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Abstract

The Virtual Environment Operating Shell (VEOS) was developed at University
of Washington’s Human Interface Technology Laboratory as software
infrastructure for the lab’s research in virtual environments.  VEOS was
designed from scratch to provide a comprehensive and unified management
facility to support generation of, interaction with, and maintenance of virtual
environments.  VEOS emphasizes rapid prototyping, heterogeneous
distributed computing, and portability.  We discuss the design, philosophy
and implementation of VEOS in depth.  Within the Kernel, the shared database
transformations are pattern-directed, communications are asynchronous, and
the programmer’s interface is LISP.  An entity-based metaphor extends
object-oriented programming to systems-oriented programming.  Entities
provide first-class environments and biological programming constructs such
as perceive, react, and persist.  The organization, structure and
programming of entities is discussed in detail.  The article concludes with a
description of the applications which have contributed to the iterative
refinement of the VEOS software.

                                                
1  The VEOS project was a group effort to create a satisfying software infrastructure for
research into VR.   The following discussion is based upon a conceptual VR system
architecture developed by Bricken over the last decade and grounded in an
implementation by Coco over the last three years (Bricken, 1991a).   VEOS supports
parallel development of applications, technology demonstrations, thesis projects, and
software interaction tools (Coco, 1993).  Dav Lion, Colin Bricken, Andy MacDonald,
Marc Cygnus, Dan Pirone, Max Minkoff, Brian Karr, Daniel Henry, Fran Taylor and
several others have made significant contributions to the VEOS project.  The VEOS project
was supported by members of the HITL Industrial Consortium.
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1.  Introduction

We currently use computers as symbol processors, interacting with them through a
layer of symbolic mediation.  The computer user, just like the reader of books, must
provide cognitive effort to convert the screen’s representations into the user’s meanings.
Virtual environment systems, in contrast, seek to provide interface tools which support
natural behavior as input and direct perceptual recognition of output.  The idea is to
access digital data in the form most easy for our comprehension;  this generally implies
using representations that look and feel like the thing they represent.  A physical
pendulum, for example, might be represented by an accurate three dimensional digital
model of a pendulum which supports direct spatial interaction and dynamically
behaves as would an actual pendulum.

Immersive environments attempt to redefine the relationship between experience and
representation, in effect rendering the syntax-semantics barrier transparent.  The idea is
to hide reading, writing, and arithmetic from the computer interface, replacing them by
direct, non-symbolic environmental experience.

The VEOS project was designed to provide a rapid prototyping infrastructure for
exploring virtual environments.  In contrast to basic research in computer science, this
project attempted to synthesize known techniques into a unique functionality, to
redefine the concept of interface by providing interaction with environments rather
than with symbolic codes.

This article presents some of the operating systems techniques and software tools which
guided the early development of virtual environment systems at the University of
Washington Human Interface Technology Lab.  We first describe existing virtual
environment systems.  Next, the goals of the VEOS project are presented and the two
central components of VEOS, the Kernel and FERN, are described.  The article concludes
with a description of entity-based programming and of the applications developed at
HITL which use VEOS.  As is characteristic of VR projects, this article contains multiple
perspectives, approaching description of VEOS as a computational architecture, as a
biological/environmental modeling theory, as an integrated software prototype, as a
systems-oriented programming language, as an exploration of innovative techniques
and as a practical tool.

2.  The Virtual Environment Operating Shell (VEOS)

The Virtual Environment Operating Shell (VEOS) is a software suite operating within a
distributed UNIX environment that provides a tightly integrated computing model for
data, processes, and communication.  VEOS was designed from scratch to provide a
comprehensive and unified management facility for generation of, interaction with, and
maintenance of virtual environments.  It provides an infrastructure for implementation
and an extensible environment for prototyping distributed virtual environment
applications.

VEOS is platform independent, and has been extensively tested on the DEC 5000, Sun 4,
and Silicon Graphics VGX and Indigo platforms.  The programmer's interface to VEOS is
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XLISP 2.1, written for public domain by David Betz.  XLISP provides programmable
control of all aspects of the operating shell.  The underlying C implementation is also
completely accessible.

Within VEOS, the Kernel manages processes, memory, and communication on a single
hardware processor, called a node.  FERN manages abstract task decomposition on each
node and distributed computing across networks of nodes.  FERN also provides basic
functions for entity-based modeling.  SensorLib provides a library of device drivers.  The
Imager provides graphic output.2

Other systems built at HITL enhance the performance and functionality of the VEOS
core.  Mercury is a participant system which optimizes interactive performance.  UM is
the generalized mapper which provides a simple graph-based interface for constructing
arbitrary relations between input signals, state information, and output.  The Wand is a
hand-held interactivity device which allows the participant to identify, move, and
change the attributes of virtual objects.

2.1  Virtual Environment Software Systems

Virtual environment (VE) software rests upon a firm foundation built by the computer
industry and by academic research over the last several decades.  However the actual
demands of a VE system (real-time distributed multimedia multiparticipant
multisensory environments) provide such unique performance requirements that little
research exists to date that is directly relevant to whole virtual environment systems.
Instead, the first generation of virtual environment systems have been assembled from
many relevant component technologies available in published academic research and in
newer commercial products.3

Taxonomies of the component technologies and functionalities of VE systems have only
recently begun to develop (Naimark, 1991; Zeltzer, 1992; Robinett, 1992), maturing
interest in virtual environments from a pre-taxonomic phenomenon to an incipient
science.  Ellis (1991) identifies the central importance of the environment itself,
deconstructing it into content, geometry, and dynamics.

The challenge, then, for the design and implementation of VE software is to select and
integrate appropriate technologies across several areas of computational research
(dynamic databases, real-time operating systems, three-dimensional modeling, real-
time graphics, multisensory input and display devices, fly-through simulators, video

                                                
2  Only the VEOS Kernel and FERN are discussed in this chapter.  For a deeper discussion
of the programming, operating system and performance issues associated with VEOS,
see Coco (1993).
3  Aside from one or two pioneering systems built in the sixties (Sutherland, 1965;
Furness, 1969), complete VR systems did not become accessible to the general public
until June 6, 1989, when both VPL and Autodesk displayed their systems at two
concurrent trade shows.  Research at NASA Ames (Fisher, 1986) seeded both of these
commercial prototypes.  At the time, the University of North Carolina was the only
academic site of VR research (Brooks, 1986).
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games, etc.).  We describe several related software technologies that have contributed to
the decisions made within the VEOS project.

