
Virtual World Development

VIRTUAL WORLD DEVELOPMENT

Course Description:

The course will address the conceptual architecture of virtual worlds,

including software implementation, physiological and cognitive constraints,

design of experience, and the mathematics and philosophy of inclusion.

Topics include the development of software tools, editing and interaction

techniques, the disposition of virtual world entities, the nature of space,

situated knowledge, divergent models for multiple participants, experiential

mathematics, cyberspace, and cultural, legal, moral and ethical issues.

During the Laboratory section, each student will design and construct a

virtual world using CAD construction kits (AutoCAD, Wavefront, Alias,

Swivel3D), dynamic simulation packages (Body Electric, VEOS), behavior

transducers (position trackers, gloves, spaceballs, other interface devices),

and computational resources (SGI 4D/320, DEC 5000/200, Sun 4).

Virtual World Development

SITUATED SYLLABUS

VR emphasizes the relationship between participant and environment. Theories

which recognize that content and context are inextricably interrelated

(intertwingled) are called situated. In AI, it's called situated automata;

in industrial engineering, it's ecological psychology; in mathematics, it's

general systems; in psychology, its Gestalt.

In traditional classes, what you are expected to learn is defined ahead of

time. In this class, we will respond to events dynamically. This is called

situated learning. The theory is that the dynamic context impacts what and

how we learn. As a consequence, the syllabus will change dynamically over

time, in response to class needs and evolving understandings.

In VR, you enter first into a void; you then load a constructed database

that is the world. In physical reality, you are born into a world that is

already full. The difference is that VR demands active participation, inside

and out. VR emphasizes constructivism, the theory that mind and body

coparticipate to construct our experience of reality. In education,

constructivism says that students build their own understanding through

experience. This means that students must actively engage in and work with

the subject matter, and that will be the general rule for this class. It

also means that each student will construct an essentially different

understanding of VR. In VR software terms, we all live in divergent

realities.

Finally, the essence of VR is direct interaction with information. Right

now, universities use a symbolic mediation strategy almost exclusively. To

learn something, we translate it into what it is not (symbols), study the

symbols (words, formulae, programs), then reconstruct the something. In this

class, we will attempt to engage in direct learning by constantly anchoring

the symbols we use with the reality they refer to.

Virtual World Development is a graduate seminar. Class grading will be based

on individual understanding, participation, and growth. You will be

required to attend class and to develop or improve a skill related to the

design and construction of virtual worlds. Each student will probably

develop a different skill, at a different rate, with different criteria of

success.

Students who are concerned about this approach to teaching should meet with

the instructor. An option of individual performance contracts is available.

Virtual World Development

POSSIBLE CONTENT (no particular order, not necessarily complete):

VR software architectures and functionalities

VR varieties and taxonomies

Theory of Inclusion

Systems oriented programming

parallelism

modularity

partitioning

Situated agents (entities)

reactivity and responsiveness

dramatic theory

embedded narrative

dispositions

autonomy

Building virtual worlds

software tools

CAD

dynamics

animation

scientific visualization

techniques

enumeration

decomposition

CSG

boundary models

sweeps

design

participation who/what/why

physiological constraints

tight coupling

Display

rendering choices

adaptive refinement

viewpoint control, navigation

Abstraction

varieties of space

networks

form abstraction

application specific construction kits

semantics

Virtual World Development

Computation

pattern matching

constraints and possibility spaces

inference

history and statistics

resource management

editors

molecular programming

Inclusive tools

cursors

backdrops and foredrops

virtual body

wand

inhabitation

artificial life

Multiple participation

inconsistency maintenance

uniqueness

negotiation

Experiential mathematics

logic blocks

boundary mathematics

spatial algebra

Teleoperation and telepresence

presence

out-of-body experience

physical and sensory extension

Physiological modeling

sensory models

physical constraints

plasticity

Cognitive modeling

information processing

gestalt

situated intelligence

PROJECTS

Each student is expected to contribute to our state of knowledge about VR.

