
1

DESIGN OF MICROELECTRONIC INTEGRATED CIRCUITRY

William Bricken

September 2001

CONTENTS

Conceptualization and Modeling

Reducibility and Replicability

Synthesis and Optimization

Criteria of Merit

Verification

Complexity

Varieties of Abstraction

Table I. Types and Examples of Abstract Models

Behavioral Synthesis

Structural Synthesis

Physical Synthesis

Abstraction and Physicality

Testing after Fabrication

Diagrams

Figure I. IC Production Phases

Figure II. IC Design Phases

References

There are four general phases to the production of integrated circuits (ICs):

1. Design

converting an idea into a validated physical model

2. Fabrication

converting a model into a physical circuit

3. Testing

assuring that physical fabrication has not introduced error

4. Packaging

converting a validated physical device into a salable product

The Losp/Pun suite of tools addresses only the first phase, Design. However,

the generation of test vectors for Phase 3 is also accomplished by Losp/Pun

design verification tools.

There are three general aspects to circuit design:

1. Conceptualization and modeling

converting an idea into a formal model

2

2. Synthesis and optimization

converting a formal model into an efficient transistor network

3. Validation

assuring that design has not introduced error

The Losp/Pun suite addresses all aspects of design.

Conceptualization and Modeling

Circuitry begins as a mathematical model; the objective of conceptualization

is to express a design idea in a language that can readily be converted into

physical circuit behavior. Design ideas for ICs are naturally constrained to

those tasks and processes which we know circuits can perform. Modeling

involves identifying the best language to express the idea, and then actually

converting the idea into a formal description which is sufficiently specific

to allow the construction of physical realizations that perform the behavior

intended by the design.

Unlike entertainment, marketing, and other creative industries,

conceptualization in the microelectronics industry is drastically limited by

the available formal tools and languages. Currently, these tools have

evolved organically into complex assemblages which lack a coherent formal

structure. As a consequence, formal verification tools are seen to be a

separate product, one which is applied in concert with more dated tools.

Current tools are not well suited for design of multilevel circuits since

they lack some essential capabilities, especially minimization of logic

networks. Losp/Pun provides some of these missing tools, including network

minimization.

Networks of transistors can do very little; they can propagate binary

signals, toggle the state of binary signals, store binary values, and

sequence these events over time, when time is defined by a synchronous

internal clock. The formal language which describes this range of behavior

is timed binary logic. Timed binary logic is extremely limited in its

expressability, which is essentially what can be said with sequences of

signals selected from two states, positive and not-positive. Binary logic is

the simplest formal symbol system of any interest at all, transformations

expressed in common language as {NOT, AND, OR}. Timed sequences of binary

logic are simply temporal replications of single uses of this simple formal

system.

The dominant languages for expressing models of ICs are hardware description

languages (HDLs), formal systems which are specifically designed to capture

the behavior of physical transistor networks. These languages support the

parallelism native to physical devices, and the hierarchical abstraction

necessary for understanding and modeling massive replication of binary

3

transformations. HDLs are hybrid, expressing both mathematical structure and

physical behavior. The entire conceptual design process is focused on

generating an HDL description of the intended behavior of the IC.

Like HDLs, Losp/Pun expresses mathematical structure; unlike HDLs, it

provides automated support for the other design phases. To achieve backward

compatibility, Losp/Pun inputs and outputs conventional HDL and netlist

specifications, thus it can be used as a black-box attachment to conventional

design processes.

Reducibility and Replicability

The two factors which contribute substantively to the power of timed binary

logic are reducibility and replicability.

The ways in which formal symbol systems are constructed and manipulated

permit them to be translated one to another. Almost all formal systems can

express binary logic, and many can be reduced to only binary logic.

Technically, most formal languages are computable, that domain of

functionality defined by timed binary logic. This means that many different

formal systems could be used to express a given behavioral design, some

examples being binary equations, binary matrices, schematics, and programming

languages. The program Mathematica demonstrates that almost all computations

of higher mathematics can be expressed by replicated binary logic.

The magic of microelectronics is that it can replicate simple binary behavior

incredibly quickly, performing logical transformations billions of times each

second. As well, all components of an integrated circuit act in parallel, at

the same time. Thus every transistor in a million transistor network can

produce a billion potential transformations each second.

Microelectronics rests on massive replication of simple binary actions.

However, our conceptualization of these processes can be expressed in complex

formal languages such as programming languages, finite state machines, logic

equations, and hardware description languages.