As yet, relatively few turnkey VE systems exist, and of those most are entertainment
applications.   Notable examples are the multiparticipant interactive games such as
LucasArt's Habitat™, W Industries arcade game system, Battletech video arcades, and
Network Spector™ for home computers.  Virtus Walkthrough™ is one of the first
virtual environment design systems.

Architectures for virtual environment systems have been studied recently by several
commercial (Blanchard et al, 1990; VPL, 1991;  Grimsdale, 1991; Appino et al, 1992) and
university groups (Zeltzer, 1989; Bricken, 1990;  Green et al, 1991; Pezely et al, 1992;
Zyda et al, 1992; West et al, 1992; Kazman, 1993; Grossweiler et al, 1993).

Other than HITL at the University of Washington, significant research programs that
have developed entire VE systems exist at University of North Carolina at Chapel Hill
(Holloway, Fuchs & Robinett, 1992), MIT (Zeltzer et al, 1989), University of Illinois at
Chicago (Cruz-Neira et al, 1992), University of Central Florida (Blau et al, 1992),
Columbia University (Feiner et al, 1992), NASA Ames (Wenzel et al, 1990; Fisher et al,
1991), and within many large corporations such as Boeing, Lockheed, IBM, Sun, Ford,
and AT&T.4

More comprehensive overviews have been published for VE research directions (Bishop
et al. 1992), for software (Zyda et al, 1993, Zyda et al, in press), for system architectures
(Appino et al, 1992), for operating systems (Coco, 1993), and for participant systems
(Minkoff 1993).  HITL has collected an extensive bibliography on virtual interface
technology (Emerson 1993).

Virtual environment development systems can be classified as tool kits or as integrated
software systems.  Tool kits commonly consist of a set of functions to be assembled into
virtual events by a programmer.  The most common language for tool kits is C; often
the functionality is at a fairly low computational level, such as packaged device drivers.
Integrated systems, in contrast, are intended for non-programmers and for domain
experts such as graphic artists or stage directors.  Integrated systems hide the low level
computational details by providing more intuitive visual and default options for
constructing events.

Of course some tool kits, such as 3D modeling software packages, have aspects of
integrated systems.  Similarly, some integrated systems require forms of scripting (i.e.
symbolic programming) at one point or another.  For comparison, VEOS is a hybrid.  It
provides the LISP language as a tool kit with generic functionality, and several
specialized LISP functions for scripting entity behavior.  VEOS is also highly integrated,
since the entire virtual environment, the supporting network of computers, and all
connected devices can be brought up by issuing a single instruction.

2.1.1  Toolkits

                                                
4  Of course the details of most corporate VR efforts are trade secrets.
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The MR Toolkit was developed by academic researchers at the University of Alberta for
building virtual environments and other 3D user interfaces (Green et al, 1991).  The
toolkit takes the form of subroutine libraries which provide common VE services such
as tracking, geometry management, process and data distribution, performance
analysis, and interaction.  The MR Toolkit meets several of the design goals of VEOS,
such as modularity, portability and support for distributed computing.  MR, however,
does not strongly emphasize rapid prototyping; MR programmers use the compiled
languages C, C++, and FORTRAN.

Researchers at the University of North Carolina at Chapel Hill have created a similar
toolkit called VLib.  VLib is a suite of libraries that handle tracking, rigid geometry
transformations and 3D rendering.  Like MR, VLib is a programmer’s library of C or
C++ routines which address the low level functionality required to support high level
interfaces.

Sense8, a small company based in Northern California, produces an extensive C
language software library called WorldToolKit™ which can be purchased with 3D
rendering and texture acceleration hardware.  This library supplies functions for sensor
input, world interaction and navigation, editing object attributes, dynamics, and
rendering.  The single loop simulation model used in WorldToolKit is a standard
approach which sequentially reads sensors, updates the world, and generates output
graphics.  This accumulates latencies linearly, in effect forcing the performance of the
virtual body into a codependency with a potentially complex surrounding
environment.

Silicon Graphics, an industry leader in high-end 3D graphics hardware, has recently
released the Performer software library which augments the graphics language GL.
Performer was designed specifically for interactive graphics and VR applications on SGI
platforms.  Autodesk, a leading CAD company which began VR product research in
1988, has recently released the Cyberspace Developer’s Kit, a C++ object library which
provides complete VE software functionality and links tightly to AutoCAD.

2.1.2  Integrated Systems

When the VEOS project began in 1990, VPL Research, Inc. manufactured RB2™, the first
commercially available integrated VE system (Blanchard et al, 1990; VPL, 1991).  At the
time, RB2 supported a composite software suite which coordinated 3D modeling on a
Macintosh, real-time stereo image generation on two Silicon Graphics workstations,
head and hand tracking using proprietary devices, dynamics and interaction on the
Macintosh, and runtime communication over Ethernet.  The system processing speed,
or throughput, of the Macintosh created a severe bottleneck for this system.  VEOS
architects had considerable design experience with the VPL system;  its pioneering
presence in the marketplace helped define many design issues which later systems
would improve.

Division, a British company,  manufactures VE stations and software.  Division's
ProVision™ VR station is based on a transputer ring and through the aid of a remote
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PC controller runs dVS, a director/actors process model (Grimsdale, 1991).  Each
participant resides on one station; stations are networked for multiparticipant
environments.  Although the dVS model of process and data distribution is a strong
design for transputers, it is not evident that the same approaches apply to workstation
LANs, the target for the VEOS project.

Perhaps the most significant distributed immersive simulation system today is the
military multiparticipant tank combat simulator, SIMNET (Blau et al, 1992).  Another
advanced military VE simulation system, NPSNET  (Zyda et al, 1992), has been
developed at the Naval Postgraduate School.

2.2  VEOS Design Philosophy

The negotiation between theory and implementation is often delicate.  Theory pays little
attention to the practical limitations imposed by specific machine architectures and by
cost-effective computation.  Implementation often must abandon rigor and formality in
favor of making it work.  In sailing the digital ocean, theory provides the steerage,
implementation provides the wind.

The characteristics of the virtual world impose several design considerations and
performance requirements on a VE system.  The design of VEOS reflects multiple
objectives, many practical constraints, and some compromises (Bricken, 1992a).

