
Programming the Interface

1

COURSE INFORMATION

Class structure:

I would like to organize this class as a practicum/workshop. The class will decide upon a group

project and develop a software product by the end of the quarter. The goals of this class are

1) to develop an HCI interactive software product,

2) to learn to manage a group programming process,

3) to understand the technical details of developing software for HCI.

The project orientation is similar to the capstone project, except that we will focus on designing

and writing software, and not on requirements, statement of work, project management,

scheduling, and other planning documents. We will use whatever software tools are necessary to

achieve our goals (Java, XML, C, Common LISP Interface Manager, Visual Basic, etc).

Eva luat ion :

Available grades:

non-completion: Incomplete, Withdraw, etc.

completion: A A- B+ B B- C

A: reserved for superior performance

A- or B+: expected grade for conscientious performance

B: adequate work

B - : barely adequate

C: equivalent to failing

Grading Options:

1. Grading Contract: specify a set of behaviors and an associated grade.

2. Performance Quality: attendance, participation, assigned exercises

3. Self-determined: negotiate with instructor

Discussion:

If you already understand the field, if you plan to excel, or if you need clear performance goals

for motivation, then OOption 1 is a good idea. If you prefer a clearly defined agenda, if you do

well with concrete task assignments, or if you need a schedule of activities for motivation, then

Option 2 is a good idea. If you are not concerned about grades, if you intend to do what you

choose anyway, or if you are self-motivated, then OOption 3 is a good idea.

I will notify any student who is not on a trajectory for personal success.

Programming the Interface

2

SOME PROJECT IDEAS

1. VVirtual University Course

Develop a short course to be presented on the web. A clever twist would be to develop

this course as a web-based remote course.

2. WWeb-page Refinement

Select a web-site from a moderately large company. Review and critique their design

and performance. Then rebuild the entire site to correct the identified problems. A clever

grounding for this work would be to send our results to the company.

3. IInternet Software Tool

Select, design, and implement a software tool which facilitates some aspect of web-

interaction. Ideas may include intelligent agents, search engines, web-page builders, site

mapping and layout, download analysis, etc.

4. Customized GUI Interface

Evolve an existing interface toolkit with some customized refinements, such as a new

type of widget, customization tools, dialog management, or interaction traking.

5. VVirtual Reality System

Develop existing C code for parts of a VR system, including 3D interaction devices, smart

terrain, multiple participants in a single environment, new virtual bodies, etc.

6. FFinite State Machine Emulators

Software to emulate an interactive system, such as an ATM, a soda machine, a telephone

answering system, airline ticket booking, etc.

7. JJava-based Gaming

Implement a fun game for the internet. Could be a version of a standard adventure and

fighting game, or a strategy game such as Diplomacy or Stratego, or a graphics/visual game

such as Life or Centipede.

8. MMathematics Visualization

Develop a visual interface to some abstract mathematical structure such as an N-

dimensional cube, 3D knots, or Fractals

9. SSpatial Arithmetic and Algebra

Develop a graphic interface for 7th grade math, using manipulative structures rather

than equations and symbols.

10. MManipulable Logic

Develop an interactive interface for Boundary Mathematics

11. Innovation Prototyping

Select a yet-to-be commercialized application, such as wearable computers or TV-

wristwatchs, and develop a prototype functional design for the interface.

12. IIdeas Provided by the Class

Programming the Interface

1

PROJECT ORGANIZATION

Our class project will be KKnowledge-based Hyperlinks (KBHL). (The name is

suggestive, not final.) The general idea is to develop a demonstration example (simulation of)

traversing a network of hyperlinks based on content or semantic information, rather than on

syntactic structures such as keywords.

The component tasks/roles for this project include:

0. Research: have others tried this approach? What did they learn? What topics partially

address our project (eg: knowledge engineering, hypertext, web search, expert systems,

interactive interface, software agents, etc.)?

1. Develop a sample database of content-carrying web-pages, with hyperlinks across various

content components.

2. Develop a knowledge-based data-structure which attaches to each hyperlink. The

knowledge-base will contain conventional expert system-like assertions of facts and relations.

3. Develop an inference strategy for traversing the knowledge of various hyperlinks. This may

include pattern-matching, Baysian probabilities, various types of inference, and other

semantic-like structures. See below for more ideas.

