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The body of this report contains:

--  A brief description of the AI based concepts that have been

selected for prototyping, and a rationale for their selection.

--  A description of the development environment within which code

development will take place, and the implications of the selection of such an

environment.

--  A detailed description of the prototype Constraint Management

System (CMS) being developed.

--  A detailed description of an application of the CMS.

--  Appendices that identify a complex constraint problem, and the

slides for the talk covering the report.

The Constraint Management System has been developed as a prototype that

demonstrates the use of advanced AI reasoning techniques. Two versions are

provided.  The initial development version is limited to the toy domain of

cryptarithmetic.  It illustrates the techniques of constraint based reasoning

in a difficult but understood domain. The second version, called ConMan,

illustrates the same techniques for a small portion of the design domain,

that of the placement of seat and controls in a vehicle.

Objectives

The objectives were to identify and define specific AI tools that would be

applicable to design automation.  A constraint on these tools is that they

are to be integrated into a Computer-aided design System (CADS) with

relatively little effort.  Since AI is basically an experimental field, this

eliminated many avenues of long term research.  Of the seven tools that were

identified as relevant, one was selected for the prototype development.

The rest of this section provides a broad context for the use of the selected

AI tool, constraint management.  Following sections discuss the tool in

depth.



The Design Problem

The design process, as it currently exists, is extraordinarily complex and,

as one might expect, this inherent complexity presents the design team with

numerous, rather formidable obstacles.  This section of the report attempts

to identify many of the obstacles which can, we believe, be successfully

ameliorated via the introduction of artificial intelligence techniques.  More

detailed descriptions of these problems, along with proposed methodologies

with which to tackle them, may be found in the next section.

Because of the scope of the design process, a team of designers will

typically be assigned to the project.  However, temporal, physical, and

intellectual constraints often interfere with communication among design team

members.  This lack of communication is clearly inefficient since, without a

clear communication path among individual team members, there will almost

certainly be overlap in terms of work carried out.  For example, designer1

may carry out a database search ignorant of the fact that a nearly identical

search had already been undertaken by designer2.  In addition, when a number

of different team members have made separate contributions throughout the

design evolution of a particular component, it is difficult to maintain a

clear record of the factors and individuals concerned with the making of

various design decisions.  A method for facilitating both the access to, and

the sharing of, individual designer's data is clearly needed.

Hierarchies of Constraints

The design of any complex system is, by necessity, developed using a

hierarchy of design abstractions, with design decisions specified at higher

levels of abstraction influencing design specifications at the less abstract

lower levels in the hierarchy.  In particular, design constraints established

early in the design process clearly impact subsequent design phases (downward

constraint propagation).  It is important, however that constraints be

propagated both up and down the design hierarchy.  For example, some high-

level design constraints involve the structural partitioning of available

resources (time, space, power etc.).  As a design evolves, such a

partitioning is refined and such refinements clearly impact the partitions

defined for other components at higher levels in the hierarchy.  It is

essential, therefore, that information about such alterations in constraint

partitioning be propagated upwards through the design hierarchy. Other

situations in which constraint propagation becomes an issue involve

constraints which cannot be partitioned, for example design specifications

describing desired component performance. Circumstances may arise in which a

constraint specified at a more abstract design stage simply cannot be met,

and the designer is then forced to either proceed with the design, hoping

that subsequent refinements do not violate other higher level constraints, or

he must explicitly alter the design specifications at the higher levels so

that they match the current design.  A method is clearly needed by which the



automatic upwards propagation of failed constraint reports (along with

descriptions of the reasons behind the failure) is facilitated.  In general,

the scope and magnitude of the design process makes the management of

constraints an exceedingly difficult task.  However, the problem of

constraint management pervades the entire design process and any attempts to

improve the design process must therefore address this issue.

In addition to the partitionable and non-partitionable breakdown described

above, constraints are typically categorized as hard (exact specifications)

or soft (guidelines, recommendations).  Another useful breakdown is in terms

of spatial, temporal and logical constraints, as follows:  

Spatial Constraints

As the design process evolves, previous assumptions about geometry will

change.  It is important that the impact of such changes be quickly

transmitted to the designer.  For example, a designer may discover (perhaps

as a results of exercising a human performance analysis model) that display1

must be made larger. The designer should be able to quickly and easily obtain

the following kinds of information

How large can I make display1 without violating any constraints imposed

by other design decisions?

If I cannot make display1 larger without affecting constraints for

other components, how can I adjust spatial allocations to the other

components so as to minimize the overall impact of increasing the size of

display1?

Temporal Constraints

Historically, as designs have grown more complex, the workload imposed upon

the designer has grown dramatically.  A modern day designer is faced with the

problem of carrying out many tasks which are closely spaced in time.  The

management of temporal constraints therefore becomes a rather important

issue.  The designer must be able to quickly ascertain what impact violation

of a temporal constraint will have upon other temporal constraints.  In

addition, given a candidate automation concept that will carry out action1

automatically, the designer must be able to determine how to optimally

allocate the "freed" time to other temporally sensitive tasks.

Logical Constraints

Careful constraint management is required in order to prevent the possibility

of certain design activities calling for the simultaneous occurrence of two

or more logically inconsistent activities.  Identification of logical

constraints is a clear necessity.  Continuing with the display problem

example, the designer should, in addition to simple identification of the



problem, be able to obtain prioritized lists of other candidate display

locations, as well as lists of other displays which are likely candidates for

the integration of the functionality of the problematic display.  Priorities

could, for example, be obtained from some function of violated soft

constraints.

Managing Knowledge

As a design evolves, a tremendous amount of knowledge is acquired.  This

knowledge may simply be in the form of results from database searches and

simulation studies, or it may be in the form of more general "lessons

learned".  In any event, managing and making available such knowledge will

clearly impact the design process in an important way.  Although such a

knowledge base should certainly be made available to the designer in such a

way that it can be explicitly called up and examined, it is more important

that a mechanism be developed such that the knowledge base is automatically

and silently accessed at the appropriate times.  In addition, a mechanism

should be developed which facilitates the installation of newly acquired

knowledge into the knowledge base.

The creation and maintenance of an audit trail is at once crucial and

difficult, particularly when many different designers are contributing to an

overall design.  Much of the maintenance of an audit trail should be

automatic and, in addition, the audit trail itself should be maintained in

such a way that it can be accessed easily and at many levels of detail and

organization.  

A tremendous amount of information is available to the designer in the form

of data bases.  It is unlikely, however, that this information will be

utilized effectively unless access to the databases is facilitated.  The

man/machine interface should be uniform across all databases and, in

addition, the designer should be able to access a database without having to

"exit" from a given design process (i.e. access to the database should be

possible without obligating the designer to enter database search "mode").

Database requests more sophisticated than the traditional Boolean keyword

searches should be possible, and the designer should be able to obtain the

search result in the form of a ranked list.  In a similar manner, a wide

variety of design tools can be made available to the designer, and it is

essential that access to such tools should be provided via a uniform user

interface.



CONSTRAINT MANAGEMENT SYSTEMS

Constraints pervade the entire design process and thus, in many ways,

constraint management (the process by which the consistency of the overall

design is tested whenever design changes, additions or refinements are made)

is a natural tool for support of automated design.  The constraint management

process rests firmly upon the assumption that an appropriate representation

scheme (a hierarchy of frames) is used to represent the design process.  The

functionality of a constraint management system, and appropriate sites for

such a tool within a CADS architecture are described below.

Constraint based reasoning is a natural way of thinking about design tasks.

The designer is free to imagine and construct designs which are limited only

by constraints that are specified by the task. In traditional programming

environments, one example, or instance, is developed and elaborated by the

program.  In constraint based programming, all possibilities are developed

simultaneously.  Only those designs that violate constraints are eliminated.

The constraint management tool keeps track of permissible and non-permissible

designs, alerting the designer whenever the current design contains a

contradiction or an impossibility.  The designer is free to assign any

permissible values to parameters (such as seat angle, or distance to specific

controls), and the constraint system will automatically examine other

parameters to determine if any of them are changed.

A Frame Based Constraint Management Mechanism

Constraint management is the key to the inference mechanism operating upon a

frame-based data structure.  It is quite clear that, in order to permit the

designer to focus on using those skills to which he is best suited, he must

be relieved of the need to attend to many of the chores to which he is

comparatively ill-suited (e.g., the tedious "bookkeeping" aspects of the

design process).  This section describes how an automatic constraint manager

might operate. This manager, in addition to performing rather mundane

constraint checking and propagation chores will also serve, in some

circumstances, as a design assistant in a mixed-initiative style of

interaction.

Since altering a current design amounts to editing a frame, the potential for

a constraint violation arises whenever a slot is filled.  It is often the

case, however, that a slot is filled not with a value, but with a list of

descendant frames, each of which can have a number of slots filled

automatically via inheritance or the acceptance of default values.  In this

way, a seemingly simple change to the design can spawn a plethora of

potential constraint violations.  This combinatorial explosion is best

handled if a means can be found to limit the number of possible constraints

that must be checked.  Limiting search is a common theme throughout AI



research and, in this instance, one approach to the problem is to limit the

search to only certain types of constraints.

