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A (PARTIAL) THEORY OF 2D-POINTS

Objects:

a, b ,c  POINT

Functions:

Scale, Transpose, Distance

Relations:

IsEqualTo,

IsLeftOf, IsRightOf,

IsAbove, IsBelow,

IsHorizontalWith, IsVerticalWith

Definitions using the Theory of Real Numbers

POINT:

(x,y) a pair of REAL numbers

Scale[a POINT by a REAL factor]:

newpoint.x = factor * point.x

 newpoint.y = factor * point.y

Translate[a POINT by a POINT deviation]:

newpoint.x = deviation.x + point.x

newpoint.y = deviation.y + point.y

Distance[from POINT1 to POINT2]:

newreal = Sqrt[ (point2.x - point1.x)^2

  + (point2.y - point1.y)^2 ]

POINT1 IsEqualTo POINT2:

(point1.x = point2.x) and (point1.y = point2.y)

POINT1 IsLeftOf POINT2:

(point1.x < point2.x)

POINT1 IsRightOf POINT2:

(point1.x > point2.x)

POINT1 IsAbove POINT2:

(point1.y > point2.y)



POINT1 IsBelow POINT2:

(point1.y < point2.y)

POINT1 IsHorizontalWith POINT2:

point1.y = point2.y

POINT1 IsVerticalWith POINT2:

point1.x = point2.x

Definitions using the Theory of Pairs of Reals

POINT:   

(x,y) a PAIR of REALS

Scale[a POINT by a REAL factor]:

newpoint = factor * point

Translate[a POINT by a POINT deviation]:

newpoint = deviation + point

Distance[from POINT1 to POINT2]:

newreal = Sqrt[ (point2.x - point1.x)^2 + (point2.y - point1.y)^2 ]

POINT1 IsEqualTo POINT2:

point1 = point2

POINT1 IsLeftOf POINT2:

point2 - point1 = (+,y)

POINT1 IsRightOf POINT2:

point2 - point1 = (-,y)

POINT1 IsAbove POINT2:

point2 - point1 = (x,+)

POINT1 IsBelow POINT2:

point2 - point1 = (x,-)

POINT1 IsHorizontalWith POINT2:

point2 - point1 = (x,0)

POINT1 IsVerticalWith POINT2:

point2 - point1 = (0,y)



Operator overloading permits both reals and vectors to use + and *.  Note the

symbol overloading in permitting + and - to be objects with a Class meaning

as well as operators with a Method meaning.   The use of free variables in

the descriptive pattern of a point permits reference to arbitrary values,

without having to commit to any specific value.  Could be implemented with

lazy evaluation, ie: if the pattern is free, then don't make the function

call.

A natural POINT language and theory makes talking about and coding with

points easy.  The technical details of making points work by using REALS (for

instance) are hidden. That is not to say that we want to talk about or code

in points.  There is an abstraction hierarchy, we can add and remove layers

as we please.

By building a Vector Class, we can speak in a more convenient language, and

we never have to worry about x and y details.  We can even forget about

dimensionality, since we assume that 3D vectors will be handled

appropriately.  This has nothing to do with implementation. Vectors can be

implemented by Lists, by Arrays, by Reals, or even by Bits, by

SystolicArrays, or by FingersPointingInCyberspace.

The conceptual win is that the implementation details are totally segregated

from the mathematical language, and the mathematical description language

funnels and constrains our imagination into a conceptual model.  One of the

major differences between engineer and artisan is that the engineer uses

models constrained by external reality, while artisans use models constrained

by internal reality.

If we accept engineering as using real world models, sophisticated CAD must

also know about real world models.  When we get beyond POINTS and LINES, we

will encounter WEIGHTS and MEASURES.

USING THEORY OF PAIRS AS A GEOMETRICAL BASIS

The Theory of Pairs

Objects:   

a,b,c,...  PAIRS

composed of  x,y,...  ATOMS

Functions:

Constructor:  {x1,x2} to pair up

First:        First[{x1,x2}] = x1

Second:       Second[{x1,x2}] = x2



Relations:

Atom[x]

Pair[a]

Axioms:

Generate pair:  Pair[a] == Atom[a.x1] and Atom[a.x2] and (a = {x1,x2})

Disjoint:       not (Atom[x] and Pair[x])

Unique:         {x1,x2} = {x3,x4}  ->  (x1 = x3) and (x2 = x4)

Computational Techniques:

Substitution:   (x1 = x3)  ->  {x1,x2} = {x3,x2}

Decomposition:  Pair[a]  ->  a = {First[a], Second[a]}

Interpretation for Planar Geometry

POINT:   

a PAIR of REALS

LINE:

a PAIR of POINTS

Pointing:

(x1,x2)

Lining:

(p1,p2)

Operator overloading and internal structure determines the meaning of

parentheses.