The dominant design decision for VEOS was to provide broad and flexible capabilities.
The mathematical ideals include simplicity  (a small number of independent
primitives), integration (all primitives are composable), and expressability (primitives
and their compositions can represent common programming domains) (Coco, 1993).
Industrial toolkits were not included in VEOS in order to avoid commercial
dependencies.  VEOS was intended to be distributed and copied freely for non-
commercial usage.

As a research vehicle, VEOS emphasized functionality at the expense of performance.
Premature optimization is a common source of difficulty in software research.  So our
efforts were directed first toward demonstrating that a thing could be done at all, then
toward demonstrating how well we could do it.  Since a research prototype must
prepare for the future, VEOS was designed to be as generic as possible;  it places very
little mechanism in the way of exploring diverse and unexpected design options.  It is
possible to easily replicate procedural, declarative, functional and object-oriented
programming styles within the VEOS framework.

Naturally, the VEOS project passed through several phases over its three years of
development.  VEOS 0.6 first demonstrated multiple participants in 1991.  VEOS 2.2
improved upon the conceptual design, but quickly became inefficient (relative to a 30
frame per second update rate) when the number of active nodes grew beyond a dozen
(Coco & Lion, 1992).  VEOS 3.0 emphasized performance.

VR is characterized by a rapid generation of applications ideas;  it is the potential of VR
that people find exciting.  However, most complex VE systems take too much time to
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reconfigure.  VEOS was designed for rapid prototyping.  The V E O S interface is
interactive, so that a programmer can enter a new command or world state at the
terminal, and on the next frame update the virtual world display will change.  Since a
participant in the virtual world ideally is free to engage in almost any behavior, VEOS is
reactive, permitting easily constructed maps from participant behavior to virtual effect.

TABLE I:    VEOS Design Approach

Research prototype, 5-10 years ahead of the marketplace
Functional rather than efficient
Rapidly reconfigurable
Synthesis of known software technologies
Incorporates commercially available software when possible
General computing model
Interactive rapid prototyping
Coordination between distributed, heterogeneous resources
Parallel decomposition of worlds (modularity)
Multiple participants
Biological/environmental modeling

When more than one person inhabits a virtual world, the perspective of each participant
is different.  Different participants may see different views of the same graphical
database or hear different sounds or feel different motion feedback.  But in the virtual
world, multiple participants can have divergent models embodied in divergent
databases as well.  Each participant can occupy a unique, personalized world, sharing
the public database partition and not sharing private database partitions.

With the concept of entities, VEOS extends programming metaphors to include first-class
environments, biological models, and systems-oriented programming.  A programming
metaphor is a way to think about and organize symbolic computation.  The
biological/environmental metaphor introduced in VEOS originates from the artificial life
community (Langton, 1988; Meyer & Wilson, 1991; Varela & Bourgine, 1992);  it is a
preliminary step toward providing a programming language for modeling autonomous
systems within an inclusive environment (Varela, 1979; Maturana & Varela, 1987).

2.3  The VEOS Functional Architecture

Figure 1 presents the functional architecture of VEOS.  The architecture contains three
subsystems:   transducers, software tools, and computing system.    Arrows indicate the
direction and type of dataflow.5 Participants and computer hardware are shaded with
multiple boxes to indicate that the architecture supports any number of active

                                                
5  In actual implementations, the operating system is involved with all transactions.
Figure 1 illustrates direct dataflow paths, hiding the fact that all paths are mediated by
the underlying hardware.
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participants and any number of hardware resources.6  Naturally, transducers and tools
are also duplicated for multiple participants.
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Figure 1.  VEOS System Architecture.

                                                
6  Existing serial computers are not designed for multiple concurrent participants or for
efficient distributed processing.  One of the widest gaps between design and
implementation of VR systems is efficient integration of multiple subsystems.  VEOS is
not a solution to the integration problem, nor does the project focus on basic research
toward a solution.  Real-time performance in VEOS degrades with more than about ten
distributed platforms.  We have experimented with only up to six interactive
participants.
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2.4  The VEOS Kernel

The VEOS Kernel is a serious effort to provide transparent low-level database, process,
and communications management for arbitrary sensor suites, software resources, and
virtual world designs.  The Kernel facilitates the design and implementation of virtual
environments by taking care of operating system details.  The Kernel is implemented as
three tightly integrated components:

SHELL manages node initialization, linkages, and the LISP interface.
TALK manages internode communications.
NANCY manages the distributed pattern-driven database.

The fundamental unit of organization in the Kernel is the node.  Each node corresponds
to exactly one UNIX process.  Nodes map to UNIX processors which ideally map
directly to workstation processors.

Nodes running the VEOS Kernel provide a substrate for distributed computing.
Collections of nodes form a distributed system which is managed by a fourth
component of the VEOS system, FERN.  FERN manages sets of uniprocessors (for example,
local area networks of workstations) as pools of nodes.

Entities are multiplexed processes on a single node.  As well as managing nodes, FERN
also manages sets of entities, providing a model of lightweight processing and data
partitioning.  From the perspective of entity-based programming, the VEOS Kernel is a
transparent set of management utilities.

The SHELL is the administrator of the VEOS Kernel.  It dispatches initializations, handles
interrupts, manages memory, and performs general housekeeping.  There is one SHELL
program for each node in the distributed computing system.  The programmer interface
to the SHELL is the LISP programming language, augmented with specialized Kernel
functions for database and communications management.  LISP permits user
configurability of the VEOS environment and all associated functions.  LISP can also be
seen as a rapid prototyping extension to the native VEOS services.

TALK provides internode communication, relying on common UNIX operating system
calls for message passing.  It connects UNIX processes which are distributed over
networks of workstations into a virtual multi-processor.  TALK is the sole mechanism for
internode communication.  Message passing is the only kind of entity communication
supported by TALK, but, depending on context, this mechanism can be configured to
behave like shared memory, direct linkage, function evaluation and other
communication regimes.

TALK uses two simple asynchronous point-to-point message passing primitives, send
and receive.  It uses the LISP functions throw  and catch  for process sharing on a single
node.  Messages are transmitted asynchronously and reliably, whether or not the
receiving node is waiting.  The sending node can transmit a message and then continue
processing.  The programmer, however, can elect to block the sending node until a
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reply, or handshake, is received from the message destination.  Similarly, the receiving
node can be programmed to accept messages at its own discretion, asynchronously and
non-blocking, or it can be programmed to react in a coupled, synchronous mode.

