
MOTIVATED AGENTS

William Bricken

August 2004

Contents

Purposive Behavior

Motivated Agents

Advantages

Overview of a Motivated Agent Architecture

Motivated Agent Methodology

Motivated Agent Architecture

Meta-actions

Caveat: This technical description is not informed by game design,

characters, or strategy. All technologies mentioned below are currently

implemented efficiently and without error.

Purposive Behavior

Imagine a virtual character (in any context) interacting with a player's

avatar. What virtual behavior would enhance the gaming experience? I

suggest: purposive behavior. Humans, by nature, perceive or project purpose

upon activity they see in the world. Should a rock move toward a hole,

people will project an intention by the rock to fall into the hole. An

efficient software architecture that imbues purpose into virtual characters

is outlined below.

Motivated Agents

Artificial intelligence research has developed agent architectures, and has

given agents a wide variety of characteristics and capabilities. The

motivated agents approach is sufficiently advanced to be applied in

commercial settings. Motivated agents are an amalgam of four known agent

technologies:

reactive planning -- the agent has a set of goal-oriented skills that apply

directly to environmental circumstances

goal/reward functions -- the agent seeks to achieve goals based on a value

structure (an objective function)

reinforcement learning -- the agent can prioritize useful and frequent

actions

meta-actions -- the agent can introduce new actions and goals

Advantages

The motivated agent architecture solves several problems that have have been

obstacles in other approaches:

-- purposive agent behavior that both makes sense and provides

challenge

-- unique dynamic reactions to player activity

-- changing and unexpected behavior that is consistent with game play

-- highly efficient implementation that meets frame-rate and memory

constraints

-- low programming overhead.

Overview of a Motivated Agent Architecture

A computational cycle for an agent consists of sensing, triggering a plan,

and acting; a cycle is usually constrained to fit within the display frame-

rate of the game.

Reactive plans are incremental steps that can be taken toward a goal, given

specific circumstances. Each plan is valid for one cycle, so that activity

is opportunistic and not disrupted by changing circumstances. Which actions

are triggered depends upon the state of the environment and whether or not

the plan helps an agent reach its goal (as determined by the goal function).

Plans that have been successful in the past are given a higher priority.

Some plans construct new plans and goals rather than trigger observable

actions. A skill is a plan that requires a sequence of steps; it may or may

not play out depending upon dynamic changes in the environment.

Motivated Agent Methodology

The development methodology for motivated agents is:

-- develop a library of actions and skills for the particular game

-- identify how actions and skills can achieve goals (may incorporate

learning)

-- define goal functions for each agent type

-- run agents in game context (may include statistical refinement of

reactive plans)

Actions and skills need only be designed and programmed once. All agents

begin with the same set of available actions; environment and learning

differentiate them. Agent types are defined by having different goal

functions. Behavior is determined dynamically as the result of experience.

Individual differences are the result of different goal functions applied to

the same set of skills. Actions and skills are themselves differentiated by

reinforcement learning, those that succeed in moving closer to the goal are

given priority.

This methodology avoids the brittleness characteristic of other planning and

behavior guidance systems. It also avoids the extreme computational and

memory overhead of search, neural network, simulated annealing, and other

exponential learning technologies. The programming overhead is orders of

magnitude less than conventional planning and reactive agent architectures.

Motivated Agent Architecture

The four agent technologies combine in the following manner:

An agent can perceive/sense/input specific characteristics of the virtual

environment. Relevant aspects of the current environment are posted to a

bulletin board. Each agent uses a pattern-match to identify triggered

actions.

More than one action may be triggered in a single cycle. Prioritization

based on partial goal achievement determines which is taken.

As well, some actions may require more than one cycle to compute and

complete.

Action priorities are categorized into immediate/delayed and conflicting/non-

conflicting. Immediate actions are effected during the same cycle; all non-

conflicting immediate actions are enacted together. Actions that are required

to meet graphic update rates are immediate. Whenever more than one

conflicting action is activated during the same cycle, Prioritization is

dynamic, determined by the goal function and by learning. Delayed actions

are those that require more than one cycle. Enacted actions are posted to

the boundary partition.

Motivated agents avoid local minima and degenerate behavior by having plans

that modify a goal when it is reached.

Behavior modification through learning is also substantively different in

that the learning capability is tightly integrated with the reactive action

algorithms. This is necessary so that learning does not need a separate

world model and separate algorithms.

Meta-actions

The final component of the architecture is meta-actions. These are actions

that occur with the internal partition of the agent, and that modify or add

new actions, goals, and goal functions. Meta-actions provide a motivated

agent with a vocabulary of new and unexpected behavior. Although

adding/changing actions, goal functions, and goals are substantively

different, they are all implemented with the same programming technique, that

of dynamic macros.

A macro is a function that generates an internal component (ie an action,

goal function, or goal), that can later be enacted as a normal component.

The essential characteristic of a macro that makes it different than other

learning and planning techniques is that its inputs are bound dynamically,

during program execution. When environmental information triggers a macro,

the macro builds a new internal component and then evaluates that component

in the context that it is built in. This context may be different than the

context that the macro was originally triggered in, so that the result of a

macro construction can be used at a later time. Macro constructions can be

permanent or temporary.

Thus, macros respond to current circumstances rather than to pre-programmed

circumstances. The benefit is that an environmental model that incorporates

all possible circumstances does not need to be constructed.