Relations:

Real[x]

Point[p]

Line[d]

Line[d] == (Point[d.p1], Point[d.p2])

  == ((Real[d.p1.x1], Real[d.p1.x2]), (Real[d.p2.x1], Real[d.p2.x2]))

Point[p] == (Real[x1], Real[x2])

First[d] == Point[d.p1]

First[p] == Real[p.x1]

Second[d] == Point[d.p2]

Second[p] == Real[p.x2]



Using Points and Heading (a vector)

That a LINE can be described by a POINT and a VECTOR just means that we are

changing our interpretation of the basic underlying mathematical structure.

That is, nothing changes but the implementation!

LINE:

a mixed PAIR of (POINT, VECTOR)

POINT:

a PAIR of REALS

VECTOR:

a mixed PAIR of (HEADING, REAL)

HEADING:

a PAIR of REALS

Structure of a Line defined by a Vector:

Line[d] == ((REAL, REAL), ((REAL, REAL), REAL))

By building up the internal structure of our definition, we can develop a

syntax that is concise.  Trading off internal structure (definition) and

external structure (rules) defines the evolution of mathematics.

The main idea is that the place we chose to stop and turn the implementation

over to the machine can always be reached by syntax converters (pre-

processors, compilers).  There is no need to hobble our model with machine

dependencies, or even with language dependencies. We can chose to model lines

with point-point pairs, or with point-vector structures, or with whatever is

easiest for our conceptualization. Syntax conversion generically modifies our

model to fit the implementation architecture of choice.  All this is called

isomorphism: the organization stays the same, while we twiddle with the

structure to achieve portability, efficiency, and understanding in different

contexts.

MODELING LINES WITH TURTLE VECTORS

STATE:

a mixed PAIR of (LOCATION, HEADING)

LOCATION:

a POINT, which is a PAIR of REALS

HEADING:

a VECTOR, which is a PAIR of REALS



Structure:

State[m] == ((REAL, REAL), (REAL, REAL))

Line[d] == ((REAL, REAL), (REAL, REAL))

Path[t] == (State[0.p], ..., State[current.p])

In this model, lines are not in the definition, they are in the rules.  A

LINE is the difference between your current location and your previous

location.  This works because the origin is shifted dynamically, which means

State[m] = ((0,0), HEADING)

at all times except during the transformation called translation.  The

difference is recorded in the PATH.

Functions:

Translate[m] == State[m1.p1] = State[m2.p1]

and

    Path[t] = Path[t] + State[m1]

ADD methods for:

CONVERSION from one representation to another

IMPLEMENTATION pass off to machine

GENERATORS, etc.



WORK AND IDEAS FROM OTHER FOLKS

Paraphrased from Meyer

class POINT  with

x,y REAL

T,S,D FUNCTION

S[REAL factor]  is (*scale by factor*)  

x := factor * x

y := factor * y

T[REAL dx, REAL dy]  is (*translate by dx and dy*)

x := x + dx

y := y + dy

D[POINT other]  is (*distance to other point*)

Sqrt[ (x - other.x)^2 + (y - other.y)^2 ]

Paraphrasing Bundy

Triangle[a,b,c]  is

not[a = b]] and not[a = c]] and not[b = c]]

  and

not[collinear[a,b,c]]

Symmetry:

line[a,b] = line[c,d] -> line[a,b] = line[d,c]

Familiar axioms:

equality of angles and lines

congruence

parallelism

Triangle[a,b,c] = Triangle[d,e,f] -> line[a,b] = line[c,d]

Angle[a,c,b] = Angle[d,f,e]

  and

Angle[c,a,b] = Angle[f,d,e]

  and

Line[b,c] = Line[e,f]  ->  Triangle[a,b,c] = Triangle[d,e,f]



Some fragments of Boundary Representations for 3D

VERTEX:

(v POINT;

 alternative:  x,y,z NUMERICAL)

FACE:

(f PLANE;

 alternative: a,b,c NUMERICAL;

(ax + by + cz + 1 = 0) )

EDGE:

(e LINE;

(x = (y - y0)/a = (z - z0)/b) )

POLYHEDRAL TOPOLOGY:

(f FACE-CLASS;

 v VERTEX-CLASS;

 e EDGE-CLASS;

(f Surround f,f,f,f)

(f Surround v,v,v,v)

(f Surround e,e,e,e)

(v Surround f,f,f)

(v Surround v,v,v)

(v Surround e,e,e)

(e Surround f,f)

(e Surround v,v)

(e Surround e,e,e,e)

Paraphrase Rankin

POINT:

(x,y COORDINATES;

 alternative: r LENGTH;

  theta ANGLE;

(x = r*Cos[theta])

(y = r*Sin[theta])

(r = Sqrt[x^2 + y^2])

(theta = Arctan[y/x]) )

Due to the computational complexity of trigonometric algorithms, software

models prefer Cartesian coordinates.  Graphics algorithms prefers to avoid

angles (the seam between theta = 0 and theta = 2Pi).



