language software library called WorldToolKit™ which can be purchased with 3D
rendering and texture acceleration hardware. This library supplies functions for sensor
input, world interaction and navigation, editing object attributes, dynamics, and
rendering. The single loop simulation model used in WorldToolKit is a standard
approach which sequentially reads sensors, updates the world, and generates output
graphics. This accumulates latencies linearly, in effect forcing the performance of the
virtual body into a codependency with a potentially complex surrounding
environment.

Silicon Graphics, an industry leader in high-end 3D graphics hardware, has recently
released the Performer software library which augments the graphics language GL.
Performer was designed specifically for interactive graphics and VR applications on SGI
platforms. Autodesk, a leading CAD company which began VR product research in
1988, has recently released the Cyberspace Developer’s Kit, a C++ object library which
provides complete VR software functionality and links tightly to AutoCAD.

4.1.2 Integrated Systems

When the VEOS project began in 1990, VPL Research, Inc. manufactured RB2™, the first
commercially available integrated VR system (Blanchard et al, 1990; VPL, 1991). At the
time, RB2 supported a composite software suite which coordinated 3D modeling on a
Macintosh, real-time stereo image generation on two Silicon Graphics workstations,
head and hand tracking using proprietary devices, dynamics and interaction on the
Macintosh, and runtime communication over Ethernet. The system processing speed,
or throughput, of the Macintosh created a severe bottleneck for this system. VEOS
architects had considerable design experience with the VPL system; its pioneering
presence in the marketplace helped define many design issues which later systems
would improve.

Division, a British company, manufactures VR stations and software. Division's
ProVision™ VR station is based on a transputer ring and through the aid of a remote
PC controller runs dVS, a director/actors process model (Grimsdale, 1991). Each
participant resides on one station; stations are networked for multiparticipant
environments. Although the dVS model of process and data distribution is a strong
design for transputers, it is not evident that the same approaches apply to workstation
LANs, the target for the VEOS project.

Perhaps the most significant distributed immersive simulation system today is the
military multiparticipant tank combat simulator, SIMNET (Blau et al, 1992). Another

16

advanced military VR simulation system, NPSNET (Zyda et al, 1992), has been
developed at the Naval Postgraduate School.

4.2 VEOS Design Philosophy

The negotiation between theory and implementation is often delicate. Theory pays little
attention to the practical limitations imposed by specific machine architectures and by
cost-effective computation. Implementation often must abandon rigor and formality in
favor of making it work. In sailing the digital ocean, theory provides the steerage,
implementation provides the wind.

The characteristics of the virtual world impose several design considerations and
performance requirements on a VR system. The design of VEOS reflects multiple
objectives, many practical constraints, and some compromises (Bricken, 1992a).

The dominant design decision for VEOS was to provide broad and flexible capabilities.
The mathematical ideals include simplicity (a small number of independent
primitives), integration (all primitives are composable), and expressability (primitives
and compositions represent all programming domains) (Coco, 1993). Commercial
toolkits were not included in VEOS in order to avoid commercial dependencies. VEOS
was intended for distribution under royality free license for non-commercial usage.

As a research vehicle, VEOS emphasizes functionality at the expense of performance.
Premature optimization is a common source of difficulty in software research. So our
efforts are directed first toward demonstrating that a thing can be done at all, then
toward demonstrating how well we can do it. Since a research prototype must prepare
for the future, VEOS is designed to be as generic as possible; it places very little
mechanism in the way of exploring diverse and unexpected design options. It is
possible to easily replicate procedural, declarative, functional and object-oriented
programming styles within the VEOS framework.

TABLE I: VEOS Practical Design Decisions

Research prototype, 5-10 years ahead of the marketplace
Functional rather than efficient
Rapidly reconfigurable
Synthesis of known software technologies
Incorporates commercially available software when possible

TABLE II: VEOS Functionality

General computing model
Interactive rapid prototyping
Coordination between distributed, heterogeneous resources
Parallel decomposition of worlds (modularity)
Multiple participants

17

Biological/environmental modeling

Naturally, the VEOS project has passed through several phases over its three years of
development. VEOS 2.2 has the desired conceptual structure, but quickly becomes
inefficient (relative to a 30 frame per second update rate) when the number of active
nodes grows beyond a dozen (Coco & Lion, 1992). Our most recent work, VEOS 3.0,
emphasizes performance.

VR is characterized by a rapid generation of applications ideas; it is the potential of VR
that people find exciting. However, complex VR systems take too much time to
reconfigure. VEOS was designed for rapid prototyping. The V E O S interface is
interactive, so that a programmer can enter a new command or world state at the
terminal, and on the next frame update the virtual world display will change. VR
systems must avoid hardwired configurations, because a participant in the virtual
world is free to engage in almost any behavior. For this reason, VEOS is reactive, it
permits the world to respond immediately to the participant (and to the programmer).

The broad-bandwidth display and the multisensory interaction of VR systems create
severe demands for sensor integration. Visual, audio, tactile, and kinesthetic displays
require the VR database to handle multiple data formats and massive data transactions.
Position sensors, voice recognition, and high dimensional input devices overload
traditional serial input ports. An integrated hardware architecture for VR should
incorporate asynchronous communication between dedicated device processors in a
distributed computational environment.

When more than one person inhabits a virtual world, the perspective of each participant
is different. This can be reflected by different views on the same graphical database.
But in the virtual world, multiple participants can have divergent models embodied in
divergent databases as well. Each participant can occupy a unique, personalized world,
sharing the public database partition and not sharing private database partitions.

With the concept of entities, VEOS extends programming metaphors to include first-class
environments, biological models, and systems-oriented programming. A programming
metaphor is a way to think about and organize symbolic computation. The
biological/environmental metaphor introduced in VEOS originates from the artificial life
community (Langton, 1988; Meyer & Wilson, 1991; Varela & Bourgine, 1992); it is a
preliminary step toward providing a programming language for modeling autonomous
systems within an inclusive environment (Varela, 1979; Maturana & Varela, 1987).

4.3 The VEOS Kernel

The VEOS Kernel is a significant effort to provide transparent low-level database,
process, and communications management for arbitrary sensor suites, software
resources, and virtual world designs. The Kernel facilitates the VR paradigm shift by
taking care of operating system details without restricting the functionality of the
virtual world. The Kernel is implemented as three tightly integrated components:

18

SHELL manages node initialization, linkages, and the LISP interface.
TALK manages internode communications.
NANCY manages the distributed pattern-driven database.

The fundamental unit of organization in the Kernel is the node. Each node corresponds
to exactly one UNIX process. Nodes map to UNIX processors which ideally map
directly to workstation processors.

Nodes running the VEOS Kernel provide a substrate for distributed computing.
Collections of nodes form a distributed system which is managed by a fourth
component of the VEOS system, FERN. FERN manages sets of uniprocessors (for example,
local area networks of workstations) as pools of nodes.

The VEOS programming model is based on entities. An entity is a coupled collection of
data, functionality and resources, which is programmed using a
biological/environmental metaphor. Each entity within the virtual world is modular
and self-contained, each entity can function independently and autonomously.

In VEOS, everything is an entity (the environment, the participant, hardware devices,
software programs, and all objects within the virtual world). Entities provide database
modularity, localization of scoping, and task decomposition. All entities are
organizationally identical. Only their structure, their internal detail, differs. This
means that a designer needs only one metaphor, the entity, for developing all aspects of
the world. Changing the graphical image, or the behavioral rules, or even the attached
sensors, is a modular activity. We based the entity concept on distributed object models
(Jul et al, 1988).

Entities are multiplexed processes on a single node. As well as managing nodes, FERN
also manages sets of entities, providing a model of lightweight processing and data
partitioning. From the perspective of entity-based programming, the VEOS Kernel is a
transparent set of management utilities.

The SHELL is the administrator of the VEOS Kernel. It dispatches initializations, handles
interrupts, manages memory, and performs general housekeeping. There is one SHELL
program for each node in the distributed computing system. The programmer interface
to the SHELL is the LISP programming language, augmented with specialized Kernel
functions for database and communications management. LISP permits user
configurability of the VEOS environment and all associated functions. LISP can also be
seen as a rapid prototyping extension to the native VEOS services.

