
VIRTUAL ENVIRONMENT OPERATING SYSTEM -- OVERVIEW

William Bricken

July 1992

This paper describes the Virtual Environment Operating System (VEOS). The

VEOS kernel, which provides communications, database, and process management

is currently in beta release. This kernel has been stable for more than a

year, and is now being optimized for performance. The VEOS description

includes design goals, system functionality, and system architecture.

VEOS provides the substrate for

• construction of experimental environments

• integration of multiple participants

• autonomous entities

• virtual world configuration

• interaction paradigms

• sensor and display integration

We propose to develop from design specifications several interaction tools,

including the Virtual Body, Multiple Participants, and Interactive

Construction.

Design of Operating System Infrastructure

Virtual reality applications present the most difficult software performance

expectations to date. VR challenges us to synthesize and integrate our

knowledge of sensor fusion, databases, modeling, communications, interface,

interactivity, and autonomy, and to do it in real-time.

The Virtual Environment Operating System (VEOS) has been under development at

HITL for the past two years. VEOS is designed to integrate the diverse

components of a virtual environment. Currently VEOS is implemented as a UNIX

shell.

VEOS consists of several software subsystems. The kernel manages processes,

memory, and communication. The entity interface permits modeling objects in

the environment, and the environment itself, in a consistent, object-oriented

manner. The interaction tools empower a participant within the virtual

environment.

The design of VEOS reflects multiple objectives, many practical constraints,

and some compromises. Most importantly, VEOS is a research prototype,

constantly undergoing revision and iterative refinement. As a research

vehicle, VEOS emphasizes functionality at the expense of performance. It is

a synthesis of known techniques rather than basic research into one technique.

Since a research prototype must prepare us for the future, VEOS is designed

to be as generic as possible; it places very little mechanism in the way of

exploring diverse and unexpected design options.

__

VEOS Practical Design Decisions

Research prototype, 5-10 years ahead of marketplace

Functionality rather than efficiency

Incorporate commercially available software

Synthesis of known software technologies

Rapidly reconfigurable

VEOS Functional Design

Coordination between distributed, heterogeneous resources

Interactive rapid prototyping and reconfiguration

Entity-based modeling

Multiple participants

Concurrent divergent worlds

__

VEOS was designed for rapid prototyping. The VEOS interface is interactive,

so that a programmer can enter a new command or world state at the terminal,

and on the next frame update, the virtual world display will change. The

database must accommodate update from multiple processors. We have adopted a

Linda-like communication model which cleanly partitions communication between

processes from the computational threads within a process.

The design of the virtual world could readily overwhelm a programmer if the

programmer were responsible for all objects and interactions. Virtual worlds

are simply too complex for monolithic programming. Entities within the

virtual world must be modular and self-contained. The designer should be

able to conceive of an entity, say a cow, independently of all other aspects

of the world. VEOS is structured so that each entity is designed to be

independent and autonomous. The system itself takes care of the lower level

details of inter-entity communication, coordination, and data management.

In VEOS, all entities are organizationally identical. Only their structure,

or internal detail, differs. This means that a designer needs only one

metaphor, the entity, for developing all aspects of the world. Changing the

graphical image, or the behavioral rules, or even the attached sensors, is a

modular activity.

Entity modularity is particularly important when one recognizes that hardware

sensors, displays, and computational resources are themselves first class

entities. The entity model provides integration modularity for any new

components to the VR system, whether they are graphical images, added cpus,

or new input devices. Entities can be run independently, as worlds in

themselves, or they can be combined into complex worlds. This means that

devices and models can be tested and debugged modularly.

Because entities consist of both data and operating system processes, an

entity can use other software modules available within the larger operating

system. An entity could, for instance, initiate and call a statistical

analysis package to analyze the content of its memory for recurrent patterns.

The capability of entities to link to other systems software make VEOS

particularly appealing as a software testing and integration environment.