ILINE:

(theta ANGLE;

 p POINT;

(m = Tan[theta]) Free to use new variables

(p.y = m*p.x + c) c is undefined,

  how to say "y-intercept"?

  Also, not valid for x = 0.

 alternative:  t PARAMETER;

   b,e POINT;

(x = b.x + t*e.x)

(y = b.y + t*e.y)

LINE:

(b,e POINT;

 lambda PARAMETER;

(x = lambda*b.x + (1 - lambda)*b.y)

(y = lambda*e.x + (1 - lambda)*e.y)

(0  lambda  1) )

Miscellaneous notes

GKS PRIMITIVES

POLYLINE:

POLYMARKER:

FILL-AREA:

TEXT:

CELL-ARRAY:

GEOMETRICALLY COMPLETE MODELS

Spatial Enumeration

Primitive Instancing

CSG

Boundary

Sweeps

Paraphrased from Tyugu

POINT:

(x,y,z  LENGTH)

LENGTH:

NUMERIC

POINT:

(r  LENGTH;

phi, theta  ANGLE)



POINT:

(x,y,z  LENGTH)  has

(alternative:  r LENGTH;

   phi, theta ANGLE;

 converters:  (r^2 = x^2 + y^2 + z^2)

  (r * Sin[theta] = z)

  (r * Cos[phi] = x)   

  (r * Sin[phi] = y)  )

This assumes an intelligent constraint engine. Note that the last converter

is redundant, can be added anytime for efficiency.

Alternatives to a Class are just different structures that achieve the same

organization.

Here LINE inherits from POINT:

LINE:

(p,q POINT) has

(alternative:  len LENGTH;

   slope ANGLE;

converters:  (Sin[slope] * len = q.z - p.z)

 (len^2 = (p.x - q.x)^2 + (p.y - q.y)^2 + (p.z - q.z)^2) )

TYUGU'S SIMPLE GEOMETRIC OBJECTS

Basic concepts:

SIDE,

DIAGONAL,

HEIGHT,

RADIUS,

DIAMETER,

ANGLE,

PERIMETER,

AREA,

VOLUME:  NUMERIC

Constant:  Pi = 3.14159

SQUARE:

(b SIDE;

 d DIAGONAL;

 p PERIMETER;

 s AREA;

(s = b^2)

(d^2 = 2*b^2)

(p = 4*b)  )



CIRCLE:

(r RADIUS;

 d DIAMETER;

 c PERIMETER; circumference

 s AREA;

(s = Pi*r^2)

(d = 2*r)

(c = 2*Pi*r) )

Note that the concepts of Perimeter and Circumference have been grouped into

a more abstract concept of distance around the edge.  The structural

similarities between circles and squares can be abstracted using this map:

unit       = (side, radius)

transverse = (diagonal, diameter)

perimeter  = (perimeter, circumference)

area       = (area, area)

We can now condense the Basic Concepts into a smaller set, extending the

similarity between Perimeter and Circumference to all other elements in this

model.   

SQUARE-CIRCLE-ABSTRACTION:

PARAMETER-TABLE SQUARE CIRCLE

unit  side radius

transverse-parameter Sqrt[2]  2

perimeter-parameter   4  2*Pi

area-parameter   1    Pi

(transverse = transverse-parameter * unit)

(perimeter = perimeter-parameter * unit)

(area = area-parameter * unit^2)

       Square-Circle

      /             \

   Square          Circle

     |                |

(Sqrt[2],4,1)     (2,2*Pi.Pi)

Here we have what amounts to DIMENSIONAL ANALYSIS.  Transverse and Perimeter

are 1D, while Area is 2D.  Both CIRCLE and SQUARE inherit the abstract

structure.  In the process of inheriting it, they set their local geometric

parameters.



