THOUGHTS ABOUT AN ARCHITECTURE FOR THE SEMANTIC WEB
William Bricken
August 2004

Caveat

I use a declarative presentation style, which may cause some confusion
between opinion and fact. Everything below is at least supported by my
experience.

Summary

Main points are indicated by double asterisk ** in the sequent, and are
collected here:

-- The graph data-structure is foundational.

-- APIs provide generic flexibility.

-- Knowledge is contextual.

-- Reducing cognitive load is the long term win.
-- Corporate data is the big win.

A Straw-man Architecture

Here is an architecture that supports a general model of information
organization (knowledge construction) and can expand opportunistically as
dictated by corporate vision and by business opportunities. A simplified
picture of this architecture is:

acquisition --> organization --> graph --> customization --> display
I I I I
APIs APIs APIs APIs

Implicit Feedback

The above architecture presents a linear flow from acquisition to display.
There are implicit functional loops, such as

-- customization to acquisition
The user initially customizes acquisition through a search query.

-- display to customization

After seeing the display, the user reorganizes data both locally
(customization) and globally (acquisition).

Including these feedback loops yields the following architectural diagram:

/ \
% I
acquisition --> organization --> graph --> customization <==> display
I I I I
APIs APIs APIs APIs

** The graph data-structure is foundational **

Like the foundation of a building, the central graph data structure must be
strong and stable. Reworking a foundation after floors are built is
dangerous -- for architecture, resources, and product. Thus the graph
supports no APIs. The graph is the correct data structure from which to
evolve generic capabilities.

There's a distinction between the abstract graph data structure and its
implementation. The graph data structure must be abstracted from its lower-
level implementation, and provided with the appropriate set of accessors,
modifiers, etc. Efficiency comes from optimizing repetitive transactions in
the graph implementation. In general, performance optimization comes from
customizing a few critical inner loops; optimization of the vast majority of
code gains little and risks a lot.

The abstract data structure must support graph optimization techniques,
including

-- redundancy removal

-- path optimization

-- unique nodes

-- structure sharing

-- merging nodes

-- node clustering

-- node abstraction

-- implicational structure
-- sparse/dense management

There is, of course, an associated list of content-specific graph
optimization techniques.

** APIs provide generic flexibility *#*
Some of the strengths of an API architecture are:

-- opportunistic flexibility

-- customization to different input sources and output displays
-- modularization

-- serendipitous applications

-- partnerships

It is critical to incorporate APIs that leverage the work of influential
sites (Google, Ebay, Amazon, etc.). These sites will be incorporating
significant metadata as they move toward the semantic web, blurring the
distinction between acquisition and organization.

Right now, to support the generic API architecture, organization of data is a
priori to the user experience; it is a "generic conceptual standardization”.
Customization APIs apply only after the generic graph is built, and are
limited to user controlled sorting and filtering.

What the Semantic Web Needs (technical rationale not included)

The problem that needs to be solved is the conversion of information to
knowledge. An list interface (such as Google) can provide necessary
condensation of vast quantities of information, however, the goal is not data
condensation, it is to present just the right information to meet the user's
objective of generating knowledge.

Organization by clustering is not creation of knowledge, at best it is
creation of metadata that makes knowledge construction easier. The theme
here is that clustering and customization should be viewed as the same
process, rather than separated into components external to the user (textual
organization) and internal to the user (semantic customization). The main
implication for the strawman architecture is that the architectural features
organization and customization should be merged, yielding this (symmetrical)
architecture:

acquisition <==> organization/customization <==> display
I I I I I
APIs APIs I APIs APIs
I
graph

Most desirable would be dynamic clustering driven by user objectives. Note
that there is no feedback loop from display to acquisition; all transactions

are mediated by the organization/customization module which uses the graph as
the central mechanism of structure. The two sets of APIs connected to the
organization/customization module still refer to external and internal (to
the user) information structuring. Uniting the two will require some
research and analysis, outlined next. Multiple APIs for
organization/customization refer to multiple perspectives on the same dynamic
database. Thus the graph does not necessarily represent pre-structured
search information, it represents the multiple requirements of multiple
external and internal views.

This architecture suggests a different type of interface, for which the
acquisition function is hidden from the user. The user formulates the
knowledge objectives, which would include keyword and syntactically
structured search as well as custom and goal-oriented guidance. the
architecture would acquire information in the background as dictated by
semantic needs. The user experience is not one of search-and-organize, it is
one of ask-for-what-you-want.