Types of Constraints

From the broadest perspective, we can view constraints as being categorized

by the types of data they operate on.  For example a constraint dealing with

limits upon the dimensions of a particular component is "attached to" those

slots which describe the height and width of the component (or, more likely,

the generic component type).  When a change is made to one of these slots, we

certainly don't want to search for violations of all possible design

constraints and so search is limited via the implementation of an if-changed

demon The demon is activated upon alteration of the slot value and directs

the constraint manager to check only those constraints attached to the

changed slot.

Another way of categorizing constraints so as to limit search is to consider

the concept of timeliness.  A constraint is considered to be timely only when

all of the slots to which it refers have known values.  For example, consider

the following constraint:

Is the range of seat articulations such that both display1 and display2

are clearly visible by 10th to 90th percentile drivers?

Now, if the specifications of display2 had not yet been established, the

constraint would be considered untimely, and one of the ways to limit search

is to process only those constraints which are timely.  Suppose, for example,

that one of the slots to which the above constraint is attached (e.g. the

width of display1) is altered.  The alteration will activate the if-changed

demon, and processing of the constraint will begin.  However, because

display2 is not yet fully defined, the constraint manager must explore the

implications of all possible dimensions of all possible designs for display2

which are presently being considered.  For a complex constraint which

references a number of incomplete designs, this can quickly lead to an

explosion of possible search paths.  This phenomenon is, however, prevented

if search is always limited only to timely constraints.  Since, however, the

design for display2 will, with certainty, eventually be completed, the

designer may be confident that the constraint will, at that time, be

considered timely and will therefore be checked.

Constraints can also be categorized as falling into a number of different

contexts.  Consider, for example, the design context in which a variety of

different proportions for display1 are being explored.  Since there is a

fixed amount of space available for all vehicle panel components, each change

made to the proportion of the display will have an impact upon the space

available for the rest of the components.  Since, however, the designer is in

an exploratory phase, he will have little interest in the impact of each



change on overall seat geometry (unless, of course, constraints specifying

the minimum and maximum dimensions for the display are violated) until the

proportions of the display have been more fully refined. Associating a design

context to a slot's if-changed demon will enable the designer to suppress

constraint checking until such checking is appropriate.  

One could also envision contexts being defined according to the identity of

the designer, in the sense that designers would "sign in" and all subsequent

constraint checking would take place within the context of the type of design

task to which that designer had been assigned.

Another way of tackling the above problem is to categorize constraints by the

time at which they should be checked.  Some constraints should, for example,

be checked every time the appropriate slot is altered (subject, of course, to

the timeliness mechanism), whereas other constraints should only be checked

at "design submission" time. Returning to the display example, we can imagine

that the constraints associated with the minimum and maximum allowed

dimensions for the display should be checked whenever the if-changed demons

for the dimension slots are activated.  In contrast, however, the

partitionable constraints associated with overall seat geometry would only be

checked following the final definition of the dimensions for the display

(i.e. at design submission time).  A mechanism such as this can be

implemented simply by including a "time for checking" entry on each

constraint's property list.

Constraints may also be categorized according to their degree of hardness.

We can imagine that, in order to limit search, only those constraints

exceeding a pre-specified degree of hardness would be checked.  Specifying a

hardness level for a constraint also serves other useful purposes.

When constraints are violated, it makes good sense for the designer to

address only with those constraints which cause the biggest problems (i.e.

the hardest constraints).  For example, it seems fruitless to inform the

designer that CRT model K5-A has a green monochrome display (whereas a soft

constraint suggests that a yellow monochrome display is desired) when the CRT

model itself is too large to fit into the allocated space (violation of a

more important constraint).

When a number of possible choices are available for a given slot, each of

which succeeds in meeting all of the constraints up to and including the

specified hardness level, the choice which satisfies constraints down to the

softness level is the natural choice.  In this way ranking constraints by

hardness serves as a design aid.



Constraint Explanation

The designer can be supplied with an explanation of the mechanism behind a

constraint violation, via a simple tracing backwards of the steps which took

place during the process of establishing that the violation occurred.  For

example, consider the following constraint:

IF Output Device is crt, AND

Display location is within (128,342) to (150,420), AND

left-turn is in process,

THEN constraint violation (hard=1)

between location, type & turn

Given that such a violation occurred, the designer could request an

explanation, and thus discover that during left turns, the seat articulation

is such that any visual displays located within the specified coordinates are

not clearly visible.  The designer might then try a different location,

consider a different seat type, or even consider a voice output device.

Constraint Inversion

As described previously, when one or more of the slots to which a constraint

is attached are empty, the constraint is considered to be untimely.  When

only one slot is unfilled, it becomes possible to assist the designer in

choosing values for the slot by means of a mechanism known as constraint

inversion.  Consider, once again, the display constraint specified above.

Given that display2 is not yet defined, the designer will no doubt be

interested in examining candidates for this display.  By requesting a

constraint inversion (either explicitly or in a more relaxed mixed-initiative

framework), the designer can obtain a range of possible locations for the

display such that the visibility aspect of the constraint is satisfied for

the specified seat dimension.  In this manner, selection of candidate

displays is facilitated, since only those types which are of the appropriate

dimensions need be considered.  The mechanism of constraint inversion, then,

acts as a designer's "assistant" in this framework.  Indeed, one can imagine

situations in which the inversion could result in the generation of a single

unique value for an unfilled slot, therefore "automating" the design process.

Constraint Based Reasoning

Constraint reasoning is inference over possibilities rather than instances.

Constraint reasoning systems have been demonstrated in the domains of

simulation and circuit design (A. Borning, ThingLab - an object-oriented

system for building simulations using constraints; Sussman and Steele,

CONSTRAINTS - A Language for Expressing Almost-Hierarchical Descriptions).



A Constraint Management System (CMS) can keep track of the total of

possibilities remaining whenever a designer enforces a constraint on the

design object.  Rather than reasoning about exact instances, the CMS reasons

about remaining possibilities whenever decisions are enacted.  Rather than

providing points in the space of acceptable instances, the CMS provides the

entire space, as it is carved up by imposed constraints.

As a simple example, imagine a switch with four possible positions, labeled

1, 2, 3, and 4.  We are told that the current position is not odd.  We ask

what the current position is.  A standard reasoning system, such as Prolog,

would select a position, say 1, and test whether it passed the rule that the

current position is not  odd.  Since 1 is odd, the selection would fail, and

the system would make another choice.  Say it picked 2.  Position 2 is not

odd, and therefore acceptable as a possible current position. But then, the

Prolog system would stop.  We might ask it to find all solutions, in which

case it would select and reject 3, then select and accept 4, then notice that

there are no other choices, returning the possibilities {2 4}.

A constraint reasoning system works in the opposite direction.  Its world

would start with all possibilities, {1 2 3 4}, a full but unconstrained

description of the switch.  When told that the current position is not odd,

the system would impose that constraint directly upon the universe of

possibilities.  The choices 1 and 3 would be immediately eliminated, leaving

{2 4} as the description of the switch.  When asked about the current

position, the CMS already knows the answer, it returns its description of the

switch, {2 4}.

A constraint maintenance system attempts to maintain the truth of a set of

constraints while minimizing the range of values that the unknown variables

in the problem can assume.  Returned results fall into three categories:

Over-constrained:  Problems with too few unknowns, and too many constraints

are unsolvable.  All sets of solutions are contradictory. A CMS should be

able to identify impossibilities.

Unique:  One exact solution exists that satisfies the constraints and

determines a value for all variables.  A CMS should find this solution.

Under-constrained:  Problems with too many variables and too few

constraints permit many different solutions.  Any one of the solutions is

possible.  A CMS should return all solutions, or a procedure for generating

all solutions.



The Choice of Constraint Management

Several criteria for selecting a prototyping concept are relevant. The

prototype should be visibly demonstrable rather than just a proof of concept.

This implies that the prototype should embody a clear functionality, as

opposed to being a display with limited capabilities.

Using these criteria, a Constraint Management System (CMS) was chosen for

prototype development.  This system can be prototyped with substantial

functionality, without relying on previous automation of design processes.

The knowledge engineering necessary to demonstrate constraint management is

minimal, since many design specifications are already expressed in terms of

constraints.  We have decided to focus the prototyping effort on tool

functionality rather than on extensive knowledge engineering of the design

domain under the assumption that specific aspects of the domain can be

configured relatively easily to be used on a fully functional tool.  The

prototype tool described within this chapter demonstrates a capability to

solve complex and difficult constraint reasoning problems within a domain

that has been carefully knowledge engineered.

The Constraint Management System offers functionality in a critical aspect of

the design process, that of bookkeeping.  Design requires the balancing and

negotiation of hundreds of constraints, many of which interact.  The CMS

helps to keep track of design decisions and partial decisions.  It can alert

the designer whenever a particular decision contradicts other decisions or

pre-established specifications.  It can enforce the effect of decisions on

other aspects of the design, and limit the freedom of the other aspects

accordingly.  Constraints apply early in the design process; it is efficient

and cost effective to alert the designer to any violations of constraints.

This early warning can save over commitment to designs that might later be

found unacceptable.  Designs which are mutually incompatible can be

identified during parallel development, and thus save redesign effort when

the competing designs are being reconciled.