An important aspect of VEOS is consistency of data format and programming metaphor.
The structure of messages handled by TALK is the same as the structure of the data
handled by the database.  The VEOS database uses a Linda-like communication model
which partitions communication between processes from the computational threads
within a process (Gelertner & Carriero, 1992).  Database transactions are expressed in a
pattern-directed language.

2.4.1  Pattern-Directed Data Transactions

NANCY, the database transaction manager, provides a content addressable database
accessible through pattern-matching.  NANCY is a variant of the Linda parallel database
model to manage the coordination of interprocess communication (Arango et al, 1990).
In Linda-like languages, communication and processing are independent, relieving the
programmer from having to choreograph interaction between multiple processes.
Linda implementations can be used in conjunction with many other sequential
programming languages as a mechanism for interprocess communication and generic
task decomposition (Gelertner, 1990; Cogent, 1990; Torque, 1992).  A Linda database
supports local, asynchronous parallel processes, a desirable quality for complex,
concurrent, interactive systems.  NANCY does not support parallel transactions, but the
FERN entity manager which uses NANCY does.

The Linda approach separates programming into two essentially orthogonal
components, computation and coordination.  Computation is a singular activity,
consisting of one process executing a sequence of instructions one step at a time.
Coordination creates an ensemble of these singular processes by establishing a
communication model between them.  Programming the virtual world is then
conceptualized as defining "a collection of asynchronous activities that communicate"
(Gelertner & Carriero, 1992).

NANCY adopts a uniform data structure, as do all Linda-like approaches.  In Linda, the
data structure is a tuple, a finite ordered collection of atomic elements of any type.
Tuples are a very simple and general mathematical structure.  VEOS extends the concept
of a tuple by allowing nested tuples, which we call grouples.

A tuple database consists of a set of tuples.  Since VEOS permits nested tuples, the
database itself is a single grouple.  The additional level of expressability provided by
nested tuples is constrained to have a particular meaning in VEOS.  Basically, the nesting
structure is mapped onto logical and functional rules, so that the control structure of a
program can be expressed simply by the depth of nesting of particular grouples.7

Nesting implements the concept of containment, so that the contents of a grouple can be
interpreted as a set of items, a grouplespace.

                                                
7  Integration of logical control structure with database functionality is not yet
implemented.
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Grouples provide a consistent and general format for program specification, inter-entity
communication and database management.  As the VEOS database manager, NANCY
performs all grouple manipulations, including creation, destruction, insertion, and
copying of grouples.  NANCY provides the access functions put, get and copy  for
interaction with grouplespace.  These access functions take patterns as arguments, so
that sets of similar grouples can be retrieved with a single call.

Structurally, the database consists of a collection of fragments of information, labeled
with unique syntactic identifiers.  Collections of related data (such as all of the current
properties of Cube-3, for example) can be rapidly assembled by invoking a parallel
pattern match on the syntactic label which identifies the sought after relation.  In the
example, matching all fragments containing the label “Cube-3” creates a grouple with
the characteristics of Cube-3.  The  approach of fragmented data structures permits
dynamic, interactive construction of arbitrary grouple collections through real-time
pattern-matching.  Requesting “all-blue-things” creates a transient complex grouple
consisting of all the things in the current environment that are blue.  The blue-things
grouple is implemented by a dynamic database thread of things with the attribute
“color = blue”.  A blue-things entity can be created by passing these attributes to the
function for constructing entities.

Performance of the access functions is improved in VEOS by association matching.  When
a process performs a get operation, it can block, waiting for a particular kind of grouple
to arrive in its perceptual space (the local grouplespace environment).  When a
matching grouple is put into the grouplespace, usually by a different entity, the waiting
process gets the grouple and continues.  This is implemented through daemons, or react
procedures.

Putting and getting data by pattern-matching implements a Match-and-Substitute
capability which can be interpreted as the substitution of equals for equals within an
algebraic mathematical model.  These techniques are borrowed from work in artificial
intelligence, and are  called rewrite systems (Dershowitz 1990).

2.4.2  Languages

Rewrite systems include expert systems, declarative languages, and blackboard
systems.  Although this grouping ignores differences in implementation and
programming semantics, there is an important similarity.  These systems are variations
on the theme of inference or computation over  rule-based or equational
representations.  Declarative languages such as FP, Prolog, lambda calculus,
Mathematica and constraint-based languages all traverse a space of possible outcomes
by successively matching variables with values and substituting the constrained value.
These languages each display the same trademark attribute:  their control structure is
implicit in the structure of a program's logical dependencies.

The VEOS architects elected to implement a rewrite approach, permitting declarative
experimentation with inference and meta-inference control structures.  Program control
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structure is expressed in LISP.  As well, this model was also strongly influenced by the
language Mathematica (Wolfram 1988).

LISP encourages prototyping partly because it is an interpreted language, making it
quite easy to modify a working program without repeated takedowns and laborious
recompilation.  Using only a small handful of primitives, LISP is fully expressive, and its
syntax is relatively trivial to comprehend.  But perhaps the most compelling aspect of
LISP for the VEOS project is its program-data equivalence.  In other words, program
fragments can be manipulated as data and data can be interpreted as executable
programs.   Program-data equivalence provides an excellent substrate for the active
message model (vonEicken et al, 1992).  LISP expressions can be encapsulated and
passed as messages to other entities and then evaluated in the context of the receiving
entity by the awaiting LISP interpreter.

In terms of availability, LISP has been implemented in many contexts:  as a production
grade development system (FranzLisp, Inc.), as a proprietary internal data format
(AutoLisp from AutoDesk, Inc.), as a native hardware architecture (Symbolics, Inc.),
and most relevantly as XLISP, a public domain interpreter (Betz 1992).  Upon close
inspection, the XLISP implementation is finely-tuned, fully extendible, and extremely
portable; it therefore became the clear choice for the VEOS application programmer’s
interface (API).

2.5  FERN:  Distributed Entity Management

The initial two years of the VEOS project focused on database management and Kernel
processing services.  The third year (1992) saw the development of FERN, the
management module for distributed nodes and for lightweight processes on each
node.8  With its features of systems orientation, biological modeling and active
environments, FERN extends the VEOS Kernel infrastructure to form the entity-based
programming model.

The entity concept is based on distributed object models (Jul et al, 1988). We first discuss
related work which influenced the development of  FERN, then we describe entities in
detail.