Entity autonomy is best modeled by assigning a separate processor to each

entity. This approach makes VEOS essentially a distributed operating system.

Distributed resources arise naturally in VR, since the virtual environment is

a social place, accommodating multiple concurrent participants.

In summary, VEOS is a significant effort to provide transparent low-level

database, process, and communications management for arbitrary sensor suites,

software resources, and virtual world designs. VEOS is the glue under VR.

As such, it provides a strong integration environment for any team wishing to

construct, experiment with, and extend VR systems.

VEOS Functionality

The Virtual Environment Operating System is a software suite currently

written in C as a shell around the UNIX operating system. VEOS provides

resource and communication management for coordination of the modules which

make a VR system:

• i/o hardware, behavior transducing input and display devices

• world construction kits, CAD packages

• dynamic simulation kits, for interaction and animation

• virtual world tools

• computational and display processors

Figure 1 represents the functional connectivity between the system modules.

I/O VEOS

tools

OS hardware

simulation

construction

database

Figure 1. Functional overview of the current VEOS implementation

The primary functional subsystems of the Virtual Environment Operating System

include:

Interpretation: couples the input activities of the participant to

computational processes.

Modeling: manages the computational behavior and model of virtual

environment elements.

Display Integration: integrates output signals from the model and

from other sources to drive the display devices which create the

virtual environment.

VEOS Architecture

Figure 2 below represents the VEOS system architecture. Arrows indicate the

direction of dataflow. The architecture in Figure 2 contains three

subsystems.

The behavior and sensory transducing subsystem

This subsystem implements the fundamental interface paradigm shift of VR, from

user actions that accommodate the needs of symbolic computation to natural

participant actions which are interpreted by the computational system. It

consists of:

• The participant.

• Sensors which convert natural behavior from participant to digital

streams.

• Display devices which convert the digital model to subjective sensory

information.

sensations

display stream

negotiations

world updates

world information

process events

process management

state retrieval

behaviors

memory management

memory events

world modifications

model transactions

safe world events

digital event stream

PARTICIPANT

SENSORS

PHYSIOLOGICAL
MODEL

TOOLS

MODEL

OS COMMUNICATION

OS
PROCESS

OS
MEMORY

COMPUTING HARDWARE

DISPLAY

VIRTUAL
BODY

Figure 2. VEOS system architecture.

The virtual toolkit subsystem

The virtual toolkit subsystem coordinates display and computational hardware,

software tools and resources, and world models. It provides a wide range of

software tools for construction of and interaction with models, including

editors of objects, spaces, and abstractions; movement and viewpoint control;

object inhabitation; boundary integrity; display, resource and time

management; multiple concurrent participants; programmable internal processes

within models; and history and statistics accumulation. The components of

this subsystem are:

• The physiological model which maps digital streams from input devices

onto a representation of the participant within a virtual world.

• The virtual body which maps the physiological model onto virtual

world behavior which can be displayed from a subjective

perspective.

• Virtual world tools (compilers, editors, languages, interaction

tools) which interface with the operating system, databases, and

software and hardware resources.

• The virtual world database which stores world state, entities, and

static and dynamic properties.

The operating subsystem

The operating subsystem customizes the VR software to a particular machine

architecture. It consists of:

• Operating system communications (message control)

• Operating system memory (paging, garbage collection)

• Operating system processes (threads and tasks)

• Computational hardware (binary machine code)

Software Environment

The following sections describe the interactive tools for virtual environments

that HITL proposes to develop or extend for this proposal. We suggest the

development of interaction, construction, and assessment tools built on the

VEOS testbed infrastructure.

This section describes the FERN model, our design of an entity management

facility. FERN is implemented in prototype and is not as stable as the VEOS

kernel. This section includes the design requirements for the entity

manager, entity activity and architecture, the functions, resources and

processes of the FERN model, and several examples of the use of the entity

manager. HITL is still developing skills in the use of FERN and the VEOS

kernel; we propose to extend and refine the FERN model and to develop it

robustly.

