
RULEBUILDER ENTITIES

William Bricken

June 1994

RuleBuilder is a software toolkit for designing educational experiences in

virtual environments.

Entities are the primary organizational structure for the RuleBuilder software
toolkit. Like the match-and-substitute computational approach of the silicon

layer, entities provide a uniform, singular metaphor and design philosophy for

the organization of software resources and displays.

An entity is a collection of resources that can accomplish a specific task.
The operating system itself is the prototype entity. That is to say, the

functional core of an operating system provides management of data, processes,

and communications; every entity in the instructional design has these same

capabilities.

In virtual environments, entities can have 3D display properties. Each entity

in a virtual world can also have behavioral properties, so that they interact

dynamically with the environment. In screen-based multimedia, entities are

windows which exhibit display capabilities such as video and sound.

Multimedia entities can also exhibit intelligent behavior, such as knowing how

to resize in any display environment, or even filtering display content which

is irrelevant to the task being learned by a participant.

Internal Processes

The internal process of an entity consists of a sense-process-act loop. This

loop is called a behavioral cycle.

The analogy to human behavior is not strong. An entity senses by gathering

relevant data from the database. Relevance is the key. Each entity has a

"perceptual" filter on the database which limits the amount and the type of

data that the entity must process on each behavioral cycle. Filters are

patterns which must be matched for a data fragment to be relevant to the

entity. For example, an entity configured with a sound play-back capability

can sense sound bits stored in the database. If it lacks a sound capability,

it will ignore all data labeled as sound. Since filters are expressed in

terms of matching, they are implemented by concurrent match-and-substitute

techniques. That is, all information relevant to a particular filter is

matched in parallel, in a few cycles of the CPU clock.

The processes internal to an entity are controlled by two separate processing

loops. The React loop reads sensed data and immediately responds by posting

modified data to the common database. This cycle handles all real-time

interactions and all reactions which do not require additional computation or

local storage. The Persist loop runs on resources local to the specific

entity, and is not responsive in real-time. Persist loop computations

typically require local memory, function evaluation, and inference over local

data. Persist functions can copy data for the shared database and perform

local computations in order to gather information, but there is no time

constraint on returning results. By decoupling local computation from

environmental reactivity, entities can respond in a timely manner while

complex responses can still be evaluated whenever computational resources

permit.

Dynamics

Entity dynamics is achieved by associating behavior functions with sensory

input and with internal processes. The RuleBuilder toolkit provides an

extensive array of designed behavioral functions. The pedagogical style for a

particular lesson, for example, could be selected from the following

ignore errors

store errors without notice

notify errors immediately

notify repeating errors

notify errors and display correction.

Each style would be automatically applied across the lesson, while the style

of notification could be different for each different trainee.

The RuleBuilder interface tools provide templates for designing and writing

the logical structures that trigger behaviors. The interface can be as simple

as "Copy my actions", which would trigger a rule that recorded the actions of

the user for later playback and display.

Editing dynamic characteristics of entities is accomplished by the rule based

interaction tool for creating entity behaviors, RuleBuilder. Behaviors can be

algorithmic, reactive, responsive, inferential, coordinated or autonomous.

Entities exhibit persistent behavior by running algorithms that do not

interact with the environment. This is the general case with most programmed

simulations.

The RuleBuilder toolkit permits associating any entity attribute with an

arbitrary looping function, causing that attribute to vary over time. Smooth

functions create continuous behavior; chaotic functions create complex

behavior. Branching behavior is provided by logical rules which use

conditional functions.

Reactive entities have rules that trigger when specific events are posted to
the environmental database. The trigger is expressed as a perceptual

capability of the entity. Entities which can perceive and react to a hand

gesture, for example, can perceive (can read the database of) the

participant's hand, and in particular, changes in the relative configuration

of the fingers. That entity will also have a rule which causes it to post an

action to the database. The action might be to approach open hands.

RuleBuilder, the dynamics editor, provides simple tools for asserting

perceptual limitations and preferences for constructed entities, for asserting

reactive rules in if-then-else format, and for prioritizing the distribution

of computational resources available to the entity for behavioral activities.

Responsive entities also react to their environment, but they have memory
resources to store previous experiences. These entities can exhibit complex

delayed responses and critical incidence behavior. A screw being inserted

into the wrong hole by a novice carburetor repair trainee may wait until the

third repetition of the error before responding with a correction. RuleBuilder

provides simple accumulation commands for specifying memory dependent

behavior.

Inferential entities have a small inference engine which they can apply to
their accumulated database of experiences and internal rules. Although the

search is time consuming, inferential entities can find interesting, useful

deductions which can generate unique behavior. Inference can also be used for

goal directed activity such as planning and information gathering.

RuleBuilder makes coupling inference with data straightforward by providing

mathematical relational structures, such as automated rules of symmetry,

transitivity, and distribution.

Coordinated entities share a common time stamp and synchronized clocks.
Synchronization is a simple command for RuleBuilder. Coordination rules not

only provide flocking behavior in entities, they can be applied to multiple

participants, assuring, for instance, that classes of trainees all complete

similar training experiences. The concept of coordination can be generalized

to the existence of a measure relation between arbitrary attributes of

multiple entities. RuleBuilder, for example, permits the linking of "all Blue

entities" so that their behaviors might exhibit a group constraint.

Autonomous entities provide exploratory tools for emergent behaviors.
RuleBuilder provides the capability of observing multitudes of similar

entities as their behavior unfolds over time. The designer, rather than

having to specify all behaviors concretely, can just watch for behaviors of

interest, then specify the particular entity for further cloning and

observation. These genetic techniques are computationally expensive, and we
do not know the size and variation of populations that can be supported in

real-time.

The most complex entity is one that is inhabited by a human participant. In

inhabited entities, dynamic behavior is slaved to physical transducers
attached to the participant. These signals are standardized to the

participant's physiological body model. The physiological model is then

mapped onto a virtual body, which can be an arbitrary representation. A

participant teleoperating a claw, for example, may prefer his virtual body

also to be represented by a claw, even though the physiological model is of a

hand.