2.5.1  Distributed Computation

Multi-processor computing is a growing trend (Spector, 1982; Li & Hudak, 1989; Kung
et al, 1991).  VE systems are inherently multi-computer systems, due primarily to the
large number of concurrent input devices which do not integrate well in real-time over
serial ports. The VEOS architects chose to de-emphasize short-term performance issues

                                                
8  As of mid 1993, higher level functions, such as inference engines and learning nets,
have yet to be installed in entities.
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of distributed computing, trusting that network-based systems would continue to
improve.  We chose instead to focus on conceptual issues of semantics and protocols.

The operating systems community has devoted great effort toward providing seamless
extensions for distributed virtual memory and multiprocessor shared memory.
Distributed shared memory implementations are inherently platform specific since they
require support from the operating systems kernel and hardware primitives.  Although
this approach is too low level for the needs of VEOS, many of the same issues resurface
at the application level, particularly protocols for coherence.

IVY (Li & Hudak, 1989) was the first successful implementation of distributed virtual
memory in the spirit of classical virtual memory.  IVY showed that through careful
implementation, the same paging mechanisms used in a uniprocessor virtual memory
system can be extended across a local area network.

The significance of IVY was twofold.  First, it is well known that virtual memory
implementations are afforded by the tendency for programs to demonstrate locality of
reference.  Locality of reference compensates for lost performance due to disk latency.
In IVY, locality of reference compensates for network latency as well.  In an IVY
program, the increase in total physical memory created by adding more nodes
sometimes permits a superlinear speedup over sequential execution.  Second, IVY
demonstrates the performance and semantic implications of various memory coherence
schemes.  These coherence protocols, which assure that distributed processes do not
develop inconsistent memory structures, are particularly applicable to distributed
grouplespace implementations.

MUNIN and MIDWAY  (Carter et al, 1992; Bershad et al, 1992) represent deeper
explorations into distributed shared memory coherence protocols.  Both systems
extended their interface languages to support programmer control over the coherence
protocols.  In MUNIN, programmers always use release consistency but can fine-tune the
implementation strategy depending on additional knowledge about the program's
memory access behavior.  In MIDWAY, on the other hand, the programmer could choose
from a set of well-defined coherence protocols of varying strength.  The protocols
ranged from the strongest, sequential consistency, which is equivalent to the degenerate
distributed case of one uniprocessor, to the weakest, entry consistency, which makes the
most assumptions about usage patterns in order to achieve efficiency.  Each of these
protocols, when used strictly, yield correct deterministic behavior.

2.5.2  Lightweight Processes

The VEOS implementation also needed to incorporate some concept of threads,
cooperating tasks each specified by a sequential program.  Threads can be implemented
at the user level and often share single address spaces for clearer data sharing semantics
and better context-switch performance.  Threads can run in parallel on multiple
processors or they can be multiplexed preemptively on one processor, thus allowing n
threads to execute on m processors, an essential facility for arbitrary configurations of
VEOS entities and available hardware cpus.
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This generic process capability is widely used and has been thoroughly studied and
optimized.  However, thread implementations normally have system dependencies
such as the assembly language of the host cpu, and the operating system kernel
interface.  Inherent platform specificity combined with the observation that generic
threads may be too strong a mechanism for VEOS requirements suggest other
lightweight process strategies.

A driving performance issue for VE systems is frame update rate.  In many application
domains, including all forms of signal processing, this problem is represented in
general by a discrete operation (or computation) which should occur repeatedly with a
certain frequency.  Sometimes, multiple operations are required simultaneously but at
different frequencies.  The problem of scheduling these discrete operations with the
proper interleaving and frequency can be solved with a cyclic executive algorithm.  The
cyclic executive model is the de facto process model for many small real-time systems.

The cyclic executive control structure was incorporated into VEOS for two reasons.  It
provided a process model that can be implemented in a single process, making it highly
general and portable.  It also directly addressed the cyclic and repetitious nature of the
majority of VE computation.  This cyclic concept in VEOS is called frames.

The design of VEOS was strongly influenced by object-oriented programming.  In
Smalltalk (Goldberg 1980), all data and process is discretized into objects.  All
parameter passing and transfer of control is achieved through messages and methods.
VEOS incorporates the Smalltalk ideals of modular processes and hierarchical code
derivation (classes), but does not to enforce the object-oriented metaphor throughout all
aspects of the programming environment.  More influential was EMERALD (Jul et al
1988).  The EMERALD system demonstrates that a distributed object system is practical
and can achieve good performance through the mechanisms of object mobility and
compiler support for tight integration of the runtime model with the programming
language.  EMERALD implements intelligent system features like location-transparent
object communication and automatic object movement for communication or load
optimization.  EMERALD also permits programmer knowledge of object location for fine-
tuning applications.  EMERALD was especially influential during the later stages of the
VEOS project, when it became more apparent how to decompose the computational
tasks of virtual environments into entities.  In keeping with the ideal of platform
independence, however, VEOS steered away from some EMERALD features such as a
compiler and tight integration with the network technology.

2.6  Entities

An entity is a collection of resources which exhibits behavior within an environment.
The entity-based model of programming has a long history, growing from formal
modeling of complex systems, object-oriented programming, concurrent autonomous
processing and artificial life.  Agents, Actors, and Guides all have similarities to entities
(Agha, 1988; Oren et al, 1990).

Entities act as autonomous systems, providing a natural metaphor for responsive,
situational computation.  When a single entity resides on a single node, the entity is a
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stand-alone executable program that is equipped with the VEOS functionalities of data
management, process management, and inter-entity communication.  In a virtual
environment composed of entities, any single entity can cease to function (if, for
example, the node supporting that entity crashes) without effecting the rest of the
environment.

In VEOS, everything is an entity (the environment, the participant, hardware devices,
software programs, and all objects within the virtual world).  Entities provide database
modularity, localization of scoping, and task decomposition.  All entities are
organizationally identical.  Only their structure, their internal detail, differs.  This
means that a designer needs only one metaphor, the entity, for developing all aspects of
the world.  Changing the graphical image, or the behavioral rules, or even the attached
sensors, is a modular activity.

Entities provide a uniform, singular metaphor for the organization of both physical
(hardware) and virtual (software) resources in VEOS.  Uniformity means that we can use
the same editing, debugging, and interaction tools for modifying each entity.