The section presents several interaction tools we propose to develop. The

Wand has been implemented in prototype, and will be significantly extended in

this proposal. The Virtual Body is the central organizing concept and

software tool for physiological calibration and measurement. We propose to

build the Virtual Body, which is currently in design phase, in its entirety

for this project.

The section discusses our proposal for world construction tools. The three

tools we believe are necessary for the rapid construction of environments

include Form Abstraction, Generalized Sweeps, and Image Conversion.

Entity Management (FERN)

The FERN (Fractal Entity Relativity Node) is the VEOS entity manager. It

provides accurate and consistent world data management. The architecture of

the FERN entity manager is presented in Figure 3.

FERN Design Requirements

Generic world structure: The computational system must impose as
little predetermined structure upon the virtual environment as is possible.

It should be able to support as many types of world designs, spaces, systems,

and interactions as possible.

Distributed data and processing: The system must allow its needs to be
distributed across many computer systems, not only permitting multiple

participants, but also for the support of complex worlds on relatively low-end

computing hardware.

Reliable data management: Due to the distributed nature of the system,
there must be a reliable and consistent way to handle the flow of information

between entities in the world.

Fast hardware updates: A requirement in any virtual reality system,
hardware updates, such as the update of viewed images as the participant moves

through the world, must not be sacrificed for information flow.

Furthermore, for a system to support the type of interaction between entities

that is envisioned, entities themselves must have certain features:

Autonomy: Entities must be able to support and operate themselves, without
dependence on any other entity or system.

Equality: Again because of the distributed nature of the system, plus the
requirement for generic worlds and autonomous entities, all entities must be

equal in structure and function.

Environmental model: The nature of the virtual world is that the world
itself is an entity, and each entity is itself a world. This must be

reflected in the system design.

Entity Activity

An entity in the FERN model is a single and complete set of processing

functions embodying zero or more objects in the virtual world. Usually, an

entity will be the whole of any one being in the world, but it is possible to

have cooperating entities form a single being. Any set of objects that

operate as a connected whole and have one set of behaviors and functions is in

entity.

Entity Behavior: Entity equality and autonomy is fundamental to this
system. As such, behavior cannot be based on control of one entity by

another, but instead must be built on controlled individual reactions to world

events. In the FERN model, all behavior is reduced to reactions to perceived

data regarding other entities in the world. In order to create entity actions

and interactions, including anything from a reaction to a tool to hunting for

food, the world builder must create the corresponding set of behaviors within

each entity.

Entity Interaction: In order to create the type of complex interactive
worlds that are currently envisioned, have them run on hardware that is

available currently, and allow multiple participation from potentially remote

sites, virtual world entities must be autonomous and equal.

Entity Autonomy: In the FERN model, every entity has the same basic
organization, and operates as a peer to all other entities in the virtual

universe. An entity's capabilities are only limited by the extent to which

they are programmed and the speed of the processor the entity is running on.

In keeping with the reactive model of entity interaction, each entity is

ultimately responsible for its own actions. Every entity has the opportunity

to refuse to "obey" another entity.

Environmental Entity: The virtual world is an entity to itself, as much
as any entity contained in it is an entity. In the FERN model, since every

entity contains both the functions for participating in a world and

maintaining a world, any entity may do either or both at the same time.

Entity Architecture

The primary organization within each modeled object is an input-process-

output loop. Input is identified by the object's sensors, which themselves

are subsystems. Output is defined by effectors. The structure of each

object/system consists of:

Input buffer (fed by sensors)

Priorities (internal values selecting input)

Disposition (rules triggered by selected input)

Knowledge (state collected by rules)

Output buffer (actions generated by rules)

Sensors store input in a buffer. Objects can be programmed by inserting rules

into their disposition. A set of rules for attention select a single input

item to compare to the trigger clauses in the set of disposition rules. When

a particular rule is matched, the action it specifies is carried out. An

action may be to store the input as knowledge or to cause an effector to

change the state of the environment. Some rules may be contingent on stored

knowledge to be triggered. Some rules may be independent of input, they form

the internal processing disposition of the system.