TALK provides internode communication, relying on common UNIX operating system
calls for message passing. It connects UNIX processes which are distributed over
networks of workstations into a virtual multi-processor. TALK is the sole mechanism for
internode communication. Message passing is the only kind of entity communication
supported by TALK, but, depending on context, this mechanism can be configured to
behave like shared memory, direct linkage, function evaluation and other
communication regimes.

19

TALK uses two simple asynchronous point-to-point message passing primitives, send
and receive. It uses the LISP functions throw and catch for process sharing on a single
node. Messages are transmitted asynchronously and reliably, whether or not the
receiving node is waiting. The sending node can transmit a message and then continue
processing. The programmer, however, can elect to block the sending node until a
reply, or handshake, is received from the message destination. Similarly, the receiving
node can be programmed to accept messages at its own discretion, asynchronously and
non-blocking, or it can be programmed to react in a coupled, synchronous mode.

An important aspect of VEOS is consistency of data format and programming metaphor.
The structure of messages handled by TALK is the same as the structure of the data
handled by the database. The VEOS database uses a Linda-like communication model
which partitions communication between processes from the computational threads
within a process (Gelertner & Carriero, 1992). Database transactions are expressed in a
pattern-directed language.

4.3.1 Pattern-Directed Data Transactions

NANCY, the database transaction manager, provides a content addressable database
accessible through pattern-matching. NANCY is a variant of the Linda parallel database
model to manage the coordination of interprocess communication (Arango et al, 1990).
In Linda-like languages, communication and processing are independent, relieving the
programmer from having to choreograph interaction between multiple processes.
Linda implementations can be used in conjunction with many other sequential
programming languages as a mechanism for interprocess communication and generic
task decomposition (Gelertner, 1990; Cogent, 1990; Torque, 1992). A Linda database
supports local, asynchronous parallel processes, a desirable quality for complex,
concurrent, interactive systems. NANCY does not support parallel transactions, but the
FERN entity manager (Section 4.4) which uses NANCY does.

The Linda approach separates programming into two essentially orthogonal
components, computation and coordination. Computation is a singular activity,
consisting of one process executing a sequence of instructions one step at a time.
Coordination creates an ensemble of these singular processes by establishing a
communication model between them. Programming the virtual world is then
conceptualized as defining "a collection of asynchronous activities that communicate"
(Gelertner & Carriero, 1992).

NANCY adopts a uniform data structure, as do all Linda-like approaches. In Linda, the
data structure is a tuple, a finite ordered collection of atomic elements of any type.
Tuples are a very simple and general mathematical structure. VEOS extends the concept
of a tuple by allowing nested tuples, which we call grouples.

A tuple database consists of a set of tuples. Since VEOS permits nested tuples, the
database itself is a single grouple. The additional level of expressability provided by

20

nested tuples is constrained to have a particular meaning in VEOS. Basically, the nesting
structure is mapped onto logical and functional rules, so that the control structure of a
program can be expressed simply by the depth of nesting of particular grouples.17

Nesting implements the concept of containment, so that the contents of a grouple can be
interpreted as a set of items, a grouplespace.

Grouples provide a consistent and general format for program specification, inter-entity
communication and database management. As the VEOS database manager, NANCY
performs all grouple manipulations, including creation, destruction, insertion, and
copying of grouples. NANCY provides the access functions put, get and copy for
interaction with grouplespace. These access functions take patterns as arguments, so
that sets of similar grouples can be retrieved with a single call.

Structurally, the database consists of a collection of fragments of information, labeled
with unique syntactic identifiers. Collections of related data (such as all of the current
properties of Cube-3, for example) can be rapidly assembled by invoking a parallel
pattern match on the syntactic label which identifies the sought after relation. In the
example, matching all fragments containing the label “Cube-3” creates a grouple with
the characteristics of Cube-3. The approach of fragmented data structures permits
dynamic, interactive construction of arbitrary grouple collections through real-time
pattern-matching. Requesting “all-blue-things” creates a transient complex grouple
consisting of all the things in the current environment that are blue. The blue-things
grouple is implemented by a dynamic database thread of things with the attribute
“color = blue”. A blue-things entity can be created by passing these attributes to the
function for constructing entities.

Performance of the access functions is improved in VEOS by association matching. When
a process performs a get operation, it can block, waiting for a particular kind of grouple
to arrive in its perceptual space (the local grouplespace environment). When a
matching grouple is put into the grouplespace, usually by a different entity, the waiting
process gets the grouple and continues. This is implemented through daemons, or react
procedures.

Putting and getting data by pattern-matching implements a Match-and-Substitute
capability which can be interpreted as the substitution of equals for equals within an
algebraic mathematical model. These techniques are borrowed from work in artificial
intelligence, and are called rewrite systems (Dershowitz 1990).

4.3.2 Languages

Rewrite systems include expert systems, declarative languages, and blackboard
systems. Although this grouping ignores differences in implementation and
programming semantics, there is an important similarity. These systems are variations
on the theme of inference or computation over rule-based or equational
representations. Declarative languages such as FP, Prolog, lambda calculus,

17 Integration of logical control structure with database functionality is not yet
implemented.

21

Mathematica and constraint-based languages all traverse a space of possible outcomes
by successively matching variables with values and substituting the constrained value.
These languages each display the same trademark attribute: their control structure is
implicit in the structure of a program's logical dependencies.

The VEOS architects elected to implement a rewrite approach, permitting declarative
experimentation with inference and meta-inference control structures. Program control
structure is expressed in LISP. As well, this model was also strongly influenced by the
language Mathematica (Wolfram 1988).

LISP encourages prototyping partly because it is an interpreted language, making it
quite easy to modify a working program without repeated takedowns and laborious
recompilation. Using only a small handful of primitives, LISP is fully expressive, and its
syntax is relatively trivial to comprehend. But perhaps the most compelling aspect of
LISP for the VEOS project is its program-data equivalence. In other words, program
fragments can be manipulated as data and data can be interpreted as executable
programs. Program-data equivalence provides an excellent substrate for the active
message model (vonEicken et al, 1992). LISP expressions can be encapsulated and
passed as messages to other entities and then evaluated in the context of the receiving
entity by the awaiting LISP interpreter.

In terms of availability, LISP has been implemented in many contexts: as a production
grade development system (FranzLisp, Inc.), as a proprietary internal data format
(AutoLisp from AutoDesk, Inc.), as a native hardware architecture (Symbolics, Inc.),
and most relevantly as XLISP, a public domain interpreter (Betz 1992). Upon close
inspection, the XLISP implementation is finely-tuned, fully extendible, and extremely
portable; it therefore became the clear choice for the VEOS application programmer’s
interface (API).

4.4 FERN: Distributed Entity Management

The initial two years of the VEOS project focused on database management and Kernel
processing services. The third year (1992) saw the development of FERN, the
management module for distributed nodes and for lightweight processes on each
node.18 With its features of systems orientation, biological modeling and active
environments, FERN extends the VEOS Kernel infrastructure to form the entity-based
programming model. We first discuss related work which influenced the development
of FERN, then we describe entities in detail.

4.4.1 Distributed Computation

Multi-processor computing is a growing trend (Spector, 1982; Li & Hudak, 1989; Kung
et al, 1991). VR systems are inherently multi-computer systems, due primarily to the
large number of concurrent input devices which do not integrate well in real-time over

18 As of mid 1993, we have yet to install higher level functions, such as inference
engines and learning nets, in entities.

22

serial ports. The VEOS architects chose to de-emphasize short-term performance issues
of distributed computing, trusting that network-based systems would continue to
improve. We chose instead to focus on conceptual issues of semantics and protocols.

The operating systems community has devoted great effort toward providing seamless
extensions for distributed virtual memory and multiprocessor shared memory.
Distributed shared memory implementations are inherently platform specific since they
require support from the operating systems kernel and hardware primitives. Although
this approach is too low level for the needs of VEOS, many of the same issues resurface
at the application level, particularly protocols for coherence.

IVY (Li & Hudak, 1989) was the first successful implementation of distributed virtual
memory in the spirit of classical virtual memory. IVY showed that through careful
implementation, the same paging mechanisms used in a uniprocessor virtual memory
system can be extended across a local area network.