Extensions to Constraint Reasoning

At a minimum, a reasonable constraint management system should serve to alert

the designer when concrete limits are violated.  It should be flexible enough

to permit violation alerting to be customized based upon the "hardness" of

the constraint, the level/seniority of the designer, and the level of the

design (prototyping/exploring vs. fine-tuning).

Efficiency is critical to constraint reasoning, since the world of

possibilities is usually a large domain.  To be efficient the constraint

management system should be designed so that appropriate pruning of search

paths be enacted by existing constraints, reducing the amount of search



necessary to specify solutions.  Pruning can take place via embodiment of

constraints in a matrix of possibilities.

An attractive enhancement to a constraint management system is to allow for a

mixed-initiative style explanation facility.  Such a mechanism would be

capable of providing the designer with a description of the process by which

the constraint violation was detected.  Such a facility would enable the

designer to more easily re-specify the proposed design or even to override

the violation altogether.

Another useful enhancement involves assisting the designer via a simple

mixed-initiative style dialogue.  A system could be designed via the process

of constraint inversion in which ranges of acceptable design parameters (the

range determined by the constraints imposed by other design features) are

presented to the designer.

To summarize, there a variety of ways in which constraints can be processed.

Utilizing demon invocation and constraint categorization facilitates the

reduction of search, and constraint inversion and tracing support suggestion

and explanation mechanisms which can be presented to the designer in a mixed-

initiative framework.

DESIGN OF THE CONSTRAINT MANAGEMENT SYSTEM

The goal of the CMS project is to develop a prototype constraint management

system that integrates logical and numerical constraints in a deductive

engine.

The expected functionality of this system follows:

1.  The CMS should accept as input rules and equations that contain non-exact

logical and numerical descriptions.  

--  Logical data structures should include disjunctive choices,  such

as (A or B or C).

--  Numerical data structures should include ranges, such as 1<x<5.

2.  The system should accept user specified constraints and variable bindings

interactively.

The system should perform deduction over non-exact data, returning:

--  contradiction warnings when no data can fit the specifications, or

when user specified data violates existing constraints,



--  limitation warnings when only one datum fits, and

--  possible worlds when ranges of data fit the specifications.

3.  The system would tightly interact with intelligent data structures, which

maintain bookkeeping and notification facilities to reduce deductive

overhead.

The proposed development methodology follows:

An algebraic boundary logic formalism will be used for deduction.  Boundary

math is fully described in W. Bricken, The Efficiency of Boundary Mathematics

for Deduction).

The boundary logic will be integrated with equations (equalities and

inequalities) which specify constraints.

We will limit the expressability of the system during development,

progressing through propositions, equality, sets, linear equalities with free

variables, and inequalities.  Examples follow:

Propositions:

A and (if A then B) imply B.

Equality:   

A = B and B = C implies A = C.

Sets:   

A = {1, 2, 3} and A = B implies B = {1, 2, 3}.

Linear Equalities:

a + b = 6 and a = b implies a = 3.

Inequalities:

a + b < 9 and b > 5 implies a < 4.

We will test the system on a well-formed toy problem, cryptarithmetic. We

will then engineer a small subset of  Passenger Accommodations

Specifications, for demonstration purposes.  



The Prototyping Domain

Construction of sophisticated software requires preliminary designs and tests

that assure that the software is functional for known problems.  In a rapid

prototyping environment, a well-understood test domain is critical for

principled implementation and debugging.

The field of Artificial Intelligence has a body of well-understood problems

for testing and refining software models.  These domains are usually called

toy domains, because they model structured worlds. This nomenclature should

not be confused with trivial domains, since most toy domains still pose

unsolved problems for AI techniques.

We will be testing the Constraint Management System with the toy domain of

cryptarithmetic.  Cryptarithmetic is basically addition problems, in which

each number is unknown.  A simple example is

AA + BB = CBC

Each letter stands in place of a specific number.  The task is to determine

which number is associated with each letter, without any further information.

To do this requires complex reasoning capabilities, knowledge of when

guessing is needed, and extensive practical domain knowledge about

arithmetic.  The answer to the problem is

a = 9, b = 2, and c =1.

The domain of cryptarithmetic is used both to pose problems in constraint-

based reasoning, and to illustrate our approach to their solution.  It has

been extensively studied (Newell and Simon, Human Problem Solving; H. Simon,

The Sciences of the Artificial).

The key to make difficult problems tractable is to find a powerful

representation.  Without intelligent domain engineering, computational effort

quickly becomes too expensive to be useful.  The cryptarithmetic domain

illustrates simple yet powerful representation techniques coupled with simple

yet powerful deductive techniques.  The examples we present outline the

design and mathematical philosophy of a computational approach that permits

constraint reasoning over sets of possibilities.

The specific cryptarithmetic problem presented is a complex example of

planning and search.  It is used in AI courses, and is excellent for

highlighting the computational burdens placed upon constraint reasoning

systems.  The proposed solution strategies generalize to more practical

domains, such as automobile design.  



Generalizing the CMS to Design

Cryptarithmetic is not in itself a critical skill.  But this toy domain

models very closely the task of constraint maintenance in design.  The

unknown letters are like unknown design parameters.  They must lie within a

specific range, but the only constraint that makes them unique is their

inter-relation with other aspects of the problem itself.  The constraints

that make design parameters unique are specified by the inter-relations of

all the design components.  A software constraint management system must at

least be able to address the toy domain before being extended to the real

domain of design.

One generalization that would be necessary for design is to extend the data

types to continuous variables.  The sets of possible values for a variable

would then be expressed as lower and upper bounds.  For example,

X = {2.0 8.0} means 2.0 < X < 8.0

When two possibility variables are equal, they each may take on values from

the intersection of their ranges.

The physical parameters of the design can then be expressed as possibility

variables.  In addition, logical relations can  be posted as constraints.

Possibility variables are fully compatible with logical specification.  For

instance,

Position-of(x) = {left middle right},

where x is a type of knob.   

Lessons learned can also be expressed within a constraint reasoning system.

If it is mandatory that a specific lever have three inches clearance from the

seat, that fact can be asserted as a hard constraint.  Hard and soft

constraints are implemented within the selection criteria of the control

mechanism.  The more important the constraint, the earlier in the design

process it is embodied in the data structure.

Constraint reasoning can freely mix constraints from different domains within

the same model.  Relations about cost, effort and demand can be encoded and

can interact with physical and problem-oriented constraints.  The trick here,

of course, is that the various relationships must be known to the extent that

they can be explicitly encoded during knowledge engineering.

Another characteristic of the CMS is that design decisions that are imposed

on the model externally can be easily incorporated.  Say, for instance, that

a designer wanted to see what possibilities remain if a problem was solved

using only half of the available resources.  By interactively inserting the



half-resource constraint, the system would identify solutions that met that

and other existing constraints.

The Application Domain

After developing and testing the techniques of constraint management on

cryptarithmetic problems, we next applied these techniques to the domain of

design.  The resulting system, which is an extension of the CMS, is called

ConMan, for CONstraint MANager.

ConMan takes algebraic constraints (equations and inequalities) as input and

assures that particular values of the variables in the constraint equations

are not contradictory.  For design, this means that input equations specify

the relationships between measurements of location for the various components

of the vehicle seat. Input inequalities specify the limits on the placement

of seating components.

The ConMan system provides a diversity of pop-up windows which display the

state of the computation and permit changes to the existing databases of

equations and constraints.

To utilize the constraint management system, the domain engineer must specify

the equations that define relationships between variables in the problem.

Usually, these variables will identify some measurement in a design.  But as

a simple example, consider the design of a triangle.  Variables (A, B, C) can

identify each of the three angles of the triangle.  The equation that defines

the relationship between  angles in a triangle is

A + B + C = 180   

Next, the designer must specify the desired constraints on the design. These

are expressed as inequalities that limit the possible values of the

variables.  In the triangle example, it may be desirable that angle A be

between 40 and 50 degrees.  This would be expressed as the constraints

A > 40 and A < 50   

Or perhaps, the angle A should be exactly 45 degrees.  This is expressed as

the constraint

A = 45

More complex constraints may also be expressed.  For instance, if it is

desirable that the triangle be isosceles, the appropriate constraint would be

(A = B).  Whatever value either angle A or B was confined to, the system

would assure that both are equal in the final design.  Finally, if the

designer specifies



A = B and B = C,

then the system would determine that each angle must be 60 degrees.

From an operational perspective, the specified equation database  defines the

abstract design.  This is the parameterized drawing that contains, for

example, the seat, instrument panel, windscreen, and other objects in the

driver's compartment. The relations between design objects are specified by

algebraic letters, which are variables that may change, but generally will

not be totally ignored.

The constraint database represents limitations on the parameters in the

equation database.  The designer may change these during the course of

design.  One way of contrasting equations and constraints is that equations

are hard limitations.  They define the  possibilities.  Constraints, on the

other hand, are soft limitations, they define a range of desirable

possibilities but may change.  Within the limitations of both equations and

constraints, there exists the possibilities of the design.  One particular

possibility is an instance, or instantiation of the design.  If there are no

possible designs, no instances that satisfy both equations and constraints,

then ConMan notifies the user of a contradiction.  The user then must change

existing constraints to re-establish a possible design.  If constraints are

inflexible, then the abstract design itself may need to be altered.