** Knowledge is Contextual **

A user is dynamically converting information into knowledge through two main
methods: targeted search and browsing. Each makes a fundamentally different
use of the tool, but both have the same strict criterion for success: "Do I
understand the information in the display?" Thus an architecture for the
Semantic Web also includes an educational component (understanding
knowledge), as well as an organizational component (converting information
into knowledge). The semantic gap is the difference between presented and
desired information.

The central issue is that user semantics -- the meaning that is being sought
within the information -- is unique to each user and to each user objective.
Organization of the external structure of information (both syntactic and
metadata) at best presents to the user a generic template of whatever was
input during the acquisition step. A centralized graph data structure built
from this generic information fails to include what the user is seeking.
Generic template information biases all further filtering/customization.
Organizing/clustering acquired information first in terms of the user's
objectives places a semantic component directly within the central graph data
structure.

How can semantic organization be achieved? The Semantic Web is a beginning
attempt to present knowledge in response to queries. Currently the user must
provide explicit knowledge structuring; the task of tool design is to
minimize the burden of this specification, and to minimize the display of
undesired information. What is most needed is semantic clustering,
classification based on knowledge and context, rather than on the structure
of acquired information.

Some relevant techniques include

-- semantic organization:
clustering and categorization informed by the user's objectives
-- semantic associations:
a graph of relationships between knowledge and objectives
-- content integration:
joined semantic categories
-- inferred structure:
deduced connectivity within information
-- coghitive maps:
a graph of the user's understanding of relevant concepts

Contextual Organization

The objective of semantic query processing is to provide the user with what
is implicitly wanted, rather than what is explicitly requested. That is, the
architecture needs to provide contextually organized knowledge, making
information easier for a user to understand. Many techniques have been
explored to achieve this end, and the ultimate solution will probably involve
a hybrid of them all.

Textual clustering makes the argument that classification based on text
shippets and statistical term organization can be quite satisfactory, without
any predefine grouping, pre-build knowledge base, or pre-processing of all
document collections. This approach is solely looking outward, and does not
include any notion of user-defined objectives (thus forcing the strawman
architecture to separate organization from customization). User input is
confined to interaction with the search engine, in the form of the initial
search query. One can add filters by semantic fields, such as pricing, using
what might be called keyword semantics. What is actually needed is a model
of the user's objectives.

What is known about semantic customization includes:

-- user goals and motivations are unique, degrading the effectiveness
of externally grounded information organization

-- user goals are often dynamic, ranging from browsing to realtime
learning

-- metadata is not semantic data

-- filtering out important material (false positives) is a far worse
error than returning unimportant material (false negatives)

-- taxonomic organization is helpful, but does not scale and requires
multiple perspectives

-- users anthropomorphize their machine interactions extensively

-- textual display does not scale

-- relevance is more important than accuracy/correctness

-- visualization tools do not scale

-- semantics is required both during organization and during
customization

-- in the case of end-users, organization and customization are the
same

-- user goals and understanding are unique

-- information accretes

-- distillation of concepts and themes as clustering

The net result is that organization and customization are the same thing.
What is needed is

-- background acquisition driven by customization

-- contextual queries

-- strong dynamic filtering based on semantic criteria

-- goal inference and problem solving

-- hierarchical path completion (top-down and bottom-up problem solving)
-- semantic normalization (using metadata for classification)

The software implications of a semantic organization/customization strategy
include

-- a programming language that supports contextualization
(first-class functions and macros)

-- building customized user models and cognitive maps

-- persistent memory of a user's prior intentions

-- organization based on semantic, goal-oriented requests

As well, our architecture needs to include some standard structural and
taxonomic filtering, including

-- shallow knowledge taxonomies
-- concept/argumentation maps
-- Bayesian spam filter-like technology used to detect irrelevant pages

Content Analysis
To generate semantic knowledge, the content of a document needs

-- categorization

-- clustering

-- entity extraction
-- fact extraction
-- summarization

-- indexing

This can be explored by building small contextual taxonomies (words and
concepts) for some specialized applications (egs: Mathematica, construction
industry's Uniform Building Code, teaching US History, Boeing's CATIA). It
is also necessary to build user models, with dynamic update (machine
learning)

Why the Semantic Organization Problem 1Is Not Solved

The Appendix contains a description copied for the Triplehop website.
Triplehop has made semantic search its primary differentiator. Yet the
search fields and filters that the user fills in are not particularly
different that those available to (and used by) other search engines.

There are several simple reasons why semantic search (and contextual
programming) has not been fully incorporated into software builds:

-- companies are confusing metadata with semantics
-- user profiling is usually a lower priority development need
-- HCI folks are generally not good programmers,
and thus have communication problems
-- cognitive mapping is subtle
-- in general it is believed that users are groups and not individuals
-- semantics is considered too difficult
-- only the most powerful programming languages allow
contextual functions

This last reason is the most important. Languages that permit context to be
incorporated into a computation use first-class functions and dynamic macros.
Almost all widely used languages are not powerful, since they are designed
for "average" programming tasks. As well, many object-oriented languages do
not permit the dynamic construction of classes, the 00 analog of macros.
There are well known reasons for avoiding the power of contextual
programming, none of which apply to a start-up.