This architecture allows situated responses. Objects can react to

environmental changes (as perceived by input sensors and filtered by

priorities) dynamically and opportunistically. Objects can also learn from

experience and internally abstract experiences to form idiosyncratic

knowledge bases. When rules include inference over the knowledge base, an

object can behave as an expert system.

In summary, the software architecture of the VEOS and of virtual objects

incorporates rule based logic programming locally in object-oriented

autonomous systems. Programs are reactive and situational (data-driven) when

internal priorities are satisfied by existing input, and autonomous and

learning (goal-driven) when there is not prioritized input. Disposition

rulebases are programmable by other systems (in particular by the

participant).

The FERN Model

All entities are organizationally equal. The details of the standard entity

architecture are presented in Figure 3 and described in the sections which

follow.

hardware memory

external

boundary

internal

communications

Behavior Information Communication

PERSIST REACT INTERACT

Figure 3: The FERN Model

FERN Functions

Each entity performs three functions:

Database: Each entity maintains a database of personal attributes, sibling
attributes, and children attributes. It uses the searching language Nancy, a

basic component of the VEOS system, to accomplish this task.

Behavior: Each entity has two function loops that process input data, both
from the entity's own internal states and the states of other entities in the

world, into state changes. These processes are controlled by programming in

the LISP language.

Communication: Communications with "parent" and "children" entities are
the backbone of the system. It is the only way for the entity to be aware of

the state of the worlds both inside and outside the entity. The communication

process is facilitated by the use of Talk, another basic component of the

VEOS system.

FERN Resources

The data used by the entity's processes are stored in areas called resources.

(The five resources in Figure 3 are shown in typewritten font.) They are both

the sources and the sinks for the data used and created by the entity. There

are three resources that are specifically stored in the entity’s data space

accessed through Nancy:

Boundary: Data about the self that is meant to be communicated with the
parent and thus shared with as many siblings as are interested is stored in

the boundary. This area of data space is readable and writable. An entity

would read the boundary to get its current information and write to it to

change its state through a reaction.

External: The external partition of the data space contains information
regarding the entity's siblings in all the worlds that the entity is a member

of. The entity can set perceptual filters to tell the parent how to filter

all the world data into only that information the entity is able to react to.

Unlike the boundary, this area is readable only.

Internal: The internal data space is comprised of all data collected from
the boundaries of contained entities. While it cannot be written, it is meant

to filtered and communicated to all contained entities.

The other two resources in the FERN model contain data about the entity that

is never passed to the rest of the world. They are involved with the ongoing

maintenance of the entity in relation to itself and to the physical world

("real" reality).

Memory: This resource contains data pertaining to states that are not
directly communicated to other entities. Memory can exist in either the

entity’s data space, LISP space, or a combination of both, depending on the

needs of the entity and the structure of the data.

Hardware: This is data produced and/or used by an entity’s related
hardware. Data can be read in from a hardware device or written to it. An

example of a device that would be read in would be a position tracker,

providing both position and rotation in the world with regard to the

transmitter. Data might be written to the hardware resource, for example, to

enable the imager to create the proper images. Position and rotation data can

be attached directly to the imager to provide the fastest refresh rate to the

participant.

FERN Processes

Processes are the operational functions the entity uses to exist in the

virtual world. There are three types of processes that occur (shown in large

letters in Figure 3). The processes that provide reactions based on input

stimuli are PERSIST and REACT. The other process is FERN, which maintains all

necessary communications with other entities in the virtual universe.