The biological/environmental metaphor for programming entities provides functions
that define perception, action and motivation within a dynamic environment.  Perceive
functions determine which environmental transactions an entity has access to.  React
functions determine how an entity responds to environmental changes.  Persist
functions determine an entity’s repetitive or goal-directed behavior.

The organization of each entity is based on a mathematical model of inclusion,
permitting entities to serve as both objects and environments. Entities which contain
other entities serve as their environment;  the environmental component of each entity
contains the global laws and knowledge of its contents.  From a programming context,
entities provide an integrated approach to variable scoping and to evaluation contexts.
From a modeling point-of-view, entities provide a convenient biological metaphor.  But
most importantly, from a VR perspective, entities provide first-class environments,
inclusions, which permit modeling object/environment interactions in a principled
manner.

Synchronization of entity processes (particularly for display) is achieved through frames.
A frame is a cycle of computation for an entity.  Updates to the environment are
propagated by an entity as discrete actions.  Each behavioral output takes a local tick in
local time.  Since different entities will have different workloads, each usually has a
different frame rate.  As well, the frame rate of processes internal to an entity is
decoupled from the rate of activity an entity exhibits within an environment.  Thus,
entities can respond to environmental perturbances (reacting) while carrying out more
complex internal calculations (persisting).

To the programmer, each entity can be conceptualized to be a separate process.  Actual
entity processing is transparently multiplexed over available physical processors, or
nodes.  The entity process is non-preemptive;  it is intended to perform only short
discrete tasks, yielding quickly and voluntarily to other entities sharing the same node.
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Entities can function independently, as worlds in themselves, or they can be combined
into complex worlds with other interacting entities.  Because entities can access
computational resources, an entity can use other software modules available within the
containing operating system.  An entity could, for instance, initiate and call a statistical
analysis package to analyze the content of its memory for recurrent patterns.  The
capability of entities to link to other systems software make VEOS particularly appealing
as a software testing and integration environment.

2.6.1  Systems-Oriented Programming

In object-oriented programming, an object consists of static data and responsive
functions, called methods or behaviors.  Objects encapsulate functionality and can be
organized hierarchically, so that programming and bookkeeping effort is minimized.  In
contrast, entities are objects which include interface and computational resources,
extending the object metaphor to a systems metaphor.  The basic prototype entity
includes VEOS itself, so that every entity is running VEOS and can be treated as if it were
an independent operating environment.  VEOS could thus be considered to be an
implementation of systems-oriented programming.

Entities differ from objects in these ways:

•  Environment:  Each entity functions concurrently as both object and
environment.  The environmental component of an entity coordinates process
sharing, control and communication between entities contained in the
environment.  The root or global entity is the virtual universe, since it
contains all other entities.

•  System:  Each entity can be autonomous, managing its own resources and
supporting its own operation without dependence on other entities or
systems.  Entities can be mutually independent and organizationally closed.

•  Participation:  Entities can serve as virtual bodies.  The attributes and
behaviors of an inhabited entity can be determined dynamically by the
physical activity of the human participant at runtime.

In object-oriented systems, object attributes and inheritance hierarchies commonly must
be constructed by the programmer in advance.  Efficiency in object-oriented systems
usually requires compiling objects.  This means that the programmer must know in
advance all the objects in the environment and all their potential interactions.  In effect,
the programmer must be omniscient.  Virtual worlds are generally too complex for such
monolithic programming.  Although object-oriented approaches provide modularity
and conceptual organization, in large scale applications they can result in complex
property and method variants, generating hundreds of object classes and forming a
complex inheritance web.  For many applications, a principled inheritance hierarchy is
not available, forcing the programmer to limit the conceptualization of the world.  In
other cases, the computational interaction between objects is context dependent,
requiring attribute structures which have not been preprogrammed.
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Since entities are interactive, their attributes, attribute values, relationships, inheritances
and functionality can all be generated dynamically at runtime.  Structures across
entities can be identified in real-time based on arbitrary patterns, such as partial
matches, unbound attribute values (i.e. abstract objects), ranges of attribute values,
similarities, and analogies.  Computational parallelism is provided by a fragmented
database which provides opportunistic partial evaluation of transactions, regardless of
transaction ownership.  For coordination, time itself is abstracted out of computation,
and is maintained symbolically in data structures.

Dynamic programming of entity behavior can be used by programmers for debugging,
by participants for construction and interaction, and by entities for autonomous self-
modification.  Since the representation of data, function, and message is uniform,
entities can pass functional code into the processes of other entities, providing the
possibility of genetic and self-adaptive programming styles.

2.6.2  Entity Organization

Each entity has the following components:

•  A unique name.  Entities use unique names to communicate with each other.
Naming is location transparent, so that names act as paths to an entity’s
database partition.

•  A private partition of the global database.  The entity database consists of
three subpartitions.  The external partition contains the entity’s environmental
observations.  The boundary partition contains an entity’s attributes and its
observable form.  The internal partition contains recorded transactions and
internal structure.

•  Any number of processes.  Conceptually, these processes operate in parallel
within the context of the entity, as the entity's internal activities.  Collectively,
they define the entity’s autonomous behavior.

•  Any number of interactions.  Entities call upon each others' relational data
structures to perform communication and joint tasks.  Interactions are
expressed as perceptions accompanied potentially by both external reactions
and internal model building.

The functional architecture of each entity is illustrated in Figure 2  (Minkoff, 1992).
FERN manages the distributed database and the distributed processes within VEOS,
providing location transparency and automated coordination between entities.  FERN
performs three internal functions for each entity:

Communication:  FERN manages transactions between an entity and its containing
environment (which is another entity) by channeling and filtering accessible global
information.  TALK, the communication module, facilitates inter-node communication.
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Information:  Each entity maintains a database of personal attributes, attributes and
behaviors of other perceived entities, and attributes of contained entities.  The database
partitions use the pattern language of NANCY, another basic module, for access.

Behavior:  Each entity has two functional loops that process data from the environment
and from the entity's own internal states.  These processes are LISP programs.

hardware memory

external

boundary

internal

communications

Behavior Information Communication

PERSIST REACT INTERACT

Figure 2:  Functionality, Resources and Processes in an Entity

 2.6.2.1  Internal Resources

The data used by an entity's processes is stored in five resource areas (Figure 2):
hardware (device streams which provide or accept digital information), memory (local
storage and workspace) and the three database partitions (external, boundary and
internal).  These internal resources are both the sources and the sinks for the data
created and processed by the entity.