Two examples of contextual programming in current use are the Yahoo
storefront (around 20K? stores) and most of the airline reservation industry.
As well, contextual design is necessary for parallel processing programs.

Quick Analysis of Competitive Products

These lists are certainly not comprehensive and, as quick overviews, may
contain significant errors.

Taxonomy of Services

Business
document management
entrieva, 80-20, hyperwave
search and organize
copernic, northernlight, vivisimo, youramigo, triplehop

knowledge

thebrain, exsys, venetica, semagix, spotfire
visualization

anacubis, objectfx, xplane
training

conceptsystems, banxia, macroVU

General

visual organization of search

TouchGraph, Kart00, Groxis
visual organization of data

Hypertree, MapNet, WebMap,

netviz, chartworksinc, tableausoftware

conceptual relations

CIOS, Interspace

Specialized
marketing intelligence
intelliseek
document/data mining
DocMINER, inxight
specialist tools
Cytoscape, TextArc, Mathematica

Somewhat orthogonal competitive alternatives

-- corporate accounts and cash-from-customization (data mining)
entrieva, 80-20, hyperwave
copernic, northernlight, vivisimo, youramigo, triplehop
thebrain, exsys, venetica, semagix, spotfire
DocMINER, inxight

-- visual organization of data, expanded API data-types (multimodal)
Hypertree, MapNet, WebMap,
netviz, chartworksinc, tableausoftware
anacubis, objectfx, xplane
TouchGraph, Kart00, Groxis

-- education and building a product experience base (tools)
conceptsystems, banxia, macroVU
Cytoscape, TextArc, Mathematica

-- mental mapping, personalization of knowledge (marketing intelligence)
CIO0S, Interspace
intelliseek

Educational Market -- an Irresistible Teacher's Tool
** Reducing Cognitive Load is the Long Term Win **

Strategy
provide a service to the teacher that is irresistible
target all teaching levels, especially college courses
seed familiarity rather than build a profit center
high level authoritative certification of educational approach
now is an appropriate time to diversify the product offering

Gotchas
high school teachers do not have time to use tools,
even excellent tools
government schools are not a stable profit center
it is undesirable for teachers to become better teachers

Educational Theory
situated learning
social learning
individualized instruction
non-sequential modular teaching

Educational Software Tool/Teacher's Assistant
Make a map of your subject matter
let students roam the dynamically pre-organized territory
teachers can dynamically monitor student activity with MetaMap

LessonGraphs use it to organize lesson plans
ProfileBuilder use personalization for each student
TrainTrack use dynamic reorganization based on student mastery

TaskMaster automated updating of the teacher's metamap

Extensions
knowledge acquisition (MediaMaster)
student map of learning/school-work
canned half-year exploratory "lessons™
student evaluation wizard
built-in tutor
an API for macroVU's "Can Computers Think"
task-specific interface

Instructional Architecture and Tools

performance objectives

/ \\\
student task <==> knowledge
modeling analysis acquisition
\\ \\ /
\\ activity sequencing

\\ I
training manager
I I I I
I I I I

\% vV \% \%
profile task train media
builder master track master
Corporate Training Market -- building familiarity

** Corporate Data is the Big Win **

APIs to corporate protocols for
documents
email
ORACLE and other databases
scripting languages in general use
SQL
windows-1like tree display

in-house staff to take care of special clients
relations
marketing and sales
support
education
customization

Corporate Training Market

-- corporate training ~$50B market
-- DoD training ~$30-50B
-- use corporate training to gain corporate data customers

APPENDICES

Triplehop

A NY-based contextual enterprise search engine.
Primary motivation:

"The relevancy of search results depends on the task at hand and the intended
use of the information collected, and thus results change based on context."