Projects document this contribution. Project work will be presented to the

class, so that the class can review the work. This list is suggestive:

Virtual World Development

Design and/or build a VR tool

wand

physiological model

virtual body

virtual community

editor for entities

form abstraction

logic blocks

mapping tools

projection tools

navigation tools

divergent worlds

conversational programming

music

Research and design a VR language

behavioral modeling

construction from inside VR

algebraic specifications

gesture languages

virtual machines

sound

Write and publish a VR article

VEOS

entities

social implications

Develop VR operating system tools

FERN

Linda

device drivers

graphics drivers

world building maintenance tools

UM

Explore an important VR issue

access

cognitive plasticity

ecstasy machines

cultural bias

ownership and legalities

philosophy and metaphysics

Virtual World Development

TEXTS

No text is required for this class. Readings and references will be provided

by the instructor as appropriate. Some good general (popular) books on VR

include:

Aukstakalnis, S., & Blatner, D. (1992). Silicon Mirage: The Art & Science of

Virtual Reality. Berkeley, CA: Peachpit Press.

Rheingold, H. (1992). Virtual Reality: The Revolutionary Technology of

Computer-Generated Artificial Worlds - & How It Promises to Transform

Society. New York, NY: Simon & Schuster Trade.

Ellis, S.R. (ed.). (1991).Pictorial Communication in Virtual and Real

Environments. London: Taylor & Francis.

Benedikt, M.L.(ed.). (1991). Cyberspace: First Steps. Cambridge, MA: MIT

Press.

Woolley, B. (1992). Virtual Worlds: A Journey in Hype and Hyperreality.

Oxford, UK: Blackwell Publishers.

Presence: Teleoperators and Virtual Environments. Published quarterly by

the MIT Press, Cambridge, MA 02142. Subscription requests should be

addressed to MIT Press Journals, 55 Hayward Street, Cambridge, MA 02142.

Telephone: (617) 253-2889. ISSN 1054-7460.

Virtual World Development

CLASS PROJECT

The class project is to build a collection of tools (disembodied machines)

for a virtual environment. The tools will be expressed in the following

language.

LANGUAGE

Logic:

constants = { true false }

operators = { if-then-else and or not equivalent }

Rational numbers:

constants = { 0 1 2 ... }

operators = { + - * / ^ mod }

relations = { = > < }

Function theory:

base case = function(ground) = whatever

recur case = function(variable)

= whatever and function(smaller-variable)

Data structures:

Set { a b ... }

List [a b ...]

Stream [a, b, ...]

Database theory:

Get(pattern)

Put(pattern)

Copy(pattern)

Virtual World Development

Control theory:

sequential unary apply

f({ a b ... }) = { f(a) f({ b ... }) }

sequential binary apply

f({ a b c d ... }) = f({ f(a b) f({ c d ... }) })

parallel unary apply

f({ a b ... }) = { f(a) f(b) ... }

parallel binary apply

f({ a b c d ... }) = f({ f(a b) f(c d) ... })

parallel nary apply

f({ a b ... }) = f(a b ...)

Some Examples

Factorial:

fac(1) = 1

fac(n_) = (n * fac(n - 1)) sequential

fac(n_) = *{ 1 .. n } parallel

Move an entity:

Move(0) = entity-position

Move(1) = entity-position + 1

Move(n_) = Move(1) and Move(n - 1) sequential

Jack(place_) = (entity-position = place-position)

Virtual World Development

JUST WHAT IS VIRTUAL REALITY ANYWAY?

What are the defining characteristics of virtual reality, of a virtual

reality system? Suggest techniques for "measuring" each characteristic.

Develop a taxonomy (hierarchy, state space) of partial and complete VR

systems.

computer-generated, television or live image?

inclusion or partial immersion or watching 3D?

wearing a computer?

how many dimensions? multisensory?

input and output bandwidth?

available system resources?

responsiveness and timeliness?

physical/virtual mixture?

degree of presence and physical remoteness?

occlusive, overlay or annotated?

Consider (some of) these issues:

bandwidth

sensory modality

degree of coupling and feedback

input and sensor types

output and display types

interactivity

realtime responsiveness

meaning

human physiology

presence

telepresence

dimensionality

realism

autonomy

formality

anthropomorphism

Virtual World Development

Classify (some of) the following systems in your taxonomy:

Dataglove

Heads-up display

Inclusive display

flight simulator

computer animation

stereo sound

Nintendo games

SIMNET

computer aided design (CAD)

Landsat database

remote controlled robot

voice recognition

holographs

email

command line computer interfaces

desktop metaphor (WIMP) computer interfaces

electron microscope

the physical world

television

telephone

automobiles

drawings

sculpture

thinking

meditation

dreaming

books and reading

photographs

movies

Disneyland

this assignment

[add your own]

Virtual World Development

VRCHITECTURE

Design an architecture for a virtual reality system. Identify essential

components with boxes, and essential communication channels with lines

connecting boxes.