The three database partitions store the entity’s information about self and world.   
Figure 3 illustrates the dual object/environment structure of entities.

The boundary partition contains data about the self that is meant to be communicated
within the containing environment and thus shared with as many other entities in that
environment as are interested.  The boundary is an entity's self-presentation to the
world.  The boundary partition is both readable and writable.  An entity reads a
boundary (of self or others) to get current state information.  An entity writes to its own
boundary to change its perceivable state.
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The external partition contains information about other entities that the self entity
perceives.  The external is an entity's perception of the world.  An entity can set its own
perceptual filters to include or exclude information about the world that is transacted in
its external.  The external is readable only, since it represents externally generated and
thus independent information about the world.

The internal partition consists of data in the boundary partitions of contained entities.
This partition permits an entity to serve as an environment for other entities.  The
internal is readable only, since it serves as a filter and a communication channel
between contained entities.

external

boundary

internal

observation of other entities in same enivonment

environment for contained entities

appearence of self

Figure 3:  Entities as both Object and Environment

The other two resources contain data about the entity that is never passed to the rest of
the world.  These connect the entity to the physical world of computational hardware.

The memory contains internal data that is not directly communicated to other entities.
Memory provides permanent storage of entity experiences and temporary storage of
entity computational processes.  Internal storage can be managed by NANCY, by LISP, or
by the programmer using C.

The hardware resource contains data which is generated or provided by external
devices.  A position tracker, for example, generates both location and orientation
information which would be written into this resource.  A disc drive may store data
such as a behavioral history, written by the entity for later analysis. An inhabited entity
would write data to a hardware renderer to create viewable images.
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2.6.2.2  Internal Processes

Internal processes are those operations which define an entity’s behavior.  Behavior can
be private (local to the entity) or public (observable by other entities sharing the same
environment).  There are three types of behavioral processes:  each entity has two
separate processing regimes (React and Persist), while communications is controlled by
a third process (Interact).  By decoupling local computation from environmental
reactivity, entities can react to stimuli in a time-critical manner while processing
complex responses as computational resources permit.

The Interact process handles all communication with the other entities and with the
environment.  The environmental component of each entity keeps track of all contained
entities.  It accepts updated boundaries from each entity and stores them in the internal
data space partition.  The environmental process also updates each contained entity’s
external partition with the current state of the world, in accordance with that entity’s
perceptual filters.  Interaction is usually achieved by sending messages which trigger
behavioral methods.9

The React process addresses pressing environmental inputs, such as collisions with
other entities.  It reads sensed data and immediately responds by posting actions to the
environment.  This cycle handles all real-time interactions and all reactions which do
not require additional computation or local storage.  React processes only occur as new
updates to the boundary and external partitions are made.

The Persist process is independent of any activity external to the entity.  The Persist
loop is controlled by resources local to the specific entity, and is not responsive in real-
time.  Persist computations typically require local memory, function evaluation, and
inference over local data.  Persist functions can copy data from the shared database and
perform local computations in order to generate information, but there are no time
constraints asserted on returning the results.

The Persist mechanism implements a form of cooperative multitasking.  To date, the
responsibility of keeping the computational load of Persist processes balanced with
available computational resources is left to the programmer.  To ensure that
multitasking simulates parallelism, the programmer is encouraged to limit the number
of active Persist processes, and to construct them so that each is relatively fast, is atomic,
and never blocks.

2.6.3  Coherence

FERN provides a simple coherence mechanism for shared grouplespaces that is based on
the inter-node message flow control facility.  At the end of each frame, FERN takes an
inventory of the boundary partitions of each entity on the node, and attempts to
                                                
9  Technically, in a biological/environmental paradigm, behavior is under autonomous
control of the entity and is not necessarily triggered by external messages from other
entities.
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propagate the changes to the sibling entities of each of the entities in that environment.
Some of these siblings may be maintained by the local node, in which case the
propagation is relatively trivial.  For local propagation, FERN simply copies the
boundary attributes of one entity into the externals of other entities.  For remote sibling
entities, the grouplespace changes are sent to the nodes on which those entities reside
where they are incorporated into the siblings' externals.

Because of mismatched frame rates between nodes, change propagation utilizes a flow-
control mechanism.  If the logical stream to the remote node is not full, some changes
can be sent to that node.  If the stream is full, the changes are cached until the stream is
not full again.  If an entity makes further changes to its boundary while there is still a
cached change waiting from that entity, the intermediate value is overwritten.  The new
change replaces the previous one and continues to wait for the stream to clear.  As the
remote nodes digest previous change messages, the stream clears and new changes are
propagated.

This coherence protocol guarantees the two things.  First, if an entity makes a single
change to its boundary, the change will reach all subscribing sibling entities.  Second,
the last change an entity makes to its boundary will reach its siblings.  This protocol
does not guarantee the intermediate changes because FERN cannot control how many
changes an entity makes to its boundary each frame, while it must limit the stack of
work that it creates for interacting nodes.

To tie all the FERN features together, Figure 4 provides a graphical overview of the FERN
programming model (Coco 1993).
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Figure 4: FERN Topology and Entity Structure
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3.  Applications

VEOS was developed iteratively over three years, in the context of prototype
development of demonstrations, theses and experiments at HITL.  It was constantly
under refinement, extension and performance improvement.  It has also satisfied the
diverse needs of all application projects, fulfilling the primary objective of its creation.
Although not strictly academic research, the VEOS project does provide a stable
prototype architecture and implementation that works well for many VR applications.
We briefly describe several.

Tours:  The easiest type of application to build with VEOS is the virtual tour.  These
applications provide little interactivity, but allow the participant to navigate through an
interesting environment.  All that need be built is the interesting terrain or environment.
These virtual environments often feature autonomous virtual objects that do not
significantly interact with the participant.

Examples of tours built in VEOS are:

•  an aircraft walkthrough built in conjunction with Boeing corporation,

•  the TopoSeattle application where the participant could spatially navigate
and teleport to familiar sites in the topographically accurate replica of the
Seattle area, and

•  the Metro application where the participant could ride the ever-chugging
train around a terrain of rolling hills and tunnels.