In general, then, the equation database generates the space of possibilities.

The constraint database evaluates and tests subgroups of possibilities.  The

user modifies the design in case of failure.

To support visualization of the constraint process, ConMan provides three

interactive displays.  

The Dependency Graph Browser displays the dependencies between each variable

in the constraint database.

The Values Display shows the particular setting of each variable in the

current instance of the design, as well as the range of values that each

variable may assume.

The Figure provides a two-dimensional scannable diagram of the design.



General Strategy

The facts embodied in the domain, (such as the meaning of a letter in a

particular place in a cryptarithmetic puzzle) need to be encoded in rules.  A

data structure that keeps track of all possibilities is needed to support

both bookkeeping and deduction. The software architecture must handle the

domain, constraints on the domain, and instances, or problems, within the

domain.

The meaning of the input problem is embodied in transcription rules.  The

transcriber converts the peculiarities of the input problems to a more

standard domain of algebraic equations.  The transcriber is called once, when

a problem is entered into the CMS. It generates the problem specific data

structures.

The rules of column addition form the abstract ground for forming constraints

in cryptarithmetic problems.  They can be formulated as meta-rules,

independent of any particular problem.  These meta-rules are applied to the

input problem, generating constraint equations which populate the problem

specific constraint database.

The control mechanism should be general, so that different transcribers can

use it for different problem domains.  (A limitation is that domain

engineering must permit the expression of a domain in the language of the

control mechanism.)  The proposed control mechanism is simple: it applies

constraints from the constraint database to the data structure of

possibilities.  Limited possibilities in this data structure can in turn

refine and augment the constraint database. When a constraint is applied to

(embodied in) the data structure it is removed from the constraint database.

When no constraints remain, the data structure indicates all possible

solutions.  The key to a good control structure is to have sufficiently

refined selection rules which choose the next constraint to apply to the data

structure.

Both the data structure and the constraint database are intelligent.  This

simply means that they have rules associated with them that are triggered

whenever either is accessed or changed. Part of domain engineering is to

identify useful behaviors for these separate intelligent databases.  Adding

rules that trigger when a database is accessed (called demons), makes

databases more than static storage locations.  This partitioning of

bookkeeping functionality is critical for efficient deduction.



The Computational Technique

The power of the constraint maintenance system is demonstrated by its

performance on difficult examples from cryptarithmetic.  The CMS proceeds

directly to the logical solution, requiring a minimum of search.  The

conditional branches it explores are well selected and quickly terminate.

The secret of success is that the CMS uses equations to maintain information,

and an intelligent database to remove the burden of computation from the

deductive engine.

The constraint management principles include the following:

Extensive Domain Engineering

Inference in any domain requires that the facts of the domain are adequately

encoded.  Constraint based inference is particularly sensitive to domain

engineering, since  inadequate restriction and definition of a domain will

cause the existing constraints to be ineffective.  This creates unnecessary

search and under specification of the data structure.

Generation of Constraint Equations from Domain Facts

The CMS requires a particular form of data, that of constraint equations.

Usually, the representation of domain facts is not in this form.  If

knowledge engineering identifies abstract structures within the domain, then

specific problems can be converted from the native representation to the

constraint representation by passing them through a transformation program

that applies abstract relations to the specific problem to generate specific

constraints.  This mechanism permits a single transformation procedure to

handle all problems of the class for which it is an abstraction.

Constraint Equations as Data

Once a problem is specified as a collection of constraints, this collection

can be viewed as a description of the problem.  The constraint equation

database is a knowledge representation technique that is particularly well

suited for dynamic pruning of the space of possibilities.  Rather than

specifying specific collections of parameter values as instances, this

database specifies relations between parameters that hold under all

circumstances.  When the relations are suitably constraining, single

instances (or impossibilities) can be asserted.



Intelligent Data Structures

Many aspects of domain knowledge should be expressed as part of the data

structure itself.  It is an historical artifact that data structures are

viewed as passive.  By attaching programs that are triggered whenever a

fundamental aspect of the data is contradicted (such as an attempted

assertion that the number 6 is not equal to the sum of 2 and 4), the data

structure can behave intelligently about its own form.  Traditionally,

contradictions are asserted into a database, and the inference procedure is

then responsible for eliminating the contradiction.  This is inefficient,

since the computational procedure is responsible for many other things, and

it is misdirected, since the responsibility for some configurations of data

is not localized.  Active objects, as data structures that can process

incoming and outgoing information and changes, permit a wider range of models

and transfer many awkward global processing tasks to local maintenance tasks.

Control that Selects and Applies Constraints Efficiently

Some constraints are more revealing than others.  In particular, an assertion

of fact, such as (x = 3), is a powerful constraint, since it limits the value

of x to a single choice. The objective of a control mechanism for constraint

reasoning is to transfer information between the data structure and the

constraint description, and in the process, to minimize the space of

possibilities embodied in the data structure.  This transfer can be done

randomly, but the real power of the control mechanism is in selecting

efficient constraints to embody first.  Which constraints are efficient is

dependent both on characteristics of the constraint language, and on domain

characteristics.  In general, constraints with fewer variables are more

specific, as are equations involving equality rather than inequality.  In the

case of multi-variable constraints, dynamic domain information can be

included.  For example, a constraint with variables that have only two

possibilities is more powerful than constraints with variables that have many

possibilities.  The control mechanism can easily incorporate a selection

mechanism that evaluates the constraining power of existing equations, and

selects the best for embodiment.

Possibility Calculus

Each variable within a domain can be seen to represent the selection of

possibilities of any object in that domain.  If the variable x, for instance,

is known to represent an object from the domain of single-digit integers,

then x represents the possibility set

{0 1 2 3 4 5 6 7 8 9}



A possibility calculus permits computation over variables that represent sets

of possibilities.  When a variable can assume only a unique value, the

possibility set data type is the oneof function. One structure of

interpreting equations as a possibility  calculus is as follows:

x = constant  

There is only one possibility for the variable. The possibility is the

constant.

x = y

The possibilities of both variables are the set intersection of the

possibilities of each variable.

x = y + constant

The possibilities of x are the set intersection of x's current possibilities

with the possibilities generated by adding the constant to each of y's

possibilities. Conversely, the possibilities of y are the set intersection of

the possibilities created by subtracting the constant from the each of the

possibilities of x.

x = y * constant  

Same as above (addition), but the possibilities of y are multiplied by the

constant.

x = y + z

The possibilities of x are equal to the possibilities generated when each

possibility of y is added to each possibility of z.

The possibility calculus is not a probability calculus, since nothing is

averaged.  Nor is it a calculus of sets, although operations may be

implemented as set operations.  Although the examples in this report are from

discrete mathematics, the approach generalizes well to continuous domains.  

Conditional Constraints as Search

Constraint equations can be mixtures of logic and algebra, as in

if x = 1 then y = z

One way to generate search trees is to do case analysis by asserting

conditional constraints for each case of a particular variable.  The



selection heuristics of the control mechanism can then choose between

absolute or conditional constraints for embodiment.  If absolute constraints

are not sufficiently limiting, then a particular hypothesis that does

engender tight constraints can be explored. Since the cases are each posted

to the constraint database, they can be interleaved or begun then abandoned.

The cost of conditional constraints is the dynamic generation of data

structure clones, to represent the hypothetical world generated by the

constraint.

If-changes Constraints

Constraints with multiple variables may embody some restrictions on the data

structure, but fail to achieve a unique value for each variable.  Even though

these constraints have been embodied, they still contain information which

becomes relevant whenever a variable which they contain changes.  These

constraints are posted as if-changes constraints, and are triggered only when

the specific variables change. To remove the effects of if-changes

constraints from the constraint database, a variable is selected to be

replaced by its algebraic equivalent.  This approach achieves simultaneous

solution of linear equations, and permits deferment of application of

constraints to when they become relevant.

Plans for Integration

The constraint management system is essentially an inference system applied

to the frame-based representation of the design process.  As such, the most

appropriate location for the constraint management system is at the level at

which the design itself is managed.  If a common design, administered by the

CADS host, is implemented then the constraint management system should

naturally reside on the CADS host.  If however, individual workstations

support their own copies of the design, then the workstations should also

administer the constraint management tool.   

A constraint database will be developed from design specifications and from

interviews with domain experts.  This database will be stored in the same

system as the CMS tool.

In the long term, the CMS might be integrated with a CADS through an attached

AI workstation.  The CMS would reside on that workstation, while the

constraints database would reside within the selected commercial database

management system, and be called from the AI workstation.  Designs

constructed within a CAD tool would need to have their output converted into

a format that is compatible with the input expected by the CMS.

Another possible architecture would have the CMS callable as a tool from the

designer's notebook.  This approach is preferable if the calling protocol



supports calls to the CMS from the design native language.  Language

incompatibilities can be alleviated by converting the CMS to the language C,

but such an effort would require experience with the combined system before

being justified.

If the CMS is treated as a callable tool, each analytic tool would need to

have its output expressed or expressible in a form relevant to the constraint

model.  Analytic models would need to be knowledge engineered into the

constraint format, critical points in the design path would need to be

identified as needing constraint checking, and tools for the reconciliation

of contradictory constraints would need to be developed.