The significance of IVY was twofold. First, it is well known that virtual memory
implementations are afforded by the tendency for programs to demonstrate locality of
reference. Locality of reference compensates for lost performance due to disk latency.
In IVY, locality of reference compensates for network latency as well. In an IVY
program, the increase in total physical memory created by adding more nodes
sometimes permits a superlinear speedup over sequential execution. Second, IVY
demonstrates the performance and semantic implications of various memory coherence
schemes. These coherence protocols, which assure that distributed processes do not
develop inconsistent memory structures, are particularly applicable to distributed
grouplespace implementations.

MUNIN and MIDWAY (Carter et al, 1992; Bershad et al, 1992) represent deeper
explorations into distributed shared memory coherence protocols. Both systems
extended their interface languages to support programmer control over the coherence
protocols. In MUNIN, programmers always use release consistency but can fine-tune the
implementation strategy depending on additional knowledge about the program's
memory access behavior. In MIDWAY, on the other hand, the programmer could choose
from a set of well-defined coherence protocols of varying strength. The protocols
ranged from the strongest, sequential consistency, which is equivalent to the degenerate
distributed case of one uniprocessor, to the weakest, entry consistency, which makes the
most assumptions about usage patterns in order to achieve efficiency. Each of these
protocols, when used strictly, yield correct deterministic behavior.

4.4.2 Lightweight Processes

The VEOS implementation also needed to incorporate some concept of threads,
cooperating tasks each specified by a sequential program. Threads can be implemented
at the user level and often share single address spaces for clearer data sharing semantics
and better context-switch performance. Threads can run in parallel on multiple
processors or they can be multiplexed preemptively on one processor, thus allowing n
threads to execute on m processors, an essential facility for arbitrary configurations of
VEOS entities and available hardware cpus.

23

This generic process capability is widely used and has been thoroughly studied and
optimized. However, thread implementations normally have system dependencies
such as the assembly language of the host cpu, and the operating system kernel
interface. Inherent platform specificity combined with the observation that generic
threads may be too strong a mechanism for VEOS requirements suggest other
lightweight process strategies.

The driving performance issue for VR systems is frame update rate. In many
application domains, including all forms of signal processing, this problem is
represented in general by a discrete operation (or computation) which should occur
repeatedly with a certain frequency. Sometimes, multiple operations are required
simultaneously but at different frequencies. The problem of scheduling these discrete
operations with the proper interleaving and frequency can be solved with a cyclic
executive algorithm. The cyclic executive model is the de facto process model for many
small real-time systems.

The cyclic executive control structure was incorporated into VEOS for two reasons. It
provided a process model that can be implemented in a single process, making it highly
general and portable. It also directly addressed the cyclic and repetitious nature of the
majority of VR computation. This cyclic concept in VEOS is called frames.

The design of VEOS was strongly influenced by object-oriented programming. In
Smalltalk (Goldberg 1980), all data and process is discretized into objects. All
parameter passing and transfer of control is achieved through messages and methods.
VEOS incorporates the Smalltalk ideals of modular processes and hierarchical code
derivation (classes), but does not to enforce the object-oriented metaphor throughout all
aspects of the programming environment. More influential was EMERALD (Jul et al
1988). The EMERALD system demonstrates that a distributed object system is practical
and can achieve good performance through the mechanisms of object mobility and
compiler support for tight integration of the runtime model with the programming
language. EMERALD implements intelligent system features like location-transparent
object communication and automatic object movement for communication or load
optimization. As well, EMERALD permits programmer knowledge of object location for
fine-tuning applications. EMERALD was especially influential during the later stages of
the VEOS project, when it became more apparent how to decompose the computational
tasks of VR into entities. In keeping with the ideal of platform independence, however,
VEOS steered away from some EMERALD features such as a compiler and tight
integration with the network technology.

4.5 Entities

An entity is a collection of resources which exhibits behavior within an environment.
The entity-based model of programming has a long history, growing from formal
modeling of complex systems, object-oriented programming, concurrent autonomous
processing and artificial life. Agents, Actors, and Guides all have similarities to entities
(Agha, 1988; Oren et al, 1990).

24

Entities act as autonomous systems, providing a natural metaphor for responsive,
situational computation. When a single entity resides on a single node, the entity is a
stand-alone executable program that is equipped with the VEOS functionalities of data
management, process management, and inter-entity communication. In a virtual
environment composed of entities, any single entity can cease to function (if, for
example, the node supporting that entity crashes) without effecting the rest of the
environment.

Entities provide a uniform, singular metaphor and design philosophy for the
organization of both physical (hardware) and virtual (software) resources in VEOS.
Uniformity means that we can use the same editing, debugging, and interaction tools
for modifying each entity.

The biological/environmental metaphor for programming entities provides functions
that define perception, action and motivation within a dynamic environment. Perceive
functions determine which environmental transactions an entity has access to. React
functions determine how an entity responds to environmental changes. Persist
functions determine an entity’s repetitive or goal-directed behavior.

The organization of each entity is based on a mathematical model of inclusion,
permitting entities to serve as both objects and environments. Entities which contain
other entities serve as their environment; the environmental component of each entity
contains the global laws and knowledge of its contents. From a programming context,
entities provide an integrated approach to variable scoping and to evaluation contexts.
From a modeling point-of-view, entities provide modularity and uniformity within a
convenient biological metaphor. But most importantly, from a VR perspective, entities
provide first-class environments, inc lus ions, which permit modeling
object/environment interactions in a principled manner.

Synchronization of entity processes (particularly for display) is achieved through frames.
A frame is a cycle of computation for an entity. Updates to the environment are
propagated by an entity as discrete actions. Each behavioral output takes a local tick in
local time. Since different entities will have different workloads, each usually has a
different frame rate. As well, the frame rate of processes internal to an entity is
decoupled from the rate of activity an entity exhibits within an environment. Thus,
entities can respond to environmental perturbances (reacting) while carrying out more
complex internal calculations (persisting).

To the programmer, each entity can be conceptualized to be a separate process. Actual
entity processing is transparently multiplexed over available physical processors, or
nodes. The entity process is non-preemptive; it is intended to perform only short
discrete tasks, yielding quickly and voluntarily to other entities sharing the same node.

Entities can function independently, as worlds in themselves, or they can be combined
into complex worlds with other interacting entities. Because entities can access
computational resources, an entity can use other software modules available within the
containing operating system. An entity could, for instance, initiate and call a statistical
analysis package to analyze the content of its memory for recurrent patterns. The

25

capability of entities to link to other systems software make VEOS particularly appealing
as a software testing and integration environment.

4.5.1 Systems-Oriented Programming

In object-oriented programming, an object consists of static data and responsive
functions, called methods or behaviors. Objects encapsulate functionality and can be
organized hierarchically, so that programming and bookkeeping effort is minimized. In
contrast, entities are objects which include interface and computational resources,
extending the object metaphor to a systems metaphor. The basic prototype entity
includes VEOS itself, so that every entity is running VEOS and can be treated as if it were
an independent operating environment. VEOS could thus be considered to be an
implementation of systems-oriented programming.

Entities differ from objects in these ways:

• Environment: Each entity functions concurrently as both object and
environment. The environmental component of an entity coordinates process
sharing, control and communication between entities contained in the
environment. The root or global entity is the virtual universe, since it
contains all other entities.

• System: Each entity can be autonomous, managing its own resources and
supporting its own operation without dependence on other entities or
systems. Entities can be mutually independent and organizationally closed.

• Participation: Entities can serve as virtual bodies. The attributes and
behaviors of an inhabited entity can be determined dynamically by the
physical activity of the human participant at runtime.

In object-oriented systems, object attributes and inheritance hierarchies commonly must
be constructed by the programmer in advance. Efficiency in object-oriented systems
usually requires compiling objects. This means that the programmer must know in
advance all the objects in the environment and all their potential interactions. In effect,
the programmer must be omniscient. Virtual worlds are simply too complex for such
monolithic programming. Although object-oriented approaches provide modularity
and conceptual organization, in large scale applications they can result in complex
property and method variants, generating hundreds of object classes and forming a
complex inheritance web. For many applications, a principled inheritance hierarchy is
not available, forcing the programmer to limit the conceptualization of the world. In
other cases, the computational interaction between objects is context dependent,
requiring attribute structures which have not been preprogrammed.