Physical Simulation:  Because physical simulations require very precise control of the
computation, they have been a challenging application domain.  Coco and Lion (1992)
implemented a billiard ball simulation to measure VEOS's performance, in particular to
measure the tradeoffs between parallelism and message passing overhead.  Most of the
entity code for this application was written in LISP, except for ball collision detection
and resolution, which was written in C to reduce the overhead of the calculations.

The simulation coupled eighteen entities.  Three entities provided an interface to screen
based rendering facilities,  access to a spaceball six-degree-of-freedom input device, and
a command console.  The rendering and spaceball entities worked together much like a
virtual body.  The spaceball entity acted as a virtual hand, using a persist procedure to
sample the physical spaceball device and make changes to the 3D model.  The imager
entity acted as a virtual eye, updating the screen-based view after each model change
made by the spaceball entity.  The console entity managed the keyboard and
windowing system.

Asynchronous to the participant interaction, fifteen separate ball entities continually
recomputed their positions.  Within each frame, each ball, upon receiving updates from
other balls, checked for collisions.  When each ball had received an update from every
other ball at the end of each frame, it would compute movement updates for the next
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frame.  The ball entities sent their new positions via messages to the imager entity
which incorporated the changes into the next display update.  The ball entities used
asynchronous methods to maximize parallelism within each frame.  Balls did not wait
for all messages to begin acting upon them. They determined their new position
iteratively, driven by incoming messages.  Once a ball had processed all messages for
one frame, it sent out its updated position to the other balls thus beginning a new
frame.

Multiparticipant Interactivity:  In the early stages of VEOS development, Coco and
Lion designed an application to demonstrate the capabilities of multiparticipant
interaction and independent views of the virtual environment.  Block World allowed
four participants to independently navigate and manipulate moveable objects in a
shared virtual space.  Each participant viewed a monitor based display, concurrently
appearing as different colored blocks on each other’s monitor.  Block World allowed for
interactions such as 'tug-of-war' when two participants attempted to move the same
object at the same time.  This application provided experience for the conceptual
development of FERN.

One recent large scale application provided multiparticipant interaction by playing
catch with a virtual ball while supporting inter-participant spatial voice
communication.  The Catch application incorporated almost every interaction technique
currently supported at HITL including head tracking, spatial sound, 3D binocular
display, wand navigation, object manipulation, and scripted movement paths.

Of particular note in the Catch application was the emphasis on independent
participant perceptions.  Participants customized their personal view of a shared virtual
environment in terms of color, shape, scale, and texture.  Although the game of catch
was experienced in a shared space, the structures in that space were substantively
different for each participant.  Before beginning the game, each player selected the form
of their virtual body and the appearance of the surrounding mountains and flora.  One
participant may see a forest of evergreens, for example, while concurrently the other
saw a field of flowers.  Participants experienced the Catch environment two at a time,
and could compare their experiences at runtime through spatialized voice
communication.  The spatial filtering of the voice interaction provided each participant
with additional cues about the location of the other participant in the divergent world.

Manufacturing:  For her graduate thesis, Karen Jones worked with HITL engineer Marc
Cygnus to develop a factory simulation application (Jones, 1992).  The program
incorporated an external interface to the AutoMod simulation package.  The resulting
virtual environment simulated the production facility of the Derby Cycle bicycle
company in Kent, Washington, and provided interactive control over production
resources allocation.  The Derby Cycle application was implemented using a FERN
entity for each dynamic object and one executive entity that ensured synchronized
simulation time steps.  The application also incorporated the Body module for
navigation through the simulation.

Spatial Perception:  Coming from an architectural background, Daniel Henry wrote a
thesis on comparative human perception in virtual and actual spaces (Henry, 1992).  He
constructed a virtual model of the Henry Art Gallery on the University of Washington
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campus.  The study involved comparison of subjective perception of size, form, and
distance in both the real and virtual gallery.  This application used the Body module for
navigation through the virtual environment.   The results indicated that the perceived
size of the virtual space was smaller than  the perceived size of the actual space.

Scientific Visualization:  Many applications have been built in VEOS for visualizing
large or complex data sets.  Our first data visualization application was of satellite
collected data of the Mars planet surface.  This application allowed the participant to
navigate on or above the surface of Mars and change the depth ratio to emphasize the
contour of the terrain.  Another application designed by Marc Cygnus revealed changes
in semiconductor junctions over varying voltages.  To accomplish this, the application
displayed the patterns generated from reflecting varying electromagnetic wave
frequencies off the semiconductor.

Education:  Chris Byrne led a program at HITL to give local youth the chance to build
and experience virtual worlds.  The program emphasized the cooperative design
process of building virtual environments.  These VEOS worlds employed the standard
navigation techniques of the wand and many provided interesting interactive features.
The implementations include an AIDS awareness game, a Chemistry World and a
world which modeled events within an atomic nucleus.

Creative Design:  Using the Universal Motivator graph configuration system, Colin
Bricken designed several applications for purely creative ends.  These environments are
characterized by many dynamic virtual objects which display complex behavior based
on autonomous behavior and reactivity to participant movements.

4.  Conclusion

Operating architectures and systems for real-time virtual environments have been
explored in commercial and academic groups over the last five years.  One such
exploration was the VEOS project, which spread over three and a half years and is now
no longer active.

We have learned that the goals of the VEOS project are ambitious;  it is difficult for one
cohesive system to satisfy demands of conceptual elegance, usability and performance
even for limited domains.  VEOS attempted to address these opposing top level
demands through its hybrid design.  In this respect, perhaps the strongest attribute of
VEOS is that it promotes modular programming.  Modularity has allowed for
incremental performance revisions as well as incremental and cooperative tool design.
Most importantly, the emphasis on modularity facilitates the process of rapid
prototyping that was sought by the initial design.

VE design is inherently a multidisciplinary process and requires expertise in many
different areas.  Successful VE applications are manifested by the cooperative effort of
system programmers implementing and abstracting performance bottlenecks, designers
creating involving objects and terrains, dynamics experts implementing realistic
behaviors, authors composing story lines, psychological researchers focusing on
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perceptual understanding, systems architects building automated and reliable
infrastructures, and visionaries encouraging the whole process.

Now that the infrastructure of virtual worlds (behavior transducers and coordination
software) is better understood, the more significant questions of the design and
construction of  psychologically appropriate virtual/synthetic experiences will see more
attention.  Biological/environmental programming of entities can provide one route to
aid in the humanization of the computer interface.
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