
VEOS/FERN/MERC ONE PAGER

William Bricken

November 1993

The Virtual Environment Operating Shell (VVEOS) has been iteratively developed

at HITL over the last four years, providing high-visibility demonstrations,

thesis support and design tools in dozens of projects. VEOS provides a

comprehensive and unified management facility and distributed rapid

prototyping environment for generation of, interaction with, and maintenance

of shared virtual environments. It is UNIX-based, platform independent, and

has been extensively tested on DEC, Sun, and SGI platforms. Low-level

mechanisms within VEOS are hidden from the user. VEOS 3.0 code will be

available for non-commercial purposes as shareware in early 1994.

Within VEOS, the KKernel manages processes, memory, and communication on a

single hardware processor, using LISP as an interface language. FFERN manages

task decomposition on each node and distributed computing across nodes, using

a Linda-like communication model that includes asynchronous, synchronous, and

stream interactivity. SSensorLib provides a library of spatial and body-

oriented device drivers. The IImager provides hardware-independent stereo

rendering for a variety of display techniques. SSpatialSound is the

auditory counterpart of the Imager.

Other systems built at HITL enhance the performance and functionality of the

VEOS core. MMercury implements a participant system, using distributed

processing to decouple the throughput performance of behavior transducers from

the complexity of the virtual environment, delivering consistently high

display rates independent of number of participants or computational load.

UM is a generalized relational mapper which provides a simple graph-based

interface for constructing arbitrary relations between input signals, state

information, and output. The WWand is a hand-held interactivity device which

allows the participant to identify, move, and change the attributes of virtual

objects. VVoice provides vocal command recognition.

VEOS extends programming metaphors to include first-class environments,

biological models, and systems-oriented programming. An eentity is a coupled

collection of data, functionality and resources, which is programmed using a

biological/environmental metaphor. Each entity within the virtual world is

modular and self-contained, each entity is computationally independent and

autonomous. Entities provide functions that define perception, action and

motivation within a dynamic environment. PPerceive functions determine which

environmental transactions an entity has access to. RReact functions

determine how an entity responds to environmental changes. PPersist

functions determine an entity’s repetitive or goal-directed behavior.