PERSIST: These are the processes that are independent of any factors
outside the entity. They rely only on data known to the self. The PERSIST

loop happens in local time - as often as the hardware will allow. Unlike

REACT, which must wait for an update from the parent to occur, PERSIST will

occur as often as computationally possible. An example of a PERSIST process

is the update of the image due to the position and rotation of the head.

REACT: These are processes that both depend on and affect factors inside
and outside the entity. The REACT loop only takes place as new updates to

the boundary and external partitions are made. FERN time, as opposed to local

time, is completely dependent on the speed of the network and of the parent,

and therefore of the processor that the parent is running on.

FERN: The FERN function handles all communication with the parent and
children entities. As a parent, or world, the FERN keeps track of all

entities in the world. It accepts updated boundaries from each entity and

stores it in it’s internal data space partition. In turn, the parent updates

each internal entity’s external partition with the current state of the world,

in accordance with the entity’s perceptual filters, as often as the entities

send updates themselves.

Examples

Entering a world: To enter a new world, an entity will send it’s boundary
to the entity containing the world. Subsequent updates to other entities

within that world will include information about the recently-joined entity.

Follow: An entity can add a distance offset to the location of another
entity, in effect following that entity. Following is dependent on another

entity's behavior, but is completely within the control of the following

entity.

Move with wand: The wand, like any tool entity, will publish its current
values to its boundary. An entity that wants to use these values, such as the

virtual body using the wand to move, will be sensitive to these published

values when they come into its external partition.

Inhabitation: Simply, the inhabiting entity will use the inhabited
entity’s relevant boundary information as it’s own, thus creating the same

view and movements as the inhabited entity.

Portals: An entity sensitive to portals can move through the portal to
another world or to another place in the current world. Upon colliding with

the portal, the entity will change its boundary attributes into the position,

rotation, and inhabited space values attached to the portal.

Learning: Entities can learn new behaviors by receiving new function
definitions and then adding the new function call to their behavior loop.

Such code would likely include both the function definition and the command to

add the command to either the entity's REACT loop or PERSIST loop. More

intelligent entities might build in the ability to discern different types of

code and make an informed decision about what code to incorporate and from

whom.

Interaction Tools

Interaction within the virtual environment is mediated by primarily two VEOS

tools: the wand and the virtual body. Rudimentary aspects of these tools have

been incorporated into the testbed. We propose to enhance their functionality

in the following ways.

The Wand

The Wand is an interface tool which uses a simple physical device for a wide

range of functions. The physical device is a rod with a 6 degree-of-freedom

sensor on one end which supplies position and orientation information to the

model. The sensor information inhabits a virtual rod held by a virtual hand.

We assign functionality to the Wand by attaching a voice sensor to it and

inserting rules into its set of dispositions. Some functions of the Wand

include:

• Ray on/off: A ray emanates from the end of the virtual rod,

collinear with it.

• Identify: The first object which the ray penetrates returns its

name.

• Distance: the length of the ray vector, expressed in the metric of

the intervening space, is returned.

• Connect: Construct a communications port between the rod and the

identified object.

 • Jack: Teleport the viewpoint of the rod (along the ray vector) to

the identified point on the object.

• Grasp: Attach the end of the ray to the identified object. When

the Wand is moved, the object stays attached. When the Wand is

rotated, the object rotates.

• Normal: Rotate the identified object so that the intersecting ray

is normal to the object's surface.

• Sight: Jack into the Wand, the viewpoint of the patron issuing the

command is linked to the ray vector.

• Move faster/slower: Move the viewpoint of the patron along the ray

vector.

The Virtual Body

Since the participant is included within the virtual environment, the

representation of self is fundamental to virtual interface design. The

Virtual Body is the primary reference point, the interface between the user

and the virtual environment. It provides direct access to computational

graphic objects; it is the channel of direct action and control. Monitoring

the Virtual Body provides the computational system with a complete record of

actions taken by the participant.