Synthesis and Optimization

The objective of circuit synthesis is to generate a highly detailed model,

sufficient to provide exact fabrication specifications. In contrast to

conceptual design, logic synthesis incorporates both mathematical and

physical models. At the synthesis stage, physical characteristics are

introduced into the behavioral model built by the modeling process. The

functional description, expressed in timed binary logic, is extended

informally by models of physical processes such as geometric layout,

4

placement and size of wiring and connections, signal transmission speed,

power consumption, and the many constraints of physical fabrication.

IC synthesis, once a design idea is expressed in a model, consists of

identifying among many trade-offs which are most desired, and then modifying

the formal model accordingly. Optimization of an IC is not a mathematical

optimization in which a best solution is found. Rather it is a constant

compromise between many competing design goals. All optimization is focussed

on models of physical performance, such as size, speed, power requirements,

and manufacturability of a circuit. These qualities do not have simple

relationships.

The synthesis phase must provide step-by-step verification, assuring

absolutely that no design changes or elaborations deviate from the behavioral

specification. Synthesis must also verify models which deviate significantly

from the formality which makes them tractable. To cope with this, designers

usually divide synthesis into two supposedly orthogonal components, a

technology independent phase, logic synthesis, and a technology dependent

phase, technology mapping. Unfortunately this division is artificial and,

for large designs, dysfunctional.

Criteria of Merit

Generally, optimization increases the merit of a design, the competing

criteria of merit being:

Performance

the speed and efficiency of computation

Area

the number and layout of transistors and wiring

Testability

the ease of verifying absence of manufacturing defects

Power

the physical effort it takes to run the IC

Competitive marketplaces make performance important; cost of manufacturing

makes area important; the huge cost of performance failure makes testability

important; and the prominence of portable computers makes power usage

important. These criteria can be summarized as: cost-of-fabrication is of

critical importance to the profitability of an IC.

From a market perspective, the criterion of merit is revenue life, the length

of time during which an IC product generates commercial revenues. In

5

microelectronics, revenue life has been rapidly shortening, with improved

versions of products fabricated on monthly rather than yearly cycles.

Revenue life dictates that time-to-market dominates all other considerations,

such as cost overrun, performance quality, and logic optimization. Time-to-

market, in turn, creates these criteria of merit:

Rapid design

converting conceptualization to a physical model quickly

Error-free design

reducing errors and thus design cycles before fabrication

Verifiable design

assuring that rapid design does not introduce error

Design for manufacturability

designing with simplicity for high fabrication yield rates

Competition is sufficiently rigorous in the microelectronics industry that

even with the above time-to-market constraints, the more technical criteria

of merit listed above must also be met.

Due to complexity and rapidity, IC design requires sophisticated software

tools. Losp/Pun is a software tool suite which has been specifically

designed to meet time-to-market needs, while at the same time out-performing

existing tools on technical criteria such as optimization of performance,

area, and testability.

Verification

Prior to the costly fabrication step, IC models, both formal and physical,

must be verified as meeting the design objectives. Each model, whether

conceptual or logical or physical, is verified for every possible input

configuration. Verification is intended to identify any design errors

introduced during the design phase. The cost of correcting design errors

prior to fabrication is relatively low, since models can be simulated in

software and in reconfigurable hardware.

Verification can be achieved by two different methods: simulation and formal

proof.

Simulation uses concrete test vectors to examine the behavior of a model

exhaustively. Simulation applies different sets of input patterns while

watching for the appropriate accompanying output patterns. The number of

input patterns may be huge, for large circuits simulation may take days. As

designs become more complex, simulation becomes more ineffective.

6

Very large designs require formal methods. Formal verification achieves the

same result as simulation by using a model which provides transformations on

unbound variables, on inputs which may have either binary value. Formal

verification requires consistent formal models throughout the design phase.

Losp/Pun integrates formal verification into every transformation step,

assuring continuously correct modeling.

Complexity

Today, the primary method for dealing with complexity is IP cores, fairly

large pre-designed and verified functional components which can be assembled

as build-blocks. Losp/Pun provides lower-level tools for the construction

and contextual modification of functional cores.

Another prominent technique for management of complexity is design

decomposition, breaking a design down into manageable components. Since

conceptual design is usually expressed as component functionalities, such as

data and control, a natural high-level decomposition is usually available.