SPHERE:

(r RADIUS;

 d DIAMETER;

 s AREA;

 v VOLUME;

(d = 2*r)

(s = 4*Pi*r^2)

(v = (4/3)*Pi*r^3) )

CUBE:

(b SIDE;

 d DIAGONAL;

 s AREA;

 v VOLUME;

(d^2 = 3*b^2)

(v = b^3) )

TETRAHEDRON:

(b SIDE;

 s AREA;

 v VOLUME;

(s = Sqrt[3]*b^2)

(v = (Sqrt[2]/12)*b^3) )

The DIMENSIONAL ABSTRACTION includes 3D objects:

PARAMETER-TABLE SQUARE   CIRCLE   SPHERE    CUBE   TETRAHEDRON

unit  side    radius   radius    side      side

transverse-parameter Sqrt[2]     2       2      Sqrt[3]      1

perimeter-parameter    4      2*Pi      -        12         6

area-parameter    1       Pi      4*Pi       6         4

volume-parameter    -        -    (4/3)*Pi     1     Sqrt[2]/12

(volume = volume-parameter * unit^3)

RECTANGLE:

(b1,b2 SIDE;

 d DIAGONAL;

 p PERIMETER;

 s AREA;

(d^2 = b1^2 + b2^2)

(p = 2*(b1 + b2))

(s = b1*b2)  )



RHOMBUS:

(b SIDE;

 d1,d2 DIAGONAL;

 p PERIMETER;

 s AREA;

 a1,a2 ANGLE;

 h HEIGHT;

(a1 + a2 = 90)

(Cos[a2/2]*d1 = h)

(s = d1*d2/2)

(p = 4*b)

(s = b*h)

(2*Cos[a1/2]*b = d2)  )

Abstraction begins to fail to be useful when objects get too many

asymmetries.  The RECTANGLE provides no global unit, or rather two units,

(b1 + b2) and (b1*b2)

The RHOMBUS incorporates many non-symmetrical concepts.  It is completely

determined by its diagonals, d1 and d2, but not by its angles, a1 and a2.

SECTOR:

(r RADIUS;

 a ANGLE;

 s AREA;

 alternatives: in CIRCLE;

(r = in.r)

(s = in.s*a/360) )

SEGMENT:

(arc NUMERIC;

 chord NUMERIC;

 a ANGLE;

 s AREA;

 in CIRCLE;

(arc = a*in.p/360)

(s = (1/2)*in.r^2*(a*Pi/180 - Sin[a]))

(h = in.r - (1/2)*Sqrt[4*in.r^2 - chord^2])

(chord = 2*Sqrt[2*chord*in.r - chord^2])  )



TRIANGLE:

(b1,b2,b3 SIDE;

 a1,a2,a3 ANGLE;

 s AREA;

 p PERIMETER/2; half perimeter

 r RADIUS; of inscribing circle

 h1,h2,h3 HEIGHT; of each side

(a1 + a2 + a3 = 180)

(b1/Sin[a1] = b2/Sin[a2] = b3/Sin[a3]) Theorum of Sines

(b1^2 = b2^2 + b3^2 - 2*b2*b3*Cos[a1]) Theorem of Cosines

(b2^2 = b3^2 + b1^2 - 2*b3*b1*Cos[a2])

(b3^2 = b1^2 + b2^2 - 2*b1*b2*Cos[a33])

(2*p = a + b + c)

(s = Sqrt[p*(p - b1)*(p - b2)*(p - b3)]) Heron

(s = b1*h1/2)

(s = b2*h2/2)

(s = b3*h3/2)  )

New defining relations are usually redundant, and are added only as an

efficiency technique.  They can be algebraically compiled out, but the

remaining equations may not be simple.  It's actually a usage issue; the

internal form of the triangle should match the most common kinds of

computational requests on it.  This can be done algorithmically.

RIGHT-TRIANGLE:  

(x TRIANGLE;

(a3 = 90) dereferencing a3 to x.a3 can be automatic

(b3^2 = b1^2 + b2^2)

(b3*Sin[a1] = b1)

(b3*Sin[a2] = b2) )

ISOSCELES-TRIANGLE:

(x TRIANGLE;

(a1 = a2)

(b1 = b2)

(a3 = 180 - 2*a1) )

EQUILATERAL-TRIANGLE:  

(x TRIANGLE;

(b1 = b2 = b3)

(a1 = a2 = a3 = 60)  )

Alternatively,

EQUILATERAL-TRIANGLE: (x ISOSCELES-TRIANGLE;

                       (a1 = a3)

                       (b1 = b3) )



POLY-SIMILAR:

(x1, x2 POLYGON;

 k,l NUMERIC; ratios of similarity

(k*l = 1)

(x1.a_ = x2.a_) all the respective angles are equal

(x1.b_ = l*x2.b_) ) all the respective sides are proportional