The Virtual Body is a software toolkit for:

• attaching arbitrary hardware input devices to arbitrary

representations of components of our body. Usually the linkage

will emphasize naturalness.

• making psychometric measurements of behavior in a virtual

environment, and

• maintaining coherence between the participant's model of physical

activity and the virtual representation of that activity.

In the VEOS architecture, the Virtual Body consists of two components, the

Physiological Model and the Virtual Model. The physiological model is

intended to be anthropomorphically correct. It contains information about the

participant's physical body and calibrates this information to the virtual

environment. The virtual model consists of the mapping of accurate physiology

onto whatever (arbitrary) form the participant chooses as a self-

representation in the virtual environment.

The unique aspects of the Virtual Body tool are:

Generic: The Virtual Body includes software for mapping the sensor data
stream to representations of body components in a virtual environment display,

interpreting the data stream as instructions to change the virtual

environment, and collecting and analyzing the data stream as psychometric

information.

Transparent: The sensor measuring participant activity is designed to be
transparent. Natural physical movement directly affects the computation;

there is no apparent interface. The Virtual Body software maintains the

illusion of direct interaction.

Interactive: Mapping between physical action and computational effect is
flexible and dynamic. A spoken word, for example can change the

computational effect of shifting one's gaze from "Identify that object" to

"Transport me to that object."

Natural: Since action can be taken literally (there is no symbolic
transcription filtering the meaning of behavior), performance in a virtual

environment mimics performance in reality. As long as the representation of

the task is valid, the user's behavior directly indicates the user's ability

to perform. Physical actions in a virtual environment furnish psychometric

data on performance, resource expenditure (load), and cognitive model.

Multiple Participants

HITL is developing the mathematical tools which coordinate actions of

multiple participants in virtual worlds. Virtual worlds permit mutually

inconsistent models across multiple participants. Each participant can

maintain a separate personal environment concurrently in the same virtual

space. Communality of mutually shared perspectives is negotiated rather

than assumed. VEOS provides a prototype capability for participants:

• to share environments with an indefinite number of other

participants,

• to communicate naturally by conversation, gestures, and movement in

a visual space,

• to elect to partition the virtual space into parts which are

communal and parts with are private, and

• to access personal environments for individual interaction with data

and information.

World Construction Tools

A variety of world construction tools will be needed in robust virtual

interface research environments, including commercial three-dimensional

modeling packages, simple inclusive construction kits, and entity

disposition editors. The applications relevant to this proposal will, in

addition, require fast segmentation and model extraction from spatially

distributed sensor data. Computational algorithms for these functions will be

developed and tested.

Form Abstraction

A virtual environment can be abstracted into the composition of three

elements: the individual objects or entities, the space these entities

jointly occupy, and the spatial relationship between each entity and the

origin of the space, as expressed in the metric of that space. The advantages

of form abstraction include:

• positional information is separate from the geometric form of an

entity

• space can be subdivided recursively

• entity interactions can be treated as pair wise

• entities can be locally independent of the space they occupy

We propose to explore recursive techniques for rapid construction of

environments.

Generalized Sweep

Construction of virtual environments from within the environment is an

unsolved problem. We believe that sweeps, initiated by hand and arm gestures

are the most natural way to generate solids in virtual spaces. We propose to

develop a generalized sweep construction tool with the following properties:

• hand and arm gestures trigger the creation of solid objects

• sweeping a point will generate a one dimensional line; sweeping a

line, or bending a line, will generate a plane; sweeping a plane

will generate a solid

• translational, rotational, and scaling sweeps

• sweep curve may be freehand or specified by a function

• freehand sweeps will have a TIDY option which will smooth it to a

function of specified degree

• object libraries will include the basic solids

Assessment Tools

The Participant Tracking System described above will require the development

of a number of software tools, including event history recording, time-tagged

communication, instant replay and backtracking, as well as tools for automated

generalization, classification, distribution statistics, correlational

statistics, and trend analysis.