Since entities are interactive, their attributes, attribute values, relationships, inheritances
and functionality can all be generated dynamically at runtime. Structures across
entities can be identified in real-time based on arbitrary patterns, such as partial
matches, unbound attribute values (i.e. abstract objects), ranges of attribute values,

26

similarities, and analogies. Computational parallelism is provided by a fragmented
database which provides opportunistic partial evaluation of transactions, regardless of
transaction ownership. For coordination, time itself is abstracted out of computation,
and is maintained symbolically in data structures.

Although world models composed of collections of objects provide conceptual
parallelism (each object is independent of other objects), programming with objects
paradoxically enforces sequential modeling, since messages from one object are
invariably expected to trigger methods in other objects. Objects are independent only
to the extent that they do not interact, but interaction is the primary activity in a virtual
world. The essential issue is determinism: current object-oriented methodologies expect
the programmer to conceptualize interaction in its entirety, between all objects across all
possibilities. In contrast, entities support strong parallelism. Entities can enter and
leave a virtual environment independently, simply by sending the change to the
environment entity which contains them. An autonomous entity is only perturbed by
interactions; the programmer is responsible for defining subjective behavior locally
rather than objective interaction globally. For predictability, entities rely on equifinality:
although the final result is predictable, the paths to these results are indeterminant.

Dynamic programming of entity behavior can be used by programmers for debugging,
by participants for construction and interaction, and by entities for autonomous self-
modification. Since the representation of data, function, and message is uniform,
entities can pass functional code into the processes of other entities, providing the
possibility of genetic and self-adaptive programming styles.

4.5.2 Entity Organization

Each entity has the following components:

• A unique name. Entities use unique names to communicate with each other.
Naming is location transparent, so that names act as paths to an entity’s
database partition.

• A private partition of the global database. The entity database consists of
three subpartitions. The external partition contains the entity’s environmental
observations. The boundary partition contains an entity’s attributes and its
observable form. The internal partition contains recorded transactions and
internal structure.

• Any number of processes. Conceptually, these processes operate in parallel
within the context of the entity, as the entity's internal activities. Collectively,
they define the entity’s autonomous behavior.

• Any number of interactions. Entities call upon each others' relational data
structures to perform communication and joint tasks. Interactions are
expressed as perceptions accompanied potentially by both external reactions
and internal model building.

27

The functional architecture of each entity is illustrated in Figure 4 (Minkoff, 1992).
FERN manages the distributed database and the distributed processes within VEOS,
providing location transparency and automated coordination between entities. FERN
performs three internal functions for each entity:

Communication: FERN manages transactions between an entity and its containing
environment (which is another entity) by channeling and filtering accessible global
information. TALK, the communication module, facilitates inter-node communication.

Information: Each entity maintains a database of personal attributes, attributes and
behaviors of other perceived entities, and attributes of contained entities. The database
partitions use the pattern language of NANCY, another basic module, for access.

Behavior: Each entity has two functional loops that process data from the environment
and from the entity's own internal states. These processes are LISP programs.

 4.5.2.1 Internal Resources

The data used by an entity's processes is stored in five resource areas (Figure 4):
hardware (device streams which provide or accept digital information), memory (local
storage and workspace) and the three database partitions (external, boundary and
internal). These internal resources are both the sources and the sinks for the data
created and processed by the entity.

The three database partitions store the entity’s information about self and world.19

Figure 5 illustrates the dual object/environment structure of entities.

The boundary partition contains data about the self that is meant to be communicated
within the containing environment and thus shared with as many other entities in that
environment as are interested. The boundary is an entity's self-presentation to the
world. The boundary partition is both readable and writable. An entity reads a
boundary (of self or others) to get current state information. An entity writes to its own
boundary to change its perceivable state.

The external partition contains information about other entities that the self entity
perceives. The external is an entity's perception of the world. An entity can set its own
perceptual filters to include or exclude information about the world that is transacted in
its external. The external is readable only, since it represents externally generated and
thus independent information about the world.

19 This tripartite model of data organization is based on spatial rather than textual
syntax. The shift is from labels which point to objects to containers which distinguish
spaces. Containers differentiate an outside, an inside, and a boundary between them.
Higher dimensional representation is essential for a mathematical treatment of virtual
environments (Bricken and Gullichsen, 1989; Bricken, 1991b; Bricken, 1992b). Text,
written in one-dimensional lines, is too weak a representational structure to express
environmental concepts; words simply lack an inside.

28

The internal partition consists of data in the boundary partitions of contained entities.
This partition permits an entity to serve as an environment for other entities. The
internal is readable only, since it serves as a filter and a communication channel
between contained entities.

hardware memory

external

boundary

internal

communications

Behavior Information Communication

PERSIST REACT INTERACT

Figure 4: Functionality, Resources and Processes in an Entity

The other two resources contain data about the entity that is never passed to the rest of
the world. These connect the entity to the physical world of computational hardware.

The memory contains internal data that is not directly communicated to other entities.
Memory provides permanent storage of entity experiences and temporary storage of
entity computational processes. Internal storage can be managed by NANCY, by LISP, or
by the programmer using C.

The hardware resource contains data which is generated or provided by external
devices. A position tracker, for example, generates both location and orientation
information which would be written into this resource. A disc drive may store data
such as a behavioral history, written by the entity for later analysis. An inhabited entity
would write data to a hardware renderer to create viewable images.

29

external

boundary

internal

observation of other entities in same enivonment

environment for contained entities

appearence of self

Figure 5: Entities as both Object and Environment

4.5.2.2 Internal Processes

Internal processes are those operations which define an entity’s behavior. Behavior can
be private (local to the entity) or public (observable by other entities sharing the same
environment). There are three types of behavioral processes: each entity has two
separate processing regimes (React and Persist), while communications is controlled by
a third process (Interact). By decoupling local computation from environmental
reactivity, entities can react to stimuli in a time-critical manner while processing
complex responses as computational resources permit.

The Interact process handles all communication with the other entities and with the
environment. The environmental component of each entity keeps track of all contained
entities. It accepts updated boundaries from each entity and stores them in the internal
data space partition. The environmental process also updates each contained entity’s
external partition with the current state of the world, in accordance with that entity’s
perceptual filters. Interaction is usually achieved by sending messages which trigger
behavioral methods.20

The React process addresses pressing environmental inputs, such as collisions with
other entities. It reads sensed data and immediately responds by posting actions to the
environment. This cycle handles all real-time interactions and all reactions which do
not require additional computation or local storage. React processes only occur as new
updates to the boundary and external partitions are made.

20 Technically, in a biological/environmental paradigm, behavior is under autonomous
control of the entity and is not necessarily triggered by external messages from other
entities.

30

The Persist process is independent of any activity external to the entity. The Persist
loop is controlled by resources local to the specific entity, and is not responsive in real-
time. Persist computations typically require local memory, function evaluation, and
inference over local data. Persist functions can copy data from the shared database and
perform local computations in order to generate information, but there are no time
constraints asserted on returning the results.

The Persist mechanism implements a form of cooperative multitasking. To date, the
responsibility of keeping the computational load of Persist processes balanced with
available computational resources is left to the programmer. To ensure that
multitasking simulates parallelism, the programmer is encouraged to limit the number
of active Persist processes, and to construct them so that each is relatively fast, is atomic,
and never blocks.

4.5.3 Coherence

FERN provides a simple coherence mechanism for shared grouplespaces that is based on
the inter-node message flow control facility. At the end of each frame, FERN takes an
inventory of the boundary partitions of each entity on the node, and attempts to
propagate the changes to the sibling entities of each of the entities in that environment.
Some of these siblings may be maintained by the local node, in which case the
propagation is relatively trivial. For local propagation, FERN simply copies the
boundary attributes of one entity into the externals of other entities. For remote sibling
entities, the grouplespace changes are sent to the nodes on which those entities reside
where they are incorporated into the siblings' externals.

