
THE SECRET OF ORGANIZATION

William Bricken

April 1989

Object hierarchies that are thoughtfully constructed can be normalized into

different forms. We recognize the simple case of this with a string of

inheriting objects. We can choose to compress any portion of the string into

a single object. Diagrammatically:

 |

 ()

 | |

 () = ()

 | |

 () ...

 |

 ...

Branches

It's the branches that define the structure of the organization we are

calling an object hierarchy. Branches tell where and in what ways subclasses

diverge. It's the difference that makes the difference.

 |

 ()

 / \

 () ()

 / \

 () ()

Constants as Grounds

Every hierarchy has a bottom. In tree structures, the bottoms are called

leaves. In algebraic structures, the bottoms are called constants. In

object-oriented implementations, bottoms are run-time instances. All

constant grounds are trivial to absorb into the operators in their context,

since the operator is just a map (a table-lookup) over constants. So

3 + 4 ==> 7

because the left-hand-side (lhs) is just a syntactic variation of the right-

hand-side (rhs).

foo + 4 ==> foo +4

The only difference between the lhs (operating on a constant and an unknown)

and the rhs (doing a slightly different operation on the unknown) is when the

work is done. That is:

Constant Absorption is a lazy dynamic compiling technique.

The result of this observation is that Constants do not need to be the

grounds. They can be seen as function modifiers. In general:

F[..., constant, ...] = Fconstant[...]

Variables as Grounds

Variables represent what we don't know. The purpose of computation is to

remove doubt by evaluating variables. Often the problem is just a twisted

expression. Someone said something poorly. For instance, were I to say

"Here's A and B and A and B and A and ...", you would say that I am being

redundant, saying something poorly. I've got a case of the dreaded infinite

loop.

More often the twisting of the expression is because what we know (the input)

is messy. The person who drew the room in AutoCAD didn't say what was inside

and what was outside. (The Open Plan drawing really is open.) The

information needed to treat the room as a 3D object can be supplied by using

Variables in place of knowns. This technique is called Generalization, or

Abstraction. It is stepping back from instances (1,2,3) to possibilities

(a,b,c). Since things like a chair in Open Plan might have known edges, the

Open Plan is a mixed model. We can figure out automatically the missing edges

of the room by mapping the known portion onto a rectangular parallelopiped,

unmixing the model. (90% of architecture maps onto rectangular

parallelopipeds, presumably because that's the abstract model architects use

for abstract visualization.) We know the map visually, of course, and the

strange name is totally internal to the mathematical rather than the

conceptual model. The concept Room includes the generic default shape Block.

So Variables are the ground of computation. Its where the buck stops, where

the value returns. Lacking value, the Variable is a Literal, it is what it

is, a name of something we don't yet know.

 |

 ()

 / \

 (?1) ()

 / \

 (?2) (?3)

The critical observation here is that each variable must be in a single

location. Tree structures fail to be efficient cause the forced binding of a

variable on the far left branch is not immediately conveyed to other

occurrences of that variable, say on the far right branch. The key is to

move from a Tree Hierarchy to a Constrained Graph Hierarchy. The constraint

is that only Variables have multiple upper neighbors. With this structure,

the flow of control can "teleport" out of a goal-driven local process into an

information-driven process in a totally different locality.

 |

 ()

 / \

 | ()

 \ / \

 (?1) (?2)

Transformations of the Network between Us and the Grounds

are the same as

Message and Object Hierarchies between Us and the Grounds

The Secret of Organization is to build a network of components within which

Branches indicate Differences. The Network places a Structure between Us and

our Ignorance.