The components of your architecture should all be of the same type. For

example, a hardware architecture identifies all the hardware components, a

software architecture identifies all the software modules, a functional

architecture identifies the essential transformations.

Clearly identify the purpose of each component. Clearly identify what is

being communicated over connections.}

Virtual World Development

DESIGN A SOFTWARE TOOLKIT

The class is to specify the software tools and interface techniques for a

Virtual Reality suite.

Do not use English for the specification. Use command words, or a formal

language, or functions, or predicate calculus, or diagrams, or animations, or

a programming language, or any form that you can be explicit about what a

tool does or how it works, but do not use English, use a specification

language.

Follow this organizational structure:

Form eleven groups of two members. Each group will be responsible for a

particular tool in the suite. No group may duplicate another group's

functionality.

Include at least these six tools:

The Wand

The Virtual Body, sub-components:

visual sensors

audio sensors

position sensors

The Physiological Model, sub-components:

body position model

voice recognition

The remaining five groups may specify a tool of their choice.

Each group must coordinate its specification language and protocol with other

groups (tools) that use them. For example, the Wand may depend on the

position of the virtual body.

Super-observers must report the progress of class activity.

This is a two hour exercise, I will collect a two page design specification

from each tool/group and a two page design integration from the class as a

whole.

Grades for the class will be based on functionality, integration, and clarity

of specification.

Virtual World Development

A SPECIFICATION LANGUAGE FOR VIRTUAL WORLDS

The basic facility:

creation of labels for elementary objects in the world

creation of terms expressing complex structures between relations

creation of equations which permit algebraic operations

on labels and terms

The set of unique labels defines the elements of the Domain. They map onto

objects in the semantic model.

The set of permissible terms defines the structures of the Domain.

Structures require operators for Construction and for Access/Deconstruction.

The set of specified equations defines the virtual world, and provides

substitution as the primary computational mechanism.

Definitions

labels: Domain-labels = {a b c d ...}

terms:

pattern sets: set-label = { members-of-set } or Pattern___

procedural logic: doIF Term doTHEN Term = boolean-term

build-your-own: function(set-argument) = definitional-term

relation(matrix-argument) = boolean-term

equations: Term1 = Term2

worlds: world-label = { set-of-equations }

Pattern Language

name_ matches one item in a set

name__ matches one or more items

name___ matches one or more or no items

Virtual World Development

Database Manipulation

Get(pattern_ from set_)

Put(term into set)

Copy(pattern_ from set_)

Mechanism

Available process threads are assigned to equations.

Equations are expanded via match-and-substitute until no more matches.

Labels which are not recognized by the pattern matcher are "literal".

Input devices put values into an associated equation.

Display devices get values from an associated equation.

Virtual World Development

EXPANDIBLE VIRTUAL CUBE WORLD

DESIGN/DEVELOPMENT/SPECIFICATION ASSIGNMENT

Using the VR specification language, do as many of the following tasks as

you can. Those working in groups should attempt more.

1. Specify the geometry of a cube.

2. Specify some properties of a cube. Choose properties that permit some

specific cube functionality.

3. Specify some transformations on a cube.

4. Specify an environmental cube and a contained object cube.

5. Specify some form of interaction with a cube, using a defined device such

as the glove, the wand, or the spaceball.

6. Add some more cubes and specify some ways in which they relate.

7. Specify some multisensory viewpoints on a cube.

8. Specify a disposition of a cube. Choose behaviors that permit some

specific cube goals.

Combine the above specifications to build a world:

9. Block and Wand: A wand (or a spaceball, or ...) is used to manipulate a

block.

10. Blocks World: pick up blocks and build structures with them.

11. Logic blocks: block structures map onto propositional calculus and prove

theorems.

12. Block structure builder: name a particular configuration of blocks, the

existing configuration will rearrange itself to form the target

configuration.