Because of mismatched frame rates between nodes, change propagation utilizes a flow-
control mechanism. If the logical stream to the remote node is not full, some changes
can be sent to that node. If the stream is full, the changes are cached until the stream is
not full again. If an entity makes further changes to its boundary while there is still a
cached change waiting from that entity, the intermediate value is overwritten. The new
change replaces the previous one and continues to wait for the stream to clear. As the
remote nodes digest previous change messages, the stream clears and new changes are
propagated.

This coherence protocol guarantees the two things. First, if an entity makes a single
change to its boundary, the change will reach all subscribing sibling entities. Second,
the last change an entity makes to its boundary will reach its siblings. This protocol
does not guarantee the intermediate changes because FERN cannot control how many
changes an entity makes to its boundary each frame, while it must limit the stack of
work that it creates for interacting nodes.

To tie all the FERN features together, Figure 6 provides a graphical overview of the FERN
programming model (Coco 1993).

31

External

Boundary

Internal

External

Boundary

Internal

Fern Nodes Network

External

Boundary

Internal

External

Boundary

Internal

External

Boundary

Internal

External

Boundary

Internal

External

Boundary

Internal

External

Boundary

Internal

External

Boundary

Internal

External

Boundary

Internal
External

Boundary

Internal

Entities

These entities share a common Space.

Space Entity
Manages many entities.

Correspond to distributed cpus.

Local Method Call
Low cost communication.

Remote Method Call
Asynchronous for parallelism.

Distributed across the net.

As seen from Unix.

External

Boundary

Internal

Readable by the world (other entities).

Entity's view of the world
(other entities' Boundaries).

Private to the entity.
Also used for space.

Figure 6: FERN Topology and Entity Structure

4.5.4 Programming Entities

Complete documentation on the VEOS project, examples and source code are available
in the VEOS 3.0 release (VEOS, 1993). Since VEOS supports many programming styles,
and since it incorporates techniques from operating systems, database and
communication theory, object-oriented programming, theorem proving, artificial
intelligence, and interactive interface, it is not possible to present here a complete
programming guide. Rather, we will discuss the unique function calls available for
entities that support the biological/environmental programming metaphor.21

An entity is defined by the LISP function (fern-entity...). This function bundles a
collection of other LISP functions which specify all of the entity’s initial constructs,
forming the entity’s capabilities and behavioral disposition. These initializing
commands establish the memory allocation, process initialization, and potential
activities of an entity.

(fern-entity...) actually defines a class of entities; each time the function is called,
an instance of the entity class is created. Instances are created by (fern-new-entity
<fern-entity-definition>). The entity definition itself is a first class citizen that

21 FERN functions in this section are indicated by courier font. Since these are LISP
functions, they include the standard LISP parentheses. Angle brackets enclose argument
names. An ellipsis within the parentheses indicates arguments which are unspecified.
Function names in the text are written in complete words; during actual programming,
these function names are abbreviated.

32

can be loaded unevaluated, bound to a symbol, stored in the grouplespace, or sent as a
message. Within an entity definition, the code can include other entity definitions,
providing an inheritance mechanism.

The functions normally included within (fern-entity...) define the following
characteristics:

• attributes: (fern-put-boundary-attribute...) Properties which
are associated with state values are constructed within the entity’s boundary
resource. Examples of common attributes are listed in Table III.

• workspace: (fern-put-local...) Local memory and private
workspace resources are reserved within a local partition of the database.

• behavior: (fern-define-method...) Methods which define an
entity’s response to the messages it receives are defined as functions which
are evaluated within the local context.

• processes: (fern-persist...) Persistent processes within an entity
are defined and initialized. An entity can engage in many processes which
timeshare an entity’s computational process resources.

• perceptions: (fern-perceive...) When specific changes occur in
an entity’s environment, the entity is immediately notified, modeling a
perceptual capability. An entity can only access external data which it can
perceive.

• peripherals: (sensor-init...) Connections to any physical sensors
or input devices used by the entity are established and initialized.

• functionality: (define <function-name>...) Any particular
functions required to achieve the above characteristics are defined within the
entity’s local context.

As well as defining entities, FERN includes functions for initializing the computational
environment (fern-init...), changing the platforms which form the processor pool
(fern-merge-pool...), running the FERN process on each node (fern-run...),
and providing debugging, timing, and connectivity information. FERN also provides
management facilities for all functions (fern-close)(fern-detach-pool...)
(fern-dispose-entity...)(fern-undefine-method...)(fern-
unperceive).

TABLE III: Common Attributes of Entities

Name
concise (human readable)
verbose (human readable)
system-wide

33

Spatial
location in three dimensions
orientation in three dimensions
scale

Visual
picture-description
color
visibility
opacity
wireframe
texture-description
texture-map
texture-scale

Aural
sound-description
loudness
audibility
sound-source
doppler
rolloff
midi-description
midi-note (pitch, velocity, sustain)

Dynamic
mass
velocity
acceleration

Object/environment relationships are created by (fern-enter <space-id>) . The
contained entity sends this registration message to the containing entity. Entities within
a space can access only the perceivable aspects of other entities in the same space. That
entities can both act as spaces and enter other spaces suggests a hierarchical nature to
spaces. However, any hierarchy significance must be implemented by the application.
Spaces as such are primarily a dataspace partitioning mechanism.

Entities can select and filter what they perceive in a space with (fern-perceive
<attribute-of-interest>). These filters constrain and optimize search over the
shared dataspace. For example, should an entity wish to perceive changes in the color
of other entities in its environment, the following code would be included in the entity’s
definition: (fern-perceive “color”). This code will automatically optimize the
shared dataspace for access to color changes by the interested entity, posting those
changes directly in the external partition of the entity.

4.5.4.1 Processes

All FERN application tasks are implemented as one of three types of entity processes:

• react (fern-perceive <attribute> :react <react-function>)

34

• persist (fern-persist <persist-function>)

• interact (fern-define-method <message-name>...)
 (fern-send <entity> <message-name>...).

React processes are triggered when entities make changes to the shared grouplespace.
Since reactions occur only as a function of perception, they are included with the
perceive function. For example, an entity may want to take a specific action whenever
another entity changes color:

(fern-perceive "color" :react (take-specific-action))

Persist processes can be used to perform discrete computations during a frame of time
(for example, applying recurrent transformations to some object or viewpoint each
frame). Persist processes can also be used in polling for data from devices and other
sources external to VEOS. The following simple example reads data from a dataglove
and sends it to the relocate-hand method of a renderer entity, updating that data once
every rendering frame:

(fern-persist '(poll-hand))

(define poll-hand ()
 (let ((data (read-position-of-hand)))
 (if data (fern-send renderer "relocate-hand" data))))

When persist processes involve polling, they often call application specific primitives
written in C. The (read-position-of-hand) primitive would most likely be
written in C since it accesses devices and requires C level constructs for efficient data
management.

During a single frame, FERN’s cyclic executive evaluates every persist process installed
on that node exactly once. For smoother node performance, FERN interleaves the
evaluation of persist processes with evaluation of queued asynchronous messages.
When a persist process executes, it runs to completion like a procedure call on the
node's only program stack.22

Interact processes are implemented by object-oriented messages and methods.23 Like
Smalltalk, FERN methods are used to pass data and program control between entities.
An entity can invoke the methods of other entities by sending messages. The
destination entity can be local or remote to the sending entity and is specified by the
destination entity's network-wide unique id. A method is simply a block of code that
an entity provides with a well-defined interface. The following method belongs to a
renderer entity, and calls the hand update function.

22 In comparison, preemptive threads each have their own stack where they can leave
state information between context switches.
23 It is appropriate to model interaction between entities using the objective, external
perspective of object-oriented programming.

35

(fern-define-method "relocate-hand" new-position
 (lambda (new-position) (render-hand new-position)))24

4.5.4.2 Messages

Messages can be sent between entities by three different techniques, asynchronous
(fern-send...), synchronous (fern-sequential-send...) and flow controlled
(fern-stream-send...).