Technical description:

"The basic objective of a predictive algorithm for collaborative filtering
(CF) is to suggest items to a particular user based on his/her preferences
and other users with similar interests. Many algorithms have been proposed
for CF, and some works comparing sub-sets of them can be found in the
literature; however, more comprehensive comparisons are not available. In
this work, a meaningful sample of CF algorithms widely reported in the
literature were chosen for analysis; they represent different stages in the
evolution of CF, starting from simple user correlations, going through online
learning, up to methods which use classification techniques. Our main purpose
is to compare these algorithms when applied on multi-valued ratings.
Experiments were conducted on three well-known datasets with different
characteristics, using two protocols and four evaluation metrics,
representing coverage, accuracy, reliability and agreement of predictions
with respect to real values. Results from such experiments showed that the
memory-based method is a good option because its results are more precise and
reliable compared with the other methods. Online Learning methods exhibit a
good level of accuracy with low variation, which makes them reliable models.
On the other hand, Support Vector Machines generate predictions with
acceptable agreement; however, their accuracy depends on the characteristics
of the input data. Finally, Dependency Networks did not offer good results
when applied on multi-valued rankings. The run experiments confirm that the
characteristics of datasets keep being an important factor in the performance
of methods."

Evaluation of Relevant Free Java Software

Bootstrapping capabilities using open-source, public domain software provides
additional low-effort APIs and development tools. Low-overhead evaluation of
available compatible software not only provides growth potential, it also
helps to define the capabilities that are generally available to the
competitive field. Some examples from sourceforge.net:

JUNG

the Java Universal Networks/Graph API; a Java-based open-source software
library designed to support the modeling, analysis, and visualization of data
that can be represented as graphs. Its focus is on mathematical and
algorithmic graph applications pertaining to the fields of social network
analysis, information visualization, knowledge discovery and data mining.

JGraph

the most powerful, lightweight, feature-rich, and thoroughly documented open-
source graph component available for Java. It is accompanied by JGraphpad,
the first free diagram editor for Java that offers XML, Drag and Drop and
much more.

TouchGraph

a set of interfaces for Graph Visualization using spring-layout and
focus+context techniques. Current applications include a utility for
organizing links, a visual Wiki Browser, and a Google Graph Browser which
uses the Google API.

BNJ: Bayesian Network Tools in Java

an open-source suite of software tools for research and development using
graphical models of probability.

OpenCyc

the open source version of the Cyc(r) technology, the world's largest and
most complete general knowledge base and commonsense reasoning engine.
OpenCyc can be used as the basis for a wide variety of intelligent
applications.

Algernon-]

a rule-based reasoning engine written in Java. It allows forward and
backward chaining across Protege knowledge bases. In addition to traversing
the KB, rules can call Java functions and LISP functions (from an embedded
LISP interpreter)

jatha

a Java library that implements a large subset of Common LISP, including most
of the datatypes (e.g. packages, bignums). The API allows access to LISP
from Java. Jatha is useful as a fast, embedded LISP language, or as a
standalone LISP.

FreeMind

A mind mapper, and at the same time an easy-to-operate hierarchical editor
with strong emphasis on folding. These two are not really two different
things, just two different descriptions of a single application. Often used
for knowledge and content management

Some Experiences

I ran into illuminating examples of the essential problem of meaning while
trying to answer these questions:

1980s

for National Geographic:
How can we find the picture that we want from a database of 14M
pictures?

for Collier's Encyclopedia:
How can we find and catagorize multimedia to illustrate every article
in the encyclopedia?

for the CIA:
How can we track every publication in the world for intelligence
information?

for the Air Force Office of Scientific Research (AFOSR):
How can we answer dynamic queries about strategy by looking at a
database?

for Stanford:
How can we discover and correct user errors?

1990s

for the Office of Naval Research (ONR):
How can we be aware of the meaning of data from a diversity of sensors
especidlly in the middle of chaos (war, fire, sinking ship, etc)?

for Autodesk:
How can we make complex CAD design information more intelligible?

for Boeing:
How can we know that each of 2M parts meets specification
and is going to be delivered on time?

for Interval Research:
How can the design of computation and computers be made easier by
reducing the hierarchy of languages from specification to actualization?

for BTC:
How can we design efficient semiconductor circuitry with 100M design
elements?

The answer to National Geographic (circa twenty years ago!) was to associate
metadata with each picture. This was an academic reply, since the effort to
do so was forbidding. Worse, however, was the forbidding technicality that
each picture could be associated with thousands of different metatags.
Collier's had the tag structure in the form of articles, and it was even
tractable to identify the cross-article tagging with about 50 outgoing
references per article. However, multimedia lacked metatags, but even with
metadata, there was no assurance that these tags corresponded to articles.
The CAI too had a similar problem, but since they were only interested in
text, the solution was a semantic search engine that eventually formed the
basis of the Yahoo engine. AFOSR's problem also required the association of
meaning with stored information, and the solution was an expert system with a
semantic inference engine.

The examples from the 1990s, however, changed the playing field, moving the
problem from one of organization of information to one of customization of
knowledge. These problems too required semantic information, but in addition,
the organized information needed to be cognitively accessible. Solutions to
the automated construction of cognitively accessible knowledge are not yet in
reach.