However, once the design is refined down to the structural level, the

conceptualization gives way to detailed formal and physical constraints.

Losp/Pun excels at identification of low and medium level structural

components. Losp/Pun is not a top-down conceptual design tool, instead it

takes a finished rough design prior to timing and optimization, and returns a

design ready for physical modeling. Like other IC synthesis tools, Losp/Pun

converts high-level descriptive languages into logic networks, automatically

improving the design along the way. Unlike conventional tools, Losp/Pun

provides

1) efficient path-oriented network minimization,

2) powerful abstraction capabilities,

3) integrated formal verification, and

4) rapid generation of candidate circuits.

An exponential relationship is one in which one quantity increases hugely

while another makes only a small change. Exponential relations are

computationally intractable, they are practical only for small collections.

Input patterns have an exponential relationship to the number of input

variables and registers in an IC. Adding a few variables can increase the

number of possible input patterns enormously. Almost all synthesis,

optimization, and verification algorithms are exponential, they are simply

infeasible for large circuits.

Gigahertz processing rates make it infeasible to examine all possible states

in sequential circuits, just as exponential algorithms make it infeasible to

examine large combinational circuits. The history of synthesis,

7

optimization, and verification tools is one of heuristics and patches,

approximations and fixes, addressing a mathematical puzzle which is

impossible to solve efficiently. Thus, abstraction and hierarchical

decomposition have become necessary tools to deal with overwhelming

complexity.

The two other dominant methods for coping with circuit complexity are

committing hundreds of person days to a design and accepting poor synthesis

results.

Varieties of Abstraction

A model is an abstraction, it expresses with symbols what happens in physical

reality. Models rest on selected blindness, intentionally ignoring some

constraints in order to express others in a form simple enough for our

understanding. Models used in the synthesis process fall into three groups:

Architecture Models

the set of computational operations

Logic Models

the formal description of signal behavior

Geometry Models

the circuit constrained by a physical layout

Each group also embodies three perspectives on its model:

Behavioral Perspective

the functionality expressed formally

Structural Perspective

the interconnection of components

Physical Perspective

the transistor network in silicon

We thus have many phases of abstraction during design, each with its own

languages and each with its own set of required skills. Such is complexity.

Examples of these languages and tools are presented in the following chart:

 architecture logic geometry

behavioral software state machines Losp/Pun

structural block diagrams schematics logical effort

physical placement routing fabrication

Table I. Types and Examples of Abstract Models

8

Behavioral Synthesis

Behavioral/architectural synthesis is the high-level design technique which

defines the set of computational objects and their interrelationships. This

includes identifying the necessary resources used by necessary objects,

scheduling and timing of resource use, and binding resources to processes.

Connectivity is expressed as data paths; computation, as control units. The

details of each is specified by the structural perspective.

Computer programming languages can provide high-level abstraction. Program

data structures model the intended architecture. Program execution models

the intended behavior. Programmed models can be designed at any level of

complexity or of abstraction. The data structures and processes which

simulate hardware behavior use the instruction set of the general purpose

processor. This technique allows design of large scale abstractions and wide

bus-widths while avoiding the complexities of bit-level processes, gigahertz

clock cycles, binary representations, physical behavior, and transistor

networks. Since programs are processed by a serial vonNeumann processor,

they do not simulate hardware behavior in any way.

Behavioral/logic synthesis is the specification of intention using formal

languages: state machines, logic networks, Boolean equations, truth tables,

and HDLs. Design optimization occurs at this level. The formal systems are

high-level descriptions which map to low-level binary logic. They literally

define the conceptual vocabulary of the designer.

For example, a finite state machine (FSM) is a collection of states and of

specified transition conditions which permit change from state to state. A

standard example is the logic in a vending machine which tracks how much you

have put in, how much you owe, and in what ways you can bring the two into

balance. Expressed as a graph, this FSM would have states/nodes

corresponding to all the combinations of acceptable coinage and changes/links

corresponding to what happens when another coin is deposited.

This high-level description translates very awkwardly into large networks of

logic gates and registers, in other words, into highly inefficient circuitry.

Optimization is mandatory since high-level conceptual descriptions do not

efficiently translate into low-level transistor networks. Optimization is

the process of modifying a formal description of the structure of a

specification within the rulers of that formal language which maintain

functional invariance

Behavioral/geometry synthesis to date is undefined by EDA tools. Losp/Pun is

such a behavioral geometry, it defines logical behavior in terms of geometric

connectivity.