A fully useful constraint management system requires several support tools.

Specifically, a constraint editing system would be needed for the addition,

removal, and change of relevant constraints.  And an integrated data

retrieval system would be needed to facilitate communication between design

data and constraint rules.



THE CRYPTARITHMETIC PROTOTYPING DOMAIN

Cryptarithmetic consists of arithmetic problems in which numbers are replaced

by letters.  The task is determine what number each letter represents.  This

task is very well-suited for constraint based reasoning, because the

structure of the arithmetic problem offers simple constraints, while the

unknown value of each letter variable offers an opportunity for difficult

problem solving.

Consider the following problem:

SEND + MORE  =  MONEY

Each letter stands in the place of a number.  The objective is to identify a

unique number from 0 to 9 that can be substituted for each letter, while

maintaining the truth of the arithmetic equality.  The constraint that this

problem expresses is the equality between two numbers and their sum.  The

only available facts are those offered by the definition of addition.  For

example,

D + E = Y

Humans find this problem extremely difficult.  There are a few initial clues,

such as the observation that (M = 1). This fact can be deduced from seeing

that no numbers contribute to the ten-thousands column except the carryover

from the addition of S and M in the thousands column.  The fact that (M = 1)

permits further information to be deduced.  Specifically,

S + 1 = O   

But now there are too few known facts to go further.  The unknown S and the

unknown O in the above equation are mutually constrained, in that O is the

successor of S.  But both are still unknown. We know that S could be one of

the set

{0, 2, 3, 4, 5, 6, 7, 8, 9}

We can make further deductions, such as noticing that the number 9 does not

have a successor that is an integer, so S cannot have the value 9.

Similarly, the successor of 0 is 1.  O cannot be 1, because M already has

that value.  However, these deductions yield very limited information and

require substantial intellectual patience.  Very quickly the number of

possible alternatives overwhelms what we can keep in our mind.  Even

principled bookkeeping fails to be enough, since the problem also requires

some guessing (search) before yielding its unique solution.

Other cryptarithmetic problems include:



DONALD + GERALD = ROBERT

UNION + SOUTH = AFRICA

UNITED + STATES = AMERICA

CROSS + ROADS = DANGER

LETS + WAVE = LATER

Prototyping

The structure of the cryptarithmetic domain permits a clear exposition

of the conceptual and implementation details of constraint maintenance.  The

central issues of detailed domain engineering, constraint databases, and

intelligent data structures for possibilities are easily understood and

illustrated using this domain as a prototype.

In particular, the performance of a constraint based reasoning system is

clearly illustrated.  The example in this section has been chosen to be

difficult, and to demonstrate all facets of constraint maintenance.  Use of

initialization constraints, equality and inequality constraints, conditional

constraints and if-changes constraints are each presented in detail.   

Coordinating each of these techniques is the control structure for constraint

reasoning, which selects constraints for embodiment in the data structure,

and manages transactions between unrestricted, conditional, and if-changes

constraint classes.

DOMAIN ENGINEERING  

Data Structure

Each letter in the puzzle represents a different number uniquely.  This can

be specified by a set of non-equalities:

S  E  N  D  M  O  R  Y

To place these non-equalities in the constraint database presents a severe

computational burden to the deductive system, since it must compare tokens

that are different to see if their values are different.  It is better to

assume that different letters represent different numbers, because they are

different tokens. Uniqueness and non-equality of the values of letters is

then transferred to the data structure that maintains the actual assignment

of variables to constants.  Whenever a letter is assigned to a number, that

number is removed from the possibility set of each other number by the data



structure itself.  If two letters are asserted to be equal, a contradiction

is immediately identified.

To achieve a knowledge-based data structure, each letter is represented by a

universe of possibilities variable.  If we represent a generic letter by X,

then

X = {0 1 2 3 4 5 6 7 8 9}

This collection means that X can take on any one of the values between curly

braces.  It does not mean that X is equal to the set of integers.  The

concept that a letter can be only one unique number means that the structure

    {0 1 2 3 4 5 6 7 8 9}

represents the oneof operation.  The possibilities are joined by exclusive-or

extended to be variadic (operating on any number of arguments).

The initial data structure is then a matrix of possibilities, with each row

labeled with a letter.  To remove the remaining semantics of words, the

letters are standardized from a to h.  The original letters of the problem

are written on the left for ease of translation.

Initial Data Structure:

S    a  0 1 2 3 4 5 6 7 8 9

E    b  0 1 2 3 4 5 6 7 8 9

N    c  0 1 2 3 4 5 6 7 8 9

D    d  0 1 2 3 4 5 6 7 8 9

M    e  0 1 2 3 4 5 6 7 8 9

O    f  0 1 2 3 4 5 6 7 8 9

R    g  0 1 2 3 4 5 6 7 8 9

Y    h  0 1 2 3 4 5 6 7 8 9

The data structure is defined so that each letter label for a row may take on

as a value any available number in that row.  When a letter is assigned to a

numerical value, the column of that number is no longer within the set of

possibilities of other letters.  If a letter finds itself with only one

possible value, that value is assigned automatically.

Implementation of the Data Structure

The data structure represents a possibility matrix.  Cells are binary, on

(=1) if the value is a possibility for the letter, off (=0) if the value is

not a choice.  Rows and columns are labeled.  The initial matrix follows:



   0 1 2 3 4 5 6 7 8 9

a  1 1 1 1 1 1 1 1 1 1

b  1 1 1 1 1 1 1 1 1 1

c  1 1 1 1 1 1 1 1 1 1

d  1 1 1 1 1 1 1 1 1 1

e  1 1 1 1 1 1 1 1 1 1

f  1 1 1 1 1 1 1 1 1 1

g  1 1 1 1 1 1 1 1 1 1

h  1 1 1 1 1 1 1 1 1 1

The accessors to the data structure are get and set.   

(get <label>)

returns the set of possible values for that label.

(set <equation>)

changes the data structure.  These changes trigger demons which potentially

can send set messages to the constraint data structure to change it.

In particular, if a variable is assigned a specific value by a constraint

equation (such as a = 3), the control structure sends (set a = 3).  The

receiver for the set command compares the equational constraint to the data

structure.  If the value 3 is not a possibility for a in the data structure,

the receiver demon returns failure, since the data structure embodies the

assertion that (a  3).  If 3 is a permissible value, the receiver triggers a

local change demon which removes alternative values for the variable a and

removes the value 3 from the possibilities of other variables.  If in the

course of removing possibilities, other constraints are encountered (for

instance, b may be one of 3 or 4; then removing 3 fixes b to be 4), they are

returned as assertions to the constraint database.

Decimal Place Notation

The position of each letter in a word-number contains information about the

number power of ten to which the value of the letter is raised. The furthest

right letter in a word-number is the units column. Each column to the left is

then ten times greater.  Thus we know the following meta-information about

all word-numbers (to avoid excessive abstraction, this information is

expressed herein for four digit numbers only), the unit-transcription rule:

wxyz  ==>  1000w + 100x + 10y + z



This meta-rule is applied at transcription time to each word-number in the

problem.  It converts word-number representations into unit representations

for numerical processing.

The summation problem itself contains another important piece of domain

information, the summation constraint.  This constraint is formed at

transcription time by the substitution rule:

uv + wx = yz  ==>

(unit uv) + (unit wx) = (unit yz)

The final domain fact about the representation of a word-number is that the

first letter cannot be zero, the Don't-start-with-0 rule:

xyz  ==>  x  0

Applying these rules to the current example generates the constraint database

for the example:

 abcd  ==>           1000a + 100b + 10c + d

 efgb  ==>           1000e + 100f + 10g + b

efcbh  ==>  10000e + 1000f + 100c + 10b + h

           abcd + efgb = efcbh

                     a  0

                     e  0

9000e + 900f + 90c + h = 1000a + 91b + d + 10g

Rule of Addition  

There are three structural meta-rules that apply to column addition:

Ci-1 + Xi + Yi  =  Ri + 10Ci

Ci = 0   <==>   Xi + Yi < 10

Ci = 1   <==>   Xi + Yi >  9

For the i-th column of addition, the sum, (Xi + Yi), plus the carried over

Carry, Ci, is equal to the Result.  This result is decomposed into an integer

Ri and the possible carry to the next column.  The carry is 1 if the sum is

greater than 9 and 0 if the sum is less than 10.

These addition meta-rules introduce the notion of a carry variable, one for

each column.  This carry variable may be equal to zero or one.  The data

structure is:



C0   0 1

C1   0 1

C2   0 1

C3   0 1

C4   0 1

C5   0 1

Here C0 represents the carry into the units column.  It is always 0, a domain

fact of the units column.  Likewise C5 is 0 because there are no numbers

being added in the last (here, ten-thousands) column.

The first of the addition meta-rules is applied to each column in the problem

at transcription time.  The last two rules are substantially different, since

they are control rules that depend on known information.  They are

implemented as demons in the data structure.  If possibilities change, these

rules can be  triggered.  When triggered, they placed constraints in the

constraint database.

When the column addition rules are applied to the example problem, the

following constraints are generated:

        C0 = 0

        C5 = 0

C0 + d + b = h + 10C1

C1 + c + g = b + 10C2

C2 + b + f = c + 10C3

C3 + a + e = f + 10C4

C4 + 0 + 0 = e + 10C5

Note the necessity in the last equation to represent not existent numbers as

zero.  Also note that the original equation is depicted in the bottom five

equations when the page is rotated counterclockwise by 90 degrees.