Asynchronous messages are most common and ensure the smoothest overall
performance. An entity gets program control back immediately upon sending the
message regardless of when the message is handled by the receiving entity. The
following message might be sent to a renderer entity by the hand entity to update its
display position:

(fern-send renderer "relocate-hand" current-position)

When the receiving entity is remote, a message is passed to the Kernel inter-node
communication module and sent to the node where the receiving entity resides. When
the remote node receives the message, it posts it on the asynchronous message queue.
When the receiving entity is local, a message is posted to the local message queue and
handled by FERN in the same way as remote messages.

Although asynchronous message delivery is guaranteed, there is no guarantee when the
receiving entity will actually execute the associated method code. As such, an
asynchronous message is used when timing is not critical for correctness. In cases
where timing is critical, there are common idioms for using asynchronous semantics to
achieve determininstic transmission.

Synchronous messages assure control of timing by passing process control from the
sending to the receiving entity, in effect simulating serial processing in a distributed
environment. When an entity sends a synchronous message, it blocks, restarting
processing again only when the receiving entity completes its processing of the
associated method and returns an exit value to the sending entity.

Although the VEOS communication model is inherently asynchronous, there are two
occasions when synchronous messages may be desirable: when the sending entity
needs a return value from the receiving entity, or when the sending entity needs to
know exactly when the receiving entity completes processing of the associated method.
Although both of these occasions can be handled by asynchronous means, the
asynchronous approach may be more complicated to implement and may not achieve
the lowest latency. The most important factor in choosing whether to use synchronous
or asynchronous messages is whether the destination entity is local or remote. In the
remote case, synchronous messages will sacrifice local processor utilization because the
entire node blocks waiting for the reply, but in doing so the sending entity is assured

24 Lambda is LISP for “this code fragment is a function”.

36

the soonest possible notification of completion. In the local case, a synchronous method
call reduces to a function call and achieves the lowest overall overhead.

A third message passing semantic is needed to implement a communications pacing
mechanism between entities. Because interacting entities may reside on different nodes
with different frame rates, they may each have different response times in transacting
methods and messages.

Stream messages implement a flow-control mechanism between entities. In cases
where one entity may generate a stream of messages faster than a receiving entity can
process them, stream messages provide a pacing mechanism, sending messages only if
the stream between the two nodes is not full. Streams ensure that sending entities only
send messages as fast as receiving entities can process them. The user can set the size of
the stream, indicating how many buffered messages to allow. A larger stream gives
better throughput because of the pipelining effect, but also results in bursty
performance due to message convoying.

Streams are usually used for transmission of delta information, information indicating
changes in a particular state value. Polling a position tracker, for example, provides a
stream of changes in position. Streams are useful when data items can be dropped
without loss of correctness.

4.5.4.3 Examples of FERN Usage

Entering a world: To enter a new environment, an entity notifies the entity which
manages that environment (as an internal partition). Subsequent updates to other
entities within that environment will automatically include information about the
incoming entity.

Follow: By associating an entity’s position with the location of another entity (for
example, Position-of-A = Position-of-B + offset), an entity will follow another entity.
Following is dependent on another entity's behavior, but is completely within the
control of the following entity.

Move with joystick: The joystick posts its current values to its boundary. A virtual
body using the joystick to move would react to the joystick’s boundary, creating an
information linkage between the two entities.

Inhabitation: The inhabiting entity uses the inhabited entity’s relevant boundary
information as its own, thus creating the same view and movements as the inhabited
entity.

Portals: An entity sensitive to portals can move through the portal to another location
or environment. Upon entering the portal, the entity changes its boundary attributes to
the position, orientation and other spatial values defined by the portal.

4.5.4.4 A Simple Programming Example

37

Finally, we present a complete F E R N program to illustrate basic
biological/environmental concepts within a functional programming style. When
called within a LISP environment, this program creates a space entity, which in turn
creates two other entities, tic and toc. All three entities in this simple example exist on
one node; the default node is the platform which FERN is initialized on.25

(define simple-communications-test ()
 (run "space"))

In the file “space”:

(entity-specification
 (new-entity "tic")
 (new-entity "toc"))

In the file “tic”:

(entity-specification
 (enter (copy.source)) ;space is the source
 (put.attribute '(tics 0))
 (perceive 'tocs
 :react '(lambda (ent value) (print "Tic sees: " value)))
 (persist '(let ((new-value (1+ (copy.attribute 'tics))))
 (print "Tic says: " new-value)
 (put.attribute `(tics ,new-value)))))

In the file “toc”:

(entity-specification
 (enter (copy.source))
 (put.attribute '(tocs 1000))
 (perceive 'tics
 :react '(lambda (ent value) (print "Toc sees: " value)))
 (persist '(let ((new-value (1- (copy.attribute 'tocs))))
 (print "Toc says: " new-value)
 (put.attribute `(tocs ,new-value)))))

Tic and toc each enter the space which created them, and each establish a single
attribute which stores a numerical value. Jointly subscribing to space permits each
entity to perceive the attributes of the other. Tic persists in incrementing its attribute
value, prints that current value to the console, and stores the new value. Toc persists in

25 This example is written in LISP and suffers from necessary LISP syntax. The names of
actual functions have been changed in the example, to simplify reading of intent. A
non-programmer’s interface for configuring entities could be based on filling forms, on
menu selections, or even on direct interaction within the virtual environment. We have
not yet implemented a non-programmer’s interface.

38

decrementing its attribute value. The perceive function of each looks at the current
value of the other entity’s attribute and prints what it sees to the console of the default
platform. Simple-communications-test generates asynchronous varieties26 of
the following console output:

Tic says 1
Toc says 999
Tic says 2
Toc says 998
Toc sees 2
Tic sees 998
Toc says 997
Tic says 3
Toc says 996
Toc sees ...

5. Applications

VEOS was developed iteratively over three years, in the context of prototype
development of demonstrations, theses and experiments at HITL. It was constantly
under refinement, extension and performance improvement. It has also satisfied the
diverse needs of all application projects, fulfilling the primary objective of its creation.
Although not strictly academic research, the VEOS project does provide a stable
prototype architecture and implementation that works well for many VR applications.
We briefly describe several.

Tours: The easiest type of application to build with VEOS is the virtual tour. These
applications provide little interactivity, but allow the participant to navigate through an
interesting environment. All that need be built is the interesting terrain or environment.
These virtual environments often feature autonomous virtual objects that do not
significantly interact with the participant.

Examples of tours built in VEOS are:

• an aircraft walkthrough built in conjunction with Boeing corporation,

• the TopoSeattle application where the participant could spatially navigate
and teleport to familiar sites in the topographically accurate replica of the
Seattle area, and

• the Metro application where the participant could ride the ever-chugging
train around a terrain of rolling hills and tunnels.

26 The sequence of changing tics and tocs remains constant for each entity, but what
each entity sees depends upon communication delays in database transactions. What
each entitiy tells you that it sees depends upon how the underlying operating system
differentially manages processing resources for print statements within persist and
perceive operations.

39

Physical Simulation: Because physical simulations require very precise control of the
computation, they have been a challenging application domain. Coco and Lion (1992)
implemented a billiard ball simulation to measure VEOS's performance, in particular to
measure the tradeoffs between parallelism and message passing overhead. Most of the
entity code for this application was written in LISP, except for ball collision detection
and resolution, which was written in C to reduce the overhead of the calculations.

The simulation coupled eighteen entities. Three entities provided an interface to screen
based rendering facilities, access to a spaceball six-degree-of-freedom input device, and
a command console. The rendering and spaceball entities worked together much like a
virtual body. The spaceball entity acted as a virtual hand, using a persist procedure to
sample the physical spaceball device and make changes to the 3D model. The imager
entity acted as a virtual eye, updating the screen-based view after each model change
made by the spaceball entity. The console entity managed the keyboard and
windowing system.

Asynchronous to the participant interaction, fifteen separate ball entities continually
recomputed their positions. Within each frame, each ball, upon receiving updates from
other balls, checked for collisions. When each ball had received an update from every
other ball at the end of each frame, it would compute movement updates for the next
frame. The ball entities sent their new positions via messages to the imager entity
which incorporated the changes into the next display update. The ball entities used
asynchronous methods to maximize parallelism within each frame. Balls did not wait
for all messages to begin acting upon them. They determined their new position
iteratively, driven by incoming messages. Once a ball had processed all messages for
one frame, it sent out its updated position to the other balls thus beginning a new
frame.