13. Block structure builder + restructuring baby: Blocks will take steps to

rearrange into a particular configuration while a baby dynamically changes

the existing configuration.

Virtual World Development

14. Block obstacles: Move a virtual body through a maze of blocks.

15. Topple blocks: Remove blocks from a block structure until it falls down.

16. Architectural blocks: Configurations of blocks represent architectural

spaces. Write design constraints for a building or a community.

17. Creative blocks: make up your own block world interactions.

Virtual World Development

THE STRUCTURE OF A CUBE

The key idea is that the structure (geometry) of an object is an intrinsic

property. Structure should make no reference to external relations.

Note that translation, rotation, scale, and orientation are Relations between

an object and an external coordinate system, and are thus not part of a

cube's geometry.

Fortunately, there are established conceptual tools (Cartesian geometry, unit

vectors) for describing "cube space".

EMBED THE CUBE IN A SPACE

Assume unit vectors i, j, and k. Associate each with an orthogonal side of

the Cube.

Given rules for ijk: i*j = i*k = j*k = 0

Assume a local origin (0i 0j 0k).

i = (1i 0j 0k)

j = (0i 1j 0k)

k = (0i 0j 1k)

DIFFERENTIATE PARTS

Cubes have 27 parts: 8 vertices, 12 edges, 6 faces, 1 volume.

Notation: (ai bj ck) for all parts.

Let {a, b, c} take on three possible states: {0, _, 1},

where _ is any value 0 =< _ =< 1

Let d = {0, 1} (Knonecker delta, either 0 or 1)

Vertices: {di dj dk}

Edges: {di dj _k} or {di _j dk} or {_i dj dk}

Faces: {di _j _k} or {_i dj _k} or {_i _j dk}

Solid: {_i _j _k}

Virtual World Development

More notation:

Let i, j, and k be symmetrically equivalent, and thus unlabeled.

Vertices: {d d d} (all three states are Kronecker)

Edges: {d d _} (one state is not Kronecker)

Faces: {d _ _} (only one state is Kronecker)

Solid: {_ _ _} (no state is Kronecker)

Let u stand for any of i, j, or k.

PROPERTIES

Parallel(e1_ e2_) = e1{d d _} = e2{d d _} _ in same location

Parallel(f1_ f2_) = f1{d _ _} = f2{d _ _} _ _ in same location

Perpendicular(e1_ e2_) = not(Parallel(e1 e2))

Perpendicular(f1_ f2_) = not(Parallel(f1 f2))

On(v_ e_) = v{du} = e{du} values of d equal

On(v_ f_) = v{du} = f{du} value of d equal

On(e_ f_) = e{du} = f{du} value of d equal

Meets(e1_ e2_) = e1{du} = e2{du} some d equal

Meets(f1_ f2_) = not(Parallel(f1 f2))

Distance(v1_ v2_) = number of different {du}

Distance(e1_ e2_) = number of different {du}

Virtual World Development

PICTORIALLY

 011 _11 111

 0_1 __1 1_1

 001 _01 101

 01_ _1_ 11_

 0__ ___ 1__

 00_ _0_ 10_

010 _10 110

0_0 __0 1_0

000 _00 100

 back = __1

 top = _1_

 011 ----------_11------------ 111

 / | / |

 / | / |

 / | / |

 01_ | 11_ |

 / | / |

 / 0_1 / 1_1

 / | / | rside = 1__

 010 -----------_10----------- 110 |

 | | | |

 | | | |

 lside = 0__ | | | |

 | 001 ----------_01----|------- 101

 | / | /

 0_0 / 1_0 /

 | / | /

 | 00_ | 10_

 | / | /

 | / | /

 | / | /

 000 -----------_00----------- 100

 bottom = _0_

 front = __0

 solid = ___

Virtual World Development

MULTIPLICATION TABLES

To determine vertex of intersection of two edges (or edge of intersection of

two faces, or more generally, lower dimensional element defined by two other

elements), down-multiply representation:

* 0 _ 1

0 0 0 _

_ 0 _ 1

1 _ 1 1

To determine edge formed by two vertices (or general up element), up-multiply

representations:

% 0 _ 1

0 0 _ _

_ _ _ _

1 _ _ 1

Note than non-intersecting vertices identify faces (or solids)

NOTES ON REPRESENTATION

By multiplying i, j, or k by a scalar, the cube generalizes to an arbitrary

block.

ijk provides lots of established mathematical support.