The entire equational fact base is presented again in the Figure on the

following page.  The care taken to specify and engineer this relatively

simple domain is indicative of the effort needed to implement constraint

management for real world domains, design in particular.  The utility and

power of deductive constraint management requires careful specification and

partitioning of the domain into constraint generators and transcribers,

intelligent databases, and sophisticated control structures.  All these

elements must be integrated into a coordinated system.  The sobering fact

learned by Artificial Intelligence research over the last decade is that

intelligent tools require exacting knowledge engineering.



THE INFORMATION BASE FOR THE CRYPTARITHMETIC PROBLEM

Information Base for SEND + MORE = MONEY

Data structures:

S   a  0 1 2 3 4 5 6 7 8 9

E   b  0 1 2 3 4 5 6 7 8 9

N   c  0 1 2 3 4 5 6 7 8 9

D   d  0 1 2 3 4 5 6 7 8 9

M   e  0 1 2 3 4 5 6 7 8 9

O   f  0 1 2 3 4 5 6 7 8 9

R   g  0 1 2 3 4 5 6 7 8 9

Y   h  0 1 2 3 4 5 6 7 8 9

C0   0 1

C1   0 1

C2   0 1

C3   0 1

C4   0 1

C5   0 1

a  b  c  d  e  f  g  h

Ci = 0   <==>   Xi + Yi < 10

Ci = 1   <==>   Xi + Yi >  9

Constraint database:

                    C0 = 0

                    C5 = 0

                     a  0

                     e  0

            C0 + d + b = h + 10C1

            C1 + c + g = b + 10C2

            C2 + b + f = c + 10C3

            C3 + a + e = f + 10C4

            C4         = e + 10C5

9000e + 900f + 90c + h = 1000a + 91b + d + 10g



COMPUTATIONAL DETAILS FOR THE EXAMPLE

The deductive strategy of the CMS is to disambiguate algebraic variables by

applying constraints to the data structure of possibilities.  Since

constraints are embodied in equations, solution of equations has the effect

of tightening constraints around the remaining variables.  To remove a

constraint equation from the database, its information is embodied in the

data structure. Constraints are selected by the control structure and sent to

the data structure.  Demons in the data structure make modifications, and may

return additional constraints to the constraint database.  The control

structure selects constraints until the stack is empty.  The state of the

data structure then represents all possible solutions.

Selection of constraints by the control structure is a difficult task.

Usually it is better to leave underconstraining equations as descriptive

constraints rather than to attempt to embody them in the data structure.

However, many constraints are severe, such as an equation specifying an exact

value for a variable.

Just as the data structure has bookkeeping demons to maintain its structural

information, the constraint database also has associated demons to effect

changes.  Since the constraint database contains equations, these demons

substitute known values and keep the representation of equations simplified

and standardized.

The control level of the CMS solves equations, then instantiates the

solutions in the database.  The database may then suggest additional

constraints that lead to further solutions or to more constraining equations.

When all ease fails, the control level can resort to guessing. It may be

noted that the problem can always be solved purely by guessing, the

difficulty being that such an approach is computationally very costly.

Initialization Constraints

Initialization builds the data structures and fills the constraint database.

Now the control structure selects a constraint.  Its selection criteria focus

on equations with fewest variables, and on variables with fewest possible

values.  The first constraint to be chosen is (C0 = 0).  This is sent to the

data structure, which makes the following modification:

C0   0

C1   0 1

C2   0 1

C3   0 1

C4   0 1

C5   0 1



Asserting the fact that (C0 = 0) changes the database.  This change triggers

the database rule:

Ci = 0   <==>   Xi + Yi < 10

However, there are no values for Xi and Yi, since the 0th column is

imaginary.  The rule places (0 + 0 < 10) into the constraint database, which

simplifies it to true.  Since this rule does not contain variables, it is

discarded by the constraint database simplification demons.

The constraint database now looks like this:

                    C5 = 0

                     a  0

                     e  0

                 d + b = h + 10C1

            C1 + c + g = b + 10C2

            C2 + b + f = c + 10C3

            C3 + a + e = f + 10C4

                    C4 = e + 10C5

9000e + 900f + 90c + h = 1000a + 91b + d + 10g

The control structure selects another constraint, (C5 = 0).  The cycle of

assertion into the data structure, demon triggering, and simplification of

constraint equations continues.  After (a  0) and (e  0) are asserted, the

information structure looks like this:

S    a    1 2 3 4 5 6 7 8 9

E    b  0 1 2 3 4 5 6 7 8 9

N    c  0 1 2 3 4 5 6 7 8 9

D    d  0 1 2 3 4 5 6 7 8 9

M    e    1 2 3 4 5 6 7 8 9

O    f  0 1 2 3 4 5 6 7 8 9

R    g  0 1 2 3 4 5 6 7 8 9

Y    h  0 1 2 3 4 5 6 7 8 9

C0   0

C1   0 1

C2   0 1

C3   0 1

C4   0 1

C5   0

                 d + b = h + 10C1

            C1 + c + g = b + 10C2

            C2 + b + f = c + 10C3

            C3 + a + e = f + 10C4

                    C4 = e

9000e + 900f + 90c + h = 1000a + 91b + d + 10g



Equality Constraints

The next constraint to be selected is (C4 = e).  Recall that each variable

represents a set of possibilities rather than a point value.  Thus, the

knowledge that two variables are equal means that they both have the same

possible value.  This computational knowledge is contained in the data

structure, and is enacted by the data structure when it receives the

constraint to embody.  Equality of variables is defined as the set

intersection of possibilities.  To embody this equation is to constrain the

choice of value for C4 and for e to be the set intersection of their

possibilities.

{0 1} intersect {1 2 3 4 5 6 7 8 9}   ==>   {1}

Here the system has identified a unique value for both variables. The state

of the updated data structure becomes:

S    a      2 3 4 5 6 7 8 9
E    b  0   2 3 4 5 6 7 8 9

N    c  0   2 3 4 5 6 7 8 9

D    d  0   2 3 4 5 6 7 8 9

M    e    1
O    f  0   2 3 4 5 6 7 8 9

R    g  0   2 3 4 5 6 7 8 9

Y    h  0   2 3 4 5 6 7 8 9

C0   0
C1   0 1

C2   0 1

C3   0 1

C4     1

C5   0

The unique values discovered by the data structure are then passed back to

the constraint database for updating.  Since a Carry has been assigned a

value, the  carry rules also fire, resulting in a constraint being asserted:

Ci = 1   <==>   Xi + Yi >  9

C4 = 1    ==> a + e > 9

e = 1     ==> a > 8

The state of constraint database is now:

                    a > 8

                d + b = h + 10C1

           C1 + c + g = b + 10C2

           C2 + b + f = c + 10C3

               C3 + a = f + 9

9000 + 900f + 90c + h = 1000a + 91b + d + 10g



Note that the solved equation, (C4 = e), once it has been embodied in the

data structure, is removed from the constraint base.  Note also the ability

of the constraint database to deal with inequalities as well as equations.

Inequality Constraints

The next constraint selected is (a > 8).  When this constraint is embodied in

the data structure, a is left with the unique value 9. The result is

communicated to the constraint database, resulting in the following

information structure:

S    a                    9

E    b  0   2 3 4 5 6 7 8

N    c  0   2 3 4 5 6 7 8

D    d  0   2 3 4 5 6 7 8

M    e    1

O    f  0   2 3 4 5 6 7 8

R    g  0   2 3 4 5 6 7 8

Y    h  0   2 3 4 5 6 7 8

C0   0

C1   0 1

C2   0 1

C3   0 1

C4     1

C5   0

         d + b = h + 10C1

    C1 + c + g = b + 10C2

    C2 + b + f = c + 10C3

            C3 = f

900f + 90c + h = 91b + 10g + d

The CMS next selects the equation (C3 = f).  This constraint is the result of

simplification of the previous constraint that

C3 + a = f + 9

when (a = 9) is asserted.

The set intersection technique yields another unique value.

C3 = f

{0 1} intersect {0 2 3 4 5 6 7 8}   ==>   {0}



Therefore the constraints (C3 = 0) and (f = 0) are propagated to the data

structure and to the constraint database, and a new constraint, (b < 10) is

added by the interactive rules.  The (b < 10) constraint originates when the

carry rule for (C3 = 0) generates

b + f < 10, with f = 0.

The resulting information structure follows:

S    a                    9

E    b      2 3 4 5 6 7 8

N    c      2 3 4 5 6 7 8

D    d      2 3 4 5 6 7 8

M    e    1

O    f  0

R    g      2 3 4 5 6 7 8

Y    h      2 3 4 5 6 7 8

C0   0

C1   0 1

C2   0 1

C3   0

C4     1

C5   0

         b < 10

     d + b = h + 10C1

C1 + c + g = b + 10C2

    C2 + b = c

   90c + h = 91b + 10g + d

Next, the constraint (b < 10) is selected, and is discarded as a tautology.

Conditional Constraints

Again the CMS selects a constraint, this time the constraint must contain

multiple variables.  