Multiparticipant Interactivity: In the early stages of VEOS development, Coco and
Lion designed an application to demonstrate the capabilities of multiparticipant
interaction and independent views of the virtual environment. Block World allowed
four participants to independently navigate and manipulate moveable objects in a
shared virtual space. Each participant viewed a monitor based display, concurrently
appearing as different colored blocks on each other’s monitor. Block World allowed for
interactions such as 'tug-of-war' when two participants attempted to move the same
object at the same time. This application provided experience for the conceptual
development of FERN.

One recent large scale application provided multiparticipant interaction by playing
catch with a virtual ball while supporting inter-participant spatial voice
communication. The Catch application incorporated almost every interaction technique
currently supported at HITL including head tracking, spatial sound, 3D binocular
display, wand navigation, object manipulation, and scripted movement paths.

Of particular note in the Catch application was the emphasis on independent
participant perceptions. Participants customized their personal view of a shared virtual
environment in terms of color, shape, scale, and texture. Although the game of catch
was experienced in a shared space, the structures in that space were substantively
different for each participant. Before beginning the game, each player selected the form

40

of their virtual body and the appearance of the surrounding mountains and flora. One
participant may see a forest of evergreens, for example, while concurrently the other
saw a field of flowers. Participants experienced the Catch environment two at a time,
and could compare their experiences at runtime through spatialized voice
communication. The spatial filtering of the voice interaction provided each participant
with additional cues about the location of the other participant in the divergent world.

Manufacturing: For her graduate thesis, Karen Jones worked with HITL engineer Marc
Cygnus to develop a factory simulation application (Jones, 1992). The program
incorporated an external interface to the AutoMod simulation package. The resulting
virtual environment simulated the production facility of the Derby Cycle bicycle
company in Kent, Washington, and provided interactive control over production
resources allocation. The Derby Cycle application was implemented using a FERN
entity for each dynamic object and one executive entity that ensured synchronized
simulation time steps. The application also incorporated the Body module for
navigation through the simulation.

Spatial Perception: Coming from an architectural background, Daniel Henry wrote a
thesis on comparative human perception in virtual and actual spaces (Henry, 1992). He
constructed a virtual model of the Henry Art Gallery on the University of Washington
campus. The study involved comparison of subjective perception of size, form, and
distance in both the real and virtual gallery. This application used the Body module for
navigation through the virtual environment. The results indicated that the perceived
size of the virtual space was smaller than the perceived size of the actual space.

Scientific Visualization: Many applications have been built in VEOS for visualizing
large or complex data sets. Our first data visualization application was of satellite
collected data of the Mars planet surface. This application allowed the participant to
navigate on or above the surface of Mars and change the depth ratio to emphasize the
contour of the terrain. Another application designed by Marc Cygnus revealed changes
in semiconductor junctions over varying voltages. To accomplish this, the application
displayed the patterns generated from reflecting varying electromagnetic wave
frequencies off the semiconductor.

Education: Chris Byrne led a program at HITL to give local youth the chance to build
and experience virtual worlds. The program emphasized the cooperative design
process of building virtual environments. These VEOS worlds employed the standard
navigation techniques of the wand and many provided interesting interactive features.
The implementations include an AIDS awareness game, a Chemistry World and a
world which modeled events within an atomic nucleus.

Creative Design: Using the Universal Motivator graph configuration system, Colin
Bricken designed several applications for purely creative ends. These environments are
characterized by many dynamic virtual objects which display complex behavior based
on autonomous behavior and reactivity to participant movements.

6. Conclusion

41

Operating architectures and systems for real-time virtual environments have been
explored in commercial and academic groups over the last five years. One such
exploration is the VEOS project, which is beginning its fourth year.

We have learned that the goals of the VEOS project are ambitious; it is difficult for one
cohesive system to satisfy demands of conceptual elegance, usability and performance
even for limited domains. VEOS attempts to address these opposing top level demands
through its hybrid design. In this respect, perhaps the strongest attribute of VEOS is that
it promotes modular programming. Modularity has allowed for incremental
performance revisions as well as incremental and cooperative tool design. Most
importantly, the emphasis on modularity facilitates the process of rapid prototyping
that was sought by the initial design.

VR design is inherently a multidisciplinary process and requires expertise in many
different areas. Successful VR applications are manifested by the cooperative effort of
system programmers implementing and abstracting performance bottlenecks, designers
creating involving objects and terrains, dynamics experts implementing realistic
behaviors, authors composing story lines, psychological researchers focusing on
perceptual understanding, systems architects building automated and reliable
infrastructures, and visionaries encouraging the whole process.

Now that the infrastructure of virtual worlds (behavior transducers and coordination
software) is better understood, the more significant questions of the design and
construction of psychologically appropriate virtual/synthetic experiences will see more
attention. Biological/environmental programming of entities can provide one route to
aid in the humanization of the computer interface.

7. References

Agha, G. (1988) Actors: a model of concurrent computation in distributed systems. MIT Press.

Appino, P.A., Lewis, J.B., Koved, L., Ling, D.T., Rabenhorst, D. & Codella, C. (1992) An
architecture for virtual worlds. Presence, 1(1), 1-17.

Arango, M., Berndt, D., Carriero, N., Gelertner, D. & Gilmore, D. (1990) Adventures
with network linda, Supercomputing Review, October 1990, 42-46.

Bershad, B., Zekauskas, M. J. & Swadon, W. A. (1992) The midway distributed shared
memory system, School of Computer Science, Carnegie Mellon University.

Betz, D. & Almy, T. (1992) XLISP 2.1 User's Manual.

Bishop, G., Bricken, W., Brooks, F., et al. (1992) Research directions in virtual
environments: report of an NSF invitational workshop. Computer Graphics 26(3), 153-
177.

42

Blanchard, C., Burgess, S., Harvill, Y., Lanier, J., Lasko, A., Oberman, M. & Teitel, M.
(1990) Reality built for two: a virtual reality tool. Proceedings 1990 Symposium on
Interactive Graphics, Snowbird Utah, 35-36.

Blau, B., Hughes, C.E., Moshell, J.M. & Lisle, C. (1992) Networked virtual
environments. Computer Graphics 1992 Symposium on Interactive 3D Graphics, 157.

Bricken, M. (1991) Virtual worlds: no interface to design. in Benedikt, M. (ed)
Cyberspace first steps. MIT Press, 363-382.

Bricken, W. & Gullichsen, E. (1989) An introduction to boundary logic with the LOSP
deductive engine, Future Computing Systems 2(4).

Bricken, W. (1990) Software architecture for virtual reality. Human Interface Technology
Lab Technical Report P-90-4, University of Washington.

Bricken, W. (1991a) VEOS: preliminary functional architecture, ACM Siggraph'91 Course
Notes, Virtual Interface Technology, 46-53. Also Human Interface Technology Lab Technical
Report M-90-2, University of Washington.

Bricken, W. (1991b) A formal foundation for cyberspace. Proceedings of Virtual Reality
‘91, The Second Annual Conference on Virtual Reality, Artificial Reality, and Cyberspace, San
Francisco, Meckler.

Bricken, W. (1992a) VEOS design goals. Human Interface Technology Lab Technical Report
M-92-1, University of Washington.

Bricken, W. (1992b) Spatial representation of elementary algebra, 1992 IEEE Workshop
on Visual Languages, Seattle, IEEE Computer Society Press, 56-62.

Brooks, F. (1986) Walkthrough -- a dynamic graphics system for simulation of virtual
buildings. Proceedings of the 1986 Workshop on Interactive 3D Graphics. ACM. 271-281.

Bryson, S. & Gerald-Yamasaki, M. (1992) The distributed virtual wind tunnel.
Proceedings of Supercomputing ‘92, Minneapolis, Minn.

Carter, J. B., Bennet, J. K. & Zwaenepoel, W. (1992) Implementation and performance
of munin, Computer Systems Laboratory, Rice University.