{0 _ 1} provides unification of different parts of a cube and visual imagery.

Binary Kronecker delta provides easy implementation, but could be renamed (0

= low, 1 = high, _ = any) for understanding.

Properties are trivial calculations.

Generality of notation is difficult to express algebraically. In general, the

more abstract, the more powerful and the harder to express.

Virtual World Development

ALGEBRAIC SPECIFICATION LANGUAGE

The algebraic specification language (ASL) is intended to provide the formal

structure needed for modular programming and the flexibility needed for

unencumbered design.

The main advantage of ASL is that it makes it simple to understand both what

the machine is doing and what the designer is doing. Computation can be

thought of as algebraic match-and-substitute. Specification can be thought

of as construction of mathematical systems.

This language does not provide a visual metaphor or any intuitive user

interface tools. These design tools can be built on top of the ASL, forming

another layer which uses the functionality in the algebraic specification.

In Computer Science, this approach is called abstract data types. Specifying

worlds can also be thought of as creating objects in object-oriented

programming. In mathematics, using ASL is building a formal algebraic

theory. In logic, it is Predicate Calculus with equality.

Reference: Bergstra, Heering and Klint (eds), Algebraic Specification, ACM

Press: 1989.

Caution: This approach is under development, is likely to change, and can

benefit from your critical analysis.

THE LANGUAGE OF ALGEBRAIC WORLDS

A world consists of a set of equations:

World ::= { equation ... }

An equation is an identity relation between two terms:

Equation ::= (Term = Term)

A term is an expression which can be constructed from the labels and

connectives in a language. A term is either a constant, a variable, a

function-label, a relation-label, a set, or an equation:

Term ::= constant | variable | function | relation | set | equation

A constant is a label, labels are typographic strings:

Constant ::= label

Virtual World Development

A variable is a label with one or more underscores:

Variable ::= label_

A function-label is a labeled collection of variables:

Function ::= functionlabel[variables__]

A relation-label is also a labeled collection of variables:

Relation ::= relationlabel[variables__]

A set is a collection of terms bounded by curly brackets.

Set ::= {term ...}

Using this language assures that the designed world can be programmed. The

template of what belongs in a world description follows.

THE STRUCTURE OF AN ALGEBRAIC SPECIFICATION

The name of the particular world is declared to be equivalent to the set of

equations which define that world.

WorldName = { world-equations ... }

Include the following types of equations in every World:

sets (collections of elementary elements or things)

functions (transformations of things)

relations (Boolean assertions about things)

rules (equations which define the behavior of a world)

* Set names identify a collection of ground constants, the elementary

objects in the world. Each label denotes a thing in the designed world.

(SETNAME = { label1 ... })

Virtual World Development

* Functions transform things and the characteristics of things. How a

function changes a constant is specified by a base case equation.

(functionlabel[constant] = term-which-reduces-to-a-constant)

The general case of an function specifies how that function changes

collections of things.

(functionlabel[variablepatterns__] = term)

Functions can be recursive. Constants are functions with no arguments.

* Relations establish associations between collections of things.

(relationlabel[variablepatterns__] = boolean-term)

* Equations express an equivalence between terms (structures in the world).

Equations define the axioms, properties, or rules for the world; they specify

how the world works.

(term-with-variables = term-without-variables)

SOME TOOLS

The ASL is easier to use when some tools are included.

Mathematical Operators:

Logic, arithmetic, and set theory can be assumed to be available. The

logical connectives {not or and if} permit complex Boolean relations and

permit control structure to be embedded in equations. Arithmetic {+ - * % ^

< >} provides counting and numerical calculation. Sets can be composed and

decomposed using set operators { union intersection complement }.

Generators:

The ellipsis ... can be thought of as a unique label generator. Rather than

naming all the blocks for example, BLOCK = { block1 block2 block3 }, you can

name the pattern for block names, BLOCK = { block1 ...}. The ellipsis can be

constrained; BLOCK = { block1 ... block10 } will generate ten block names.