C2 + b = c

{0 1} + {2 3 4 5 6 7 8} = {2 3 4 5 6 7 8}

The addition of possibility sets specifies multiple possibilities,

delineating alternative worlds to explore.  In the current case, possibility

analysis yields no additional information.  The control structure must then

fall back onto case analysis as a technique.  It returns the selected



constraint as a set of conditional constraints, one for each possibility of

the particular variable with fewest possibilities.

if C2 = 0 then b = c

if C2 = 1 then 1 + b = c

Since the data structure knows the scope of possibilities for C2, we do not

have to specify to the constraint base that 0 and 1 are the only possible

values for C2.

Case analysis illustrates the technique for controlling search in the CMS.

Conditional constraints are asserted and then explored.  The conditional

constraints follow the same selection rules as any constraint in the

database.  The two conditional equations replace the one that generated them.

The control structure selects

if C2 = 0 then b = c   

Both premise and conclusion are sent to the data structure.  When the data

structure receives a conditional constraint, it must clone itself as a

hypothesis, embody both premise and conclusion, and continue analysis with

the clone until the problem terminates.  In the current example, the cloning

never takes place The conclusion that (b = c) immediately fails, since it

contradicts the knowledge of the data structure.  When a conditional rule

fails, the database asserts the negation of the premise as a constraint.

Here it returns (C2  0).  That rule is selected next from the available

constraints and embodied in the data structure.  This leaves C2 with only one

possible value, 1.  (C2 = 1) is asserted as a constraint, selected, and

embodied.  It generates the constraint

c + g > 9

from data structure carry demons.  The new constraint database is:

            c + g > 9

if C2 = 1, then c = b + 1

            d + b = h + 10C1

       C1 + c + g = b + 10

          90c + h = 91b + 10g + d

Note that the constraint database does not have to update the conditional

constraint

if C2 = 1, then c = b + 1,  given C2 = 1   

This is a bookkeeping job handled by the data structure.



If-changes Constraints

The new constraint, (c + g > 9), is selected, but fails to alter the data

structure.  It is maintained by the data structure as an if-changes demon.

The if-changes demon is expressed as

if (c or g) changes, then c + g > 9   

This constraint becomes relevant again only when any one of the variables

changes value.  Thus it is implemented as a demon that wakes up whenever a

value of interest changes.

We have now seen the three ways that the CMS handles underspecified

information

--  Tautologies are thrown away.

--  Equations are decomposed into cases, which may be analyzed at

different times.

--  Equations that fail to embody constraints in the data structure are

saved as if-changes demons.  They will be reasserted whenever a relevant

variable changes value.

The remaining conditional constraint,

if C2 = 1 then c = b + 1

is tested next.  Asserting (C2 = 1) is a tautology. Asserting (c = b + 1)

enables the possibilities comparison technique. The meaning of

{2 3 4 5 6 7 8} = {2 3 4 5 6 7 8} + 1

is that the c-set must contain all the members the b-set, when 1 is added to

each.  Conversely, the b-set must contain all the members of the c-set when 1

is subtracted from each one. This test eliminates

c = 2 and b = 8

When an equality does not resolve into a unique solution, as in the case of

(c = b + 1), it is maintained by the data structure as an if-changes

constraint.  However, equalities can also be used to reduce the number of

variables in the constraint database.  In order to eliminate the information

of the if-changes constraint, the specific equality, (c = b + 1), is used to

eliminate the variable c from the set of constraint equations.  In this case,

c is replaced by (b + 1), yielding:



if (c or g) changes, then c + g > 9

if (b or c) changes, then c = b + 1

 d + b = h + 10C1

C1 + g = 9

90 + h = b + 10g + d

Although c has been removed from the constraints, its definition is still

maintained by the if-changes demon.

The constraint (C1 + g = 9) is selected next.  The case analysis control

structure asserts two conditional facts:

if C1 = 0 then g = 9

if C1 = 1 then g = 8

The first of these constraints, when selected, is immediately rejected by the

data structure, since a already has the value 9.  As a consequence, (C1  0)

is posted, selected, and embodied.  The result is that (C1 = 1) is posted,

selected, and embodied.

The second conditional constraint produces two more variable bindings,

C1 = 1 and g = 8

and the carry constraint that

d + b > 9

Changing g triggers the if-changes rule (c + g > 9), which asserts (c > 1)

into the constraint base.  As well, when g takes the value 8, that

possibility was removed from the possibilities of c.  Two additional rules

are posted by the if-changes demons that are triggered.  Note that when an

if-changes demon is posted as a constraint, it is removed from the data

structure, since it is now incorporated by the constraint base. The current

information structure:

S    a                    9

E    b      2 3 4 5 6 7

N    c        3 4 5 6 7

D    d      2 3 4 5 6 7

M    e    1

O    f  0

R    g                   8

Y    h      2 3 4 5 6 7



C0   0

C1     1

C2     1

C3   0

C4     1

C5   0

     c > 1

 d + b > 9

     c = b + 1

 d + b = h + 10

10 + h = b + d

Tightening the Constraints

All values of the Carry variables are now known.  The changes to the

constraint base initiate a bookkeeping action.  Two constraint equations are

now identical, so one is eliminated.

Continuing the selection process, (c > 1) is selected and rejected as a

tautology.  Next (c = b + 1) is selected.  Possibility analysis asserts that

(b  7), making a single modification in the data structure.  (c = b + 1) is

re-established as an if-changes demon.

Next, the constraint (d + b > 9) is selected and analyzed:

d + b > 9

{2 3 4 5 6 7} + {2 3 4 5 6} > 9

==>   d  {2 3}, and b  2

The constraint is then made into an if-changes demon. Eliminating a value for

b triggers the (c = b + 1) if-changes demon.  The rule is cycled back as a

constraint, selected, analyzed to yield (c  3), and restored again as an if-

changes demon.

Updating the information structure:

S    a                    9

E    b        3 4 5 6

N    c          4 5 6 7

D    d          4 5 6 7

M    e    1

O    f  0

R    g                   8

Y    h      2 3 4 5 6 7



if (b or c) changes, c = b + 1

if (d or b) changes, d + b > 9

d + b = h + 10

The only remaining equation is now used:

                d + b = h + 10

{4 5 6 7} + {3 4 5 6} = {2 3 4 5 6 7} + 10

{4 5 6 7} + {3 4 5 6} = {12 13 14 15 16 17}

==>   h + 10  {14 15 16 17}

==>   h  {4 5 6 7}

==>   d  {4 5}

==>   b  {3 4}

==>   c  {4 5}

No combination of (d + b) sums to more than 13.  Thus h cannot be greater

than 3.  Similarly, d must be greater than 5 and b must be greater than 4.

The restrictions on b propagate to c, which must now be greater than 5.

Changes in b, c and d trigger both if-changes demons.  The current equation,

d + b = h + 10

since it does not yield a unique solution, is stored as a new if-changes

demon.

Updating the information structure yields:

S    a                    9

E    b            5 6

N    c              6 7

D    d              6 7

M    e    1

O    f  0

R    g                   8

Y    h      2 3

if (d or b or h) changes, d + b = h + 10

    c = b + 1

d + b > 9



Concluding with Search

Both remaining rules fail to change the data structure. (c = b + 1) is again

stored as an if-changes demon.  (d + b > 9) is discarded as a tautology.

There are no more constraints.  In the final phase of analysis, the system

resorts to case analysis on if-changes demons. The case analysis proceeds to

verify solutions by expanding the if-changes demons into conditional

constraints:

    c = b + 1

{6 7} = {5 6} + 1

==>   if c = 6 then b = 5

      if c = 7 then b = 6

The first conditional assertion is embodied in a cloned data structure.  This

is the first (and only) resort to explicit search by the CMS.  Asserting (c =

6) and (b = 5) leaves only one remaining value for d, (d = 7).  This is then

asserted as a constraint, along with the if-changes demon triggered by the

change in b.

7 + 5 = h + 10

yields

h = 2   

The cloned data structure now embodies a solution.  It remains to clean up

the second conditional,

if c = 7 then b = 6

When the second conditional constraint is selected, it generates a

contradiction, eliminating the cloned data structure it created.

c = 7 and b = 6

==>  d = { } FAIL

The failure causes the constraint (c  7) to be posted.  It is then selected

and embodied in all other (possibly cloned) data structures.  There is only

one in this case.  Eliminating the possibility of c being 7 constraints it to

the particular value 6. The if-changes demons then assert that (b = 5),

forcing (d = 7). Since b changes, the remaining if-changes rule,

if (d or b or h) changes, then d + b = h + 10



becomes a constraint, and the steps of the previous successful solution are

retraced, resulting in (h = 2).

The final data structure looks like this:

S    a                    9

E    b            5   

N    c              6

D    d                7

M    e    1

O    f  0

R    g                   8

Y    h      2

Since each variable has a single value, and no constraints or definitions

remain, the solution is unique.  That solution is:

SEND + MORE = MONEY

9567 + 1085 = 10652

CONCLUSION

The knowledge engineering task inherent in the automation of design is

immense.  Not only must the functionality of the design be formally modeled,

but also the job of the designer must be modeled.  For the current state of

the art in expert systems and related AI technologies, knowledge engineering

is limited to domains with a well understood technology that can be

communicated to a novice within a week.  Thus, it should be expected that the

automation of the design process is many years away.  We might expect that an

extended effort will be successful in formalizing major functions of design.