The boundary mathematics implemented within Losp translates a conventional

behavioral specification into a configuration of nested enclosures, or

9

boundaries. Pun translates this into a graph. Losp/Pun then transforms the

geometric connectivity of the graph in ways which achieve the same results as

the conventional tools of behavioral/logic synthesis. Given a limited

selection of criteria of merit for a design, Pun uses Losp to generate a

candidate circuit structure which closely aligns with the desired criteria.

Formal verification is maintained throughout, as is a close mapping to a

realizable circuit (this is in contrast to BDD technology). Thus, Losp/Pun

uses geometric logic to achieve circuit optimization.

Structural Synthesis

Structural/architectural synthesis defines the functional interconnections

between structural components, how the behavioral model is assembled as a

model of physical processes. Flowcharts and block diagrams are typical tools

of this type.

A flowchart specifies, often in detail, the mathematical transformations

performed on abstract data structures. Flow charts identify the logical flow

of control, as well as abstract processes such as numerical addition.

Tightly constrained programming languages can be used to express flowchart

dynamics. Transforming flowcharts into logic networks is fairly direct; it

is the quality of the flowchart architecture which defines the quality of the

accompanying circuitry.

Structural/logic synthesis identifies the logic network, the gates and wires

which constitute the IC fabrication model. HDLs and more visual schematic

diagrams depict logic processing networks. This aspect is the one most

probably visualized when we think of a designer toiling over sets of arcane

symbols.

A schematic is a diagram which shows logic gates, and the wires which connect

them. Schematics are blueprints, but not of the fabrication process. They

are a low-level picture of the mathematical functionality, accented with most

of the logical accoutrements required for physical functioning (input ports,

sources and grounds, clocks, busses, heat sinks, and the like). All

structural/logical tools are hybrid, a somewhat challenging mix of logic,

wiring, and physical necessity. This is perhaps the most awkward of the

synthesis techniques, somewhat due to the difficulty of the modeling task,

somewhat due to weakness inflicted by hardware evolution.

Structural/geometry synthesis includes converting the abstract logic network

into a network of physical devices, specifically a transistor network. Here

the non-logical restrictions placed on a logic network by a physical topology

are added. Primary examples of non-logical geometry are the FPGA

architecture, which provides a uniform and configurable substrate, and ASIC

sea of gates architecture, which also provides a uniform substrate, but one

that is physically wired during fabrication.

10

Logical effort is a technique which identifies efficient relationships

between logic and transistor networks. Given a desired functionality

expressed by a logic network, logical effort separates the constraints placed

on a transistor layout by the logic, and those attributable to the physical

aspects of transistors such as power and delay. It then computes a close-to-

optimal transistor geometry which achieves the logical intent.

Physical Synthesis

Physical synthesis, in each of the three modeling groups, involves converting

all other abstract and formal models into a model which can be physically

fabricated. Converting a model to a physical realization very often

undermines the properties of the abstract model. Thus, it is now very common

to reduce a model to physicality using relatively expensive reconfigurable

hardware devices, prior to custom fabrication.

Physical/architectural synthesis is the alignment of a formal structural

description with the physical form of hardware. One dominant aspect is that

of placement, determining where in the physical layout each abstract

component should be placed. Naturally, physical placement is highly

determined by the physical architecture which supports the functional circuit

behavior.

As a simple example, it is usually preferable to place components which share

local i/o signals in close physical proximity. Another example is mapping

logical structure onto physical architectures which are not based on logic

gates. FPGAs provide look-up tables (LUTs) which compute any function of a

given number of variables. A four-input LUT is insensitive to the collection

of logic transforms, placement instead focuses on groups of four signals

transformed by a set of gates.

Physical/logical synthesis determines how signals are physically connected.

The paramount aspect is routing, determining which wires in a physical

substrate are used to connect which logical processes. Placement and routing

are generally considered to be tightly coupled; where are component is

placed and which wires it uses are determined concurrently. During

fabrication, necessary routing resources directly influence the number of

fabrication layers, since wires which cross in two dimensions must be

separated in the third dimension.

In FPGA hardware architectures, the computational substrate provides a

generic wiring resource. In today's large designs, wiring is a scarce

commodity. Components are placed so as to use wiring judiciously. Sometimes

lack of placement locations forces long wires between functionally adjacent

components. When wires differ in length, the time that it takes for a signal

to traverse each wire differs. This interjects significant difficulties in

the coordination of timing across the circuit. Thus routing is both

11

critically determined by the available architectures and critical to

efficient functioning.