Virtual World Development

Indices:

It is often useful to index items in a set. The dot notation indicates parts

of a complex term:

element1.part3 identifies part3 of element1.

An index notation can be used to identify a specific arbitrary element:

element:i identifies an arbitrary single element i selected

 from the set of elements, without replacement.

Indices can also identify one element selected from a set:

element:1 selects one element, with replacement.

Set functions:

The ASL permits functions to operate on sets. The pattern variable with a

double underbar, label__, specifies one or more members of a set which match

the pattern. A set calculus allows sets to be treated as variables:

CAPITALX = {a ...} labels the set itself, smallx = {a ...} labels the

collection of elements.

SET1 = SET2 declares set equality

set1 = {a b c} associates the label with an arbitrary element

Operations on capital-letter sets can be assumed to apply over the entire

set.

SET1 + 5 adds 5 to each element of set1

+[SET1] adds the elements of SET1

Typing:

The SETLABEL can be thought of as the type of the elements in a set. The

type of constants and variables can be indicated after the label:

x_BOOL x belongs to the set {true false}

b.BLOCK b labels a block

Virtual World Development

Natural notation:

The pattern language lets us determine the form of expressions:

(block1 Is On block2) = On[block1 block2]

(if (p = true) then (q = true)) = (If[p, q] = true)

Sequences:

The elements of a set are separated by spaces, and in the case of ambiguity,

by parentheses. The elements of a sequence are separated by commas.

{a b c} a set

{a, b, c} a sequence

and[a b c] a set of arguments

if[a, b] a sequence of arguments

Delimiters:

parentheses (a=b) for clarity

brackets fn[a b] for arguments

curly braces {a b} for sets

Using other worlds:

The USE command takes world labels as arguments and automatically includes

the equations which define that world. USE is declared equal to a set of

labels which identify the used objects.

USE[UnitVector] = {i j} uses two unit vectors

Virtual World Development

ASL EXAMPLES, LOGIC

BooleanLogic = {

BOOL = { true false } ;domain

not[false] = true ;constructors

not[true] = false

not[not[p_]] = p ;reduction patterns

or[p_] = p

or[true p__] = true

or[false p__] = or[p]

and[p__] = not[or[Map[not, p]]] ;definition

(if p_ then q_ else r_) = if[p, q, r] ;change syntax

if[p_, q_, r_] = and[or[not[p] q] or[p r]]