However, formalizing the skills of a designer is likely to be impossible

within the next twenty years. This observation argues for a mixed-initiative

system, for which the difficult tasks can be solved jointly by the

computational system and the human designer.

The course of development of the fully automated design environment should be

segmented.  First, localized areas of automation must be identified and

implemented.  As an example, CAD workstations for the design of the three-

dimensional geometry represent such an automation cluster.  Next, each

automation cluster must be integrated with AI technologies.  In the example,

a constraint management system might serve to criticize designs for violation

of specifications.  Only after several of these intelligent automation

clusters have been developed and placed in use should an overall integration

be attempted. The information gained from experience over several years with

automation clusters must feed into the overall integration, because it is



only through experience that designers can know the importance and the

architecture of each piece.  Experience with the automation of a functional

cluster should be expected to change the architecture of the integrated

system.

To provide an initial prototype of an automation tool, we have developed a

constraint management system with broad functionality. This prototype tool

should next be applied and refined in an application environment, in order to

evaluate the effect of such a tool on the design process and the effect of

modeling the design domain to fit the formalisms of the tool.   

The long term prospects of the integration of AI into the design process

depend upon the formalization of design tasks and advancements in AI.

Certainly some AI tools that are currently available would have substantial

impact on the ease of bookkeeping during the design process.  However, their

utility depends upon the automation of design data structures, the

availability of automated design tools, and the coordination of these tools

and databases.  Such automated systems do not currently exist, and their

development will be effort intensive.  Even after such automated systems are

in place, the formalization of the process for application of AI techniques

will be expensive in knowledge engineering effort.  It would not be

unreasonable to budget hundreds of person-years to the development of a fully

automated AI-based design workstation.

A useful and effective system can be achieved through a more modest

investment in a mixed-initiative AI system within a design workstation. The

constraint management system delineated in this report is an example.



APPENDIX:  VEHICLE SEAT PLACEMENT DATABASE

This appendix includes the database for vehicle seat placement design that

was used as a prototype development problem for ConMan.

The information in this appendix includes the legend of variable names and

meanings, the equation database which defines variables, the constraint

database which places limits on variables, and the values database, which

specifies initial values for variables.

Legend

The legend provides short descriptions of variables used in the specification

of the design.  For the prototype domain, these include the following:

nsrp:  neutral seat reference point

dep:   design eye position

srp:   gear-shift reference point

trp:   brake reference point

hrl:   heel reference line

hvl:   horizontal vision line

dvl:   downward vision line

a:     vertical height from NRSP to DEP

b:     vertical height from NRSP to seat top

c:     vertical height from NRSP to heel line

d:     vertical seat adjustment above nrsp  

dbar:  vertical seat adjustment below nrsp  

e:     horizontal seat adjustment fore of nrsp

ebar:  horizontal seat adjustment aft of nrsp

f:     dep from front of seat

g:     trp in front of nsrp

gg:    trp above of nsrp

h:     srp in front of nsrp

hh:    srp above of nsrp

i:     min distance nsrp to panel

j:     same as i, but for portion over leg

k:     pedals (neutral) forward of nrsp

l:     forward travel of gear-shift

lbar:  aft travel of gear-shift

m:     forward travel of brake

mbar:  aft travel of brake



Equations

The equation database contains definitions of variables in terms of other

existing variables.  These equations represent the abstract design of the

vehicle seat.  The equation database for the prototype domain follows.  There

are three types of variables:  dimensions, angles, and reference points.

Within the equation database, these are not distinguished.

Reference Points and Lines:

hvl = a + nsrp-y

hrl = nsrp-y - c

nrsp-x = dep-x - (a * tan(ang-a)) + (f / cos(ang-a))

nrsp-y = hrl + c

dep-x = (a * tan(ang-a)) - (f / cos(ang-a)) + nsrp-x

dep-y = hvl

srp-x = h + nsrp-x

srp-y = hh + nsrp-y

trp-x = g + nsrp-x

trp-y = gg + nsrp-y

Dimensions:

a = dep-y - nsrp-y

c = nsrp-y - hrl

f = cos(ang-a) * (dep-x - (a * tan(ang-a)))

g = nrsp-x - trp-x

h = nrsp-x - srp-x

ph = (c + a - q) / (cos(pi / (2 + ang-e - ang-f)) * tan(ang-e)) -

(cos(pi / (2 + ang-e - ang-f)) / tan(pi / (2 + ang-e - ang-f)))

q = a + c - (ph * cos(pi / (2 + ang-e - ang-f)) * tan(ang-e)) -

(ph * cos(pi / (2 + ang-e - ang-f)) / tan(pi / (2 + ang-e - ang-f)))



r = q - (t * sin(pi / (2 + ang-e - ang-f)))

t = (q - r) * sin(pi / (2 + ang-e - ang-f))

Angles:

ang-a = x

ang-b = (pi / 2) + ang-a - ang-sp

ang-e = x

ang-f = x

ang-sp = ang-b - (pi / 2) - ang-a

Constraints

The constraint database is derived for lessons learned.  Internal constraints

on data types includes keeping all measurements greater than zero, and all

angles between 0 and 2pi radians.  (The greater-than-or-equal-to relation is

expressed as .)

d  2.5

dp  2.5

e  1.5

ep  1.5

a + c > 37

a + c < 41

abs(gg - hh) < 5

l + lp  7

m  5

mp  5

r  16

h + l < j



q  16   

r  16   

ang-e  11

abs(ang-f - (pi / 2)) < 5

Values

The values database contains initial values for variables, as determined from

lessons learned, and from the definition of reference points.

nsrp-x = 0

nsrp-y = 0

a      = 31.5

b      = 40

c      = 8.5

f      = 13

g      = 20

gg     = 13.5

h      = 19

hh     = 13.5

k      = 36.25

ang-a  = 13

ang-b  = 97

ang-sp = 6



APPENDIX:  TRANSPARENCIES FOR CONSTRAINT MANAGEMENT TALK

SLIDE 1:   (title)

"Applying AI to the Design Process"

SLIDE 2:   (overview)

*  The Design Problem

*  Classes of Constraints

*  Knowledge Representation for Constraint Management

*  Limiting Search

*  Constraint Explanation and Inversion

*  Technical Details and Current Status

*  Related Work

SLIDE 3:   "The Design Problem"

*  extraordinarily complex

*  requires cooperating team of designers

*  design developed as hierarchy of design abstractions

*  design inertia is characteristic phenomenon

*  design activities occurring asynchronously & in parallel

*  constraints pervade the entire design process

*  communication & conflict resolution are thorny issues

*  audit trail maintenance both crucial and difficult

We propose to provide a mechanism to facilitate audit trail maintenance,

designer communication, conflict resolution, and constraint management.



SLIDE 4:   "Classes of Constraints"

Constraints may be classified along many dimensions:

  1.  Partitionable & Non-Partitionable

*  partitionable:  

e.g. structural partitioning of available resources,

such as space, time, power etc.

*  non-partitionable:  

e.g.  design specs, describing component performance

  2.  Hard & Soft

*  hard:   

e.g. exact specifications like required geometry

*  soft:   

e.g. guidelines, specifications, estimates

  3.  Spatial, Temporal & Logical

*  spatial:  

"How large can I make display2

 without violating other design constraints?"

*  temporal:  

"Given design timelines,

 how much time can be allowed to process display1

 prior to initiation of function2?"

*  logical:  

"Since display1 is needed during activity1,

 will existing constraints impact display1

 visibility during such activities?"

Regardless of the type of constraint, constraints must be propagated both

upwards and downwards in the design hierarchy.



SLIDE 5:   "Knowledge Representation for Constraint Management"

*  proposed data structure is hierarchical network of frames

< diagram of a simple design hierarchy inserted here >

*  we have both generic frames and instances of these frames

*  frames can also contain attached properties such as:

-- constraints

-- slot ordering rules

(which slots should be filled first ?)

-- heuristic-rules

SLIDE 6:   "Limiting Search"

*  design alteration amounts to frame editing

*  potential for constraint violation occurs

whenever a slot is filled or edited

*  because of inheritance, a seemingly simple change

high in the design hierarchy can spawn a plethora

of potential violations at a more detailed level

*  mechanism must be found for limiting search

*  one approach is to limit search

to certain types of constraints:

-- search only for violations of those types

of constraints associated with the type

of the slot being filled.

-- search for violations of timely constraints

(i.e. those for which all of the associated slots

have been filled) only.

- search according to design context

- search according to hardness



SLIDE 7:   "Constraint Explanation/Inversion"

*  useful to provide designer with explanation of mechanism

underlying a constraint violation

*  a backtracking scheme, coupled with both (simple) natural

language and network display techniques

can facilitate this.

*  given a design frame with only one unfilled slot,

the designer can be assisted (in a mixed-initiative

style) via the inversion of any attached constraints

*  the designer can thus obtain a range of possible values

for an unfilled slot, such that no existing related

constraints will be violated.

SLIDE 8:   "Technical Details and Current Status"

SLIDE 9:   "Related Work"