Physical/geometric synthesis defines the configuration of fabrication tools,

such as the construction of masks and layers, which define the physical

template used to manufacture a chip.

Abstraction and Physicality

Traditionally, behavioral and structural design have been separated from

physical design, under the assumption that the physical design process mimics

the behavioral intention. This assumption has been supported in two

directions: physical components are built to replicate simple structural

descriptions, and structural models are designed to align with simple

physical behaviors.

Today, complexity has driven abstraction and physicality together, IC

conceptualization must include aspects of physical fabrication from the

start. A difficulty is that including physical synthesis in the languages

and tools of conceptual design undermines the intended use of the tools, that

of capturing design ideas in understandable formal models. The physical

behavior of circuits, in return, is poorly expressed by symbolic models.

Optimizations gained by manipulating formal models, behavioral and

structural, are often lost when these models are converted to a physical

basis. Thus, the problems addressed by EDA software have migrated, requiring

new approaches to different optimization criteria and constraints.

Design requires efficient and effective automated optimization; although

designers are excellent at high-level description, the sheer volume of lower-

level details and the substantial difficulty of using existing optimization

techniques makes this phase well-suited for advanced automation. High-level

descriptions connect to human understanding; low-level descriptions achieve

technical efficiency. Losp/Pun is a low-level tool.

Losp/Pun accepts behavioral and logical descriptions of IC

conceptualizations. Its input is a design expressed formally, but prior to

introduction of any physical or structural constraints. It then provides, in

interaction with a designer, the possible circuit structures which maintain

validity. Whenever a design must be fine-tuned, it provides formal local

transformations to achieve design goals. Losp/Pun can move rapidly across

many different structural varieties while holding functionality invariant.

Further, the functional networks generated by Losp/Pun provide strong

guidance to physical placement and routing. Losp/Pun integrates all phases

of design, from conceptual modeling through verification.

12

Testing after Fabrication

Fabrication of circuitry at very small scales is prone to physical defects.

Dust, substrate irregularities, and random microscopic variations within the

fabrication process can each undermine the integrity of the sub-micron wires

and transistors. Every manufactured circuit must be exhaustively tested to

assure absence of fabrication errors. The yield of a fabrication process is

the percent of error-free chips produced. This may vary from 10 to 90

percent, depending on the complexity and size of the circuit, the fabrication

technology, and the details of the fabrication process.

In order to physically test a manufactured circuit, every transistor in the

circuit must be exercised, its outputs compared to what is expected.

Fabrication defects have dominant characteristics; since they are

essentially random, they are often isolated in single gates. The simplest

form of testing is to test each gate individually. A more complex testing

regime examines gate performance in pairs and in groups, in effect

identifying defects which occur only during interactions between sets of

gates. Exhaustive interactional testing is intractable, it is too complex to

achieve. However, known defect types for particular fabrication processes

can be targeted for testing regimes.

Aside for a physical mechanism which permits submission of input test

vectors, the test vectors themselves must be determined and constructed.

These can usually be constructed using logic synthesis tools.

Optimization of circuit structure is mandatory for testability. In

particular, reconvergent paths, those which split at some internal output and

then rejoin as inputs to the same gate, are untestable. Optimization can

remove or reduce reconvergent paths.

Losp/Pun optimization constructs testable circuits. It also constructs test

vectors to exhaustively cover the possible states, and errors, for each gate.

Diagrams

Design flow is essentially sequential, although latter steps must often be

considered in earlier design choices. Each design step is verified for

correctness. Should a design error occur, earlier stages are revisited

iteratively.

13

Design <----

 | |

 v |

Fabrication <---- iterative refinement

 | |

 v |

Testing -----

 |

 v

Packaging

Figure I. IC Production Phases

Conceptualization/Modeling <----

| |

v |

Synthesis/Optimization <---- iterative refinement

| |

v |

Validation -----

Figure II. IC Design Phases

References

G. DeMicheli (1994) Synthesis and Optimization of Digital Circuits,

McGraw-Hill.

G.D. Hachtel and F. Somenzi (1996) Logic Synthesis and Verification

Algorithms, Kluwer.

C. Heater (2001) Personal communication.

R.H. Katz (1994) Contemporary Logic Design, Cummings.