Coco, G. (1993) The virtual environment operating system: derivation, function and form.
Masters Thesis, School of Engineering, University of Washington.

Coco, G. & Lion, D. (1992) Experiences with asychronous communication models in
VEOS, a distributed programming facility for uniprocessor LANs. Human Interface
Technology Lab Technical Report R-93-2, University of Washington.

Cogent Research, Inc. (1990) Kernel linda specification: version 4.0. Technical Note,
Beaverton, Oregon.

43

Cruz-Neira, C., Sandin, D.J., DeFanti, T., Kenyon, R. & Hart, J. (1992) The cave: audio
visual experience automatic virtual environment, CACM 35(6), 65-72.

Dershowitz, N. & Jouannaud, J. P. (1990) Chapter 6: rewite systems, Handbook of
Theoretical Computer Science, Elsevier Science Publishers, 245-320.

Ellis, S.R. (1991) The nature and origin of virtual environments: a bibliographical essay.
Computer Systems in Engineering, 2(4), 321-347.

Emerson, T. (1993) Selected bibliography on virtual interface technology. Human
Interface Technology Lab Technical Report B-93-2, University of Washington.

Feiner, S., MacIntyre, B. & Seligmann, D. (1992) Annotating the real world with
knowledge-based graphics on a “see-through” head-mounted display. Proceedings of
Graphics Interface ‘92, Vancouver Canada, 78-85.

Fisher, S., McGreevy, M., Humphries, J. & Robinett, W. (1986) Virtual environment
display system, ACM Workshop on Interactive 3D Graphics, Chapel Hill, NC.

Fisher, S., Jacoby, R., Bryson, S., Stone, P., McDowell, I., Bolas, M., Dasaro, D., Wenzel,
E. & Coler, C. (1991) The ames virtual environment workstation: implementation issues
and requirements. Human-Machine Interfaces for Teleoperators and Virtual Environments.
NASA 20-24.

Furness, T. (1969) Helmet-mounted displays and their aerospace applications. National
Aerospace Electronics Conference. Piscataway, NJ: IEEE.

Gelertner, D. & Carriero, N. (1992) Coordination languages and their significance.
Communications of the ACM, 35(2), 97-107.

Gelertner, D., & Philbin, J. (1990) Spending Your Free Time, Byte, May 1990.

Goldberg, A. (1984) Smalltalk-80, Xerox Corporation; Addison Wesley.

Green, M., Shaw, C., Liang, J. & Sun, Y. (1991) MR: a toolkit for virtual reality
applications. Department of Computer Science, University of Alberta, Edmonton,
Canada

Grimsdale, C. (1991) dVS: distributed virtual environment system. Product
documentation, Division Ltd. Bristol, UK.

Grossweiler, R., Long, C., Koga, S. & Pausch, R. (1993) DIVER: a distributed virtual
environment research platform, Computer Science Department, University of Virginia.

Henry, D. (1992) Spatial perception in virtual environments: evaluating an architectural
application. Masters Thesis, School of Engineering, University of Washington.

44

Holloway, R., Fuchs, H. & Robinett, W. (1992) Virtual-worlds research at the University
of north carolina at chapel hill, Course #9 Notes: Implementation of Immersive Virtual
Environments, SIGGRAPH’92 Chicago Ill.

Jones, K. (1992) Manufacturing simulation using virtual reality. Masters Thesis, School of
Engineering, University of Washington.

Jul, E., Levy, H., Hutchinson, N. & Black, A. (1988) Fine-grained mobility in the
emerald system. ACM Transactions on Computer Systems, 6(1), 109-133.

Kazman, R. (1993, to appear) HIDRA: an architecture for highly dynamic physically
based multi-agent simulations. International Journal of Computer Simulation.

Kung, H. T., Sansom, R., Schlick, S., Steenkiste, P., Arnould, M., Bitz, F.J.,
Christianson, F., Cooper, E.C., Menzilcioglu, O., Ombres, D. & Zill, B. (1991) Network-
based multicomputers: an emerging parallel architecture, ACM Computer Science, 664-
673.

Langton, C. (1988) Artificial life: proceedings of an interdisciplinary workshop on the
synthesis and simulation of living systems. Addison-Wesley

Li, K. & Hudak, P. (1989) Memory coherence in shared virtual memory systems, ACM
Transactions on Computer Systems, 7(4), 321-359.

Maturana, H. & Varela, F. (1987) The tree of knowledge. New Science Library.

Meyer, J. & Wilson, S. (1991) From animals to animats: proceedings of the first international
conference on simulation of adaptive behavior. MIT Press.

Minkoff, M. (1992) The FERN model: an explanation with examples. Human Interface
Technology Lab Technical Report R-92-3, University of Washington.

Minkoff, M. (1993) The participant system: providing the interface in virtual reality. Masters
Thesis, School of Engineering, University of Washington.

Naimark, M. (1991) Elements of realspace imaging: a proposed taxonomy. Proceedings
of the SPIE 1457, Stereoscopic Displays and Applications II. SPIE 169-179

Oren, T., Salomon, G., Kreitman, K. & Don, A. (1990) Guides: characterising the
interface. in Laurel, B. (ed) The art of human-computer interface design. Addison-Wesley.

Pezely, D.J., Almquist, M.D. & Bricken, W. (1992) Design and implementation of the
meta operating system and entity shell. Human Interface Technology Lab Technical Report
R-91-5, University of Washington.

Robinett, W. (1992) Synthetic experience: a proposed taxonomy. Presence 1(2), 229-247.

Robinett, W. & Holloway, R. (1992) Implementation of flying, scaling and grabbing in
virtual worlds. Computer Graphics 1992 Symposium on Interactive 3D graphics. 189.

45

Spector, A. Z. (1982) Performing remote operations efficiently on a local computer
network, Communications of the ACM, 25(4), 246-260.

Spencer-Brown, G. (1969) Laws of Form. Bantam.

Sutherland, I. (1965) The ultimate display. Proceedings of the IFIP Congress, 502-508.

Torque Systems, Inc. (1992) Tuplex 2.0 software specification. Palo Alto, Calif.

Varela, F. (1979) Principles of Biological Autonomy. Elsevier North Holland.

Varela, F. & Bourgine, P. (1992) Toward a practice of autonomous systems: proceedings of
the first european conference on artificial life. MIT Press.

VEOS 3.0 Release (1993) Human Interface Technology Lab, University of Washington
FJ-15, Seattle WA 98195.

von Eicken, T., Culler, D.E., Goldstein, S. C. & Schauser, K. E. (1992) Active messages: a
mechanism for integrated communication and computation, ACM, 256-266.

VPL (1991) Virtual reality data-flow language and runtime system, body electric
manual 3.0. VPL Research, Redwood City, CA.

Wenzel, E., Stone, P., Fisher, S. & Foster, S. (1990) A system for three-dimensional
acoustic ‘visualization’ in a virtual environment workstation. Proceedings of the First
IEEE Conference on Visualization, Visualization ‘90. IEEE 329-337.

West, A.J., Howard, T.L.J., Hubbold, R.J., Murta, A.D., Snowdon, D.N. & Butler, D.A.
AVIARY - a generic virtual reality interface for real applications. Department of
Computer Science, University of Manchester, UK.

Wolfram, S. (1988) Mathematica: a system for doing mathematics by computer. Addison-
Wesley.

Zeltzer, D., Pieper, S. & Sturman, D. (1989) An integrated graphical simulation platform.
Graphics Interface ‘89, Canadian Information Processing Society, 266-274.

Zeltzer, D. (1992) Auonomy, interaction, and presence. Presence, 1(1), 127-132.

Zyda, M.J., Akeley, K., Badler, N., Bricken, W., Bryson, S., vanDam, A., Thomas, J.
Winget, J., Witkin, A., Wong, E. & Zeltzer, D. (1993) Report on the state-of-the-art in
computer technology for the generation of virtual environments, Computer Generation
Technology Group, National Academy of Sciences, National Research Council
Committee on Virtual Reality Research and Development.

Zyda, M.J., Pratt, D.R., Monahan, J.G. & Wilson, K.P. (1992) NPSNET: constructing a 3D
virtual world. Computer Graphics, 3, 147.