}

Equality = {

EQ = { x_ = y_ }

}

BoundaryLogic = {

BL = { <> } ;domain

call[a___ b___] = a b ;constructors

cross[a___] = < a >

<> a___ = <> ;reduction rules

<< a___ >> = a

< a__ b___ > a__ = < b > a

}

ParseBOOLtoBL = {

USE[BOOL] = { p }

USE[BL] = { <> }

true = <>

false = <<>>

not[p_] = <p>

or[p__] = p

}

Virtual World Development

ALGEBRAIC SPECIFICATION EXAMPLES, CUBE

GenericCube = {

;the structure of the SPACE embodying cubeness

USE[UnitVector] = { i j k }

V = { 0 - 1 }

D = { 0 1 }

< vi_V, vj_V, vk_V > = [vi, vj, vk] * [i, j, k]T

< di_D, dj_D, dk_D > = [di, dj, dk] * [i, j, k]T

origin = < 0, 0, 0 >

center = < .5, .5, .5 >

;the PARTS of a cube, the DOMAIN of elementary elements

PART = { < vi_, vj_, vk_> }

VIRTEX = { < di_, dj_, dk_ > }

EDGE = { <di_, dj_, -> <di_, -, dk_> <-, dj_, dk_> }

FACE = { <di_, -, -> <-, dj_, -> <-, -, dk_> }

SELF = { <-, -, -> }

;the operator which yields properties of the cube

(p1_PART ^* p2_PART) = < ^*[p1.i p2.i] ^*[p1.j p2.j] ^*[p1.k p2.k] >

^*[0 0] = 0

^*[0 -] = 0

^*[0 1] = -

^*[1 -] = 1

^*[1 1] = 1

^*[- -] = -

;properties

parallel[p1_PART p2_PART] = {

p1_EDGE ^* p2_EDGE = _FACE

p1_EDGE ^* p2_EDGE = _SOLID

p1_EDGE ^* p2_FACE = _EDGE

p1_EDGE ^* p2_FACE = _FACE

p1_FACE ^* p2_FACE = _SOLID

}

Virtual World Development

perpendicular[p1_PART p2_PART] = {

p1_EDGE ^* p2_EDGE = _VIRTEX

p1_EDGE ^* p2_FACE = _VIRTEX

p1_FACE ^* p2_FACE = _EDGE

}

skew[p1_PART p2_PART] =

p1_EDGE ^* p2_EDGE = _EDGE

on[p1_PART, p2_PART] = {

p1_VIRTEX ^* p2_VIRTEX = _VIRTEX

p1_VIRTEX ^* p2_EDGE = _VIRTEX

p1_VIRTEX ^* p2_FACE = _VIRTEX

}

connectedby[p1_PART, p2_PART] = {

p1_VIRTEX ^* p2_VIRTEX = _EDGE

p1_VIRTEX ^* p2_VIRTEX = _FACE

p1_VIRTEX ^* p2_VIRTEX = _SOLID

p1_VIRTEX ^* p2_EDGE = _EDGE

p1_VIRTEX ^* p2_EDGE = _FACE

p1_VIRTEX ^* p2_FACE = _FACE

 }

GenericBlock = {

USE[GenericCube] = { cube }

BLOCK = { [a1_ARITH, a2_ARITH, a3_ARITH] * [cube.i, cube.j, cube.k]T }

IsCube[b_BLOCK] = (b.a1 = b.a2 = b.a3)

}

Virtual World Development

CubesInaCube = {

USE[GenericBlock] = { world b1 ... }

worldscale = [1000, 1000, 1000]

bigworld = worldscale * world

location[b_] = < bi, bj, bk >

InWorld[b_] =

 ((<0,0,0> <= location[b] >= worldscale * <1,1,1>) = true)

location[b1] = <0,0,0>

location[b2] = <1,0,0>

}

StackOfBlocks = {

USE[GenericBlock] = { world b1 ... }

STACK = { [[b1_ ...]] }

CONFIGURATION = { [[b1___]]__ }

emptytable = [[]]

[[]] [[]] = [[]]

location[emptytable] = < _, 0, _ >

PutBlockOnStack[b1_, s_CONFIGURATION] =

 ([[b1]] [[s]] = [[b1, s]])

TakeBlockOffStack[b1_, s_CONFIGURATION] =

 ([[b1, s]] = [[b1]] [[s]])

On[b1_, b2_] =

 ([[___, b1, b2, ___]] = true)

Above[b1_, b2_] =

 ([[___, b1, ___, b2, ___]] = true)

OnTable[b_] = ([[___, b]] = true)

OnTopOfStack[b_] = ([[b, ___]] = true)

Virtual World Development

FINAL EXAMINATION

Your assignment for today (1 hour):

=== DESIGN A VR CURRICULUM ===

Make an outline of the topics to be covered in your vision of an ideal

VR curriculum. The curriculum can cover any VR related topics (for

example: hardware, software, human factors, world design). Include

all the topics you consider relevant for a full course in VR; do not

limit your topics to those covered in this class. Indicate the

importance of each topic, and provide sufficient detail so that an

instructor can create clear lesson plans for each topic.

You can create a curriculum for a single one quarter course, for a

series of courses over a year, or for a degree program. Include

suggestions for teaching style, types of educational experience, and

methods of evaluation.

This is a realtime individual exercise. If you can't think of

something today, it probably isn't important.

=== TASK 2 ===

Give yourself a grade for this current class, between 2.0 and 4.0

(grainsize of measurement is .1). Justify your grade (one page

maximum).

=== TASK 3 ===

Please fill out the course evaluation forms.

=== FINALLY ===

Class projects (design and/or build a VR tool) should turned in today.

	01-announce.pdf
	02-situated-syllabus.pdf
	03-class-project.pdf
	04-whatisvr.pdf
	05-vrchitecture.pdf
	06-whole-design.pdf
	07-spec-lang.pdf
	08-specify-cube.pdf
	09-cube-structure.pdf
	10-algebraic-syntax.pdf
	11-asl-logic.pdf
	12-asl-cube.pdf
	13-final.pdf