4. Develop an interaction plan which permits the user to understand and traverse knowledge-

based links.

5. Develop an interface prototype for using KBHLs. The interface should require minimal

learning, and have a “natural” feel.

6. Discuss and roughly design extensions to the KBHL, including user-extensibility, automated

documentation, and software agency.

D iscuss ion

The content web-pages require careful selection and design, to maximize the (apparent) utility

of the KBHL tool. Research from Ontology Engineering (ie what the folks at Yahoo do to organize

their weblinks) will guide this effort.

The available types of intelligent traversal require careful design, so that 1) the tool will be

useful for finding information, and 2) the tool will be understandable to normal folks.

How semantics is captured and accessed is of critical importance. How do we know what the user

is looking for? How will users be able to say what they are looking for? What types of

intelligent traversal are useful?

A given links will usually contain may intelligent branches. How will the user know which to

select? That is, the organization of information is not only, or even necessarily, logical.

Programming the Interface

2

What type(s) of organizational structure do we what our smart links to expose? Inferential

techniques address implicit or embedded information. Other types of smart links expose

different structures. For example,

a refinement link leads to more detail on a topic.

a classification link provides a property inheritance context.

a chronological link tells you what happened before or after.

a spatial link navigates through locations.

a dependency link identified prerequisites, requirements and causal structures.

a structure link decomposes an object into its component parts.

a decision link traces choices and their consequences.

an analogy link identifies thnig that are similar but not necessarily related.

Our problem maps onto a classic graph problem: what kind of nodes and vertices make sense?

How many types of links can be used at one time? Should nodes or links provide consistency?

Observat ions

The simulation web-pages need to accurately reflect the data-structures underlying actual

web-pages. We will need to figure out how additional information can be easily and portably

attached to links.

Specialized types of inference are needed for different fields of knowledge. Only some kinds of

knowledge are reducable to knowledge-based encoding.

Knowledge may not be about “content”, it can also be about structure (the form of the link),

about possibilities, about grouping, about proximity, etc.

We will need to show critical functionality. What does our tool do that other tools do not do?

How is the advantage measured? Where are the strong. weak, and failure points?

There may be no solution for information overload. We can be overwhelmed by too many

windows, by too many nodes and links, by too much scrolling. Perhaps links should filter and

refine rather than enhance access.

Understandable structure may need to be designed and written into the website itself, rather

than put into links.

Techniques for structuring and filtering:

Labeling: clear, concise labels and concepts

Chunking: relatively small, related hunks of information

Relevance: all information pertains to the content of the page or the goal of the user

Consistency: similar items are treated in similar ways

Hyperlinks may simply increase the desire for better content structure and more efficient

linking models. That is, smart links may expose the greater weaknesses of hypertext systems.

Bottom line is that the information itself must have a structure for a smart link to expose.

Programming the Interface

1

COURSE SYLLABUS

This is a project-oriented course. All grades will be based on successful completion of the class

project. A single group grade is recommended. The following schedule is very likely to change,

and is intended as a general guideline for the pace and timing of the class.

Class Meeting Topic

1) Introduction

2) Project discussion

3) Project topic refinement, hypertext

4) Project finalization and planning

5) knowledge representation, modeling

6) design review

7) final design decisions

8) content development

9) coding specification

10) interactivity simulation

11) possible class holiday

12) possible class holiday

13) review of all components

14) closure of iteration 1

15) integration issues

16) closure of iteration 2, integration

17) revisions and refinements

18) closure of iteration 3

19) simulation of complete system

20) discussion and evaluation

Programming the Interface

1

INFORMATION MAPPING (R. Horn)

Paper metaphors for hypertext

library card catalogues

footnotes

cross-reference

sticky notes

commentaries

indexes

quotes

anthologies

Computer metaphors for hypertext

linked note cards

popup notes

linked screens or windows

stretch text and outlines

semantic nets

branching stories

relational databases

simulations

Hypertext Links

system-supplied
command and control pathways

table of contents

history tracking

automated profiling

user-created
detours and shortcuts

notes, commentary, reminders

analogical links

new text

links to other knowledge bases

author-created
links to prerequisite knowledge

hierarchical classification

chronological structures

Kinds of links

hierarchical building a tree

keyword building an array

referential building a pointer list

cluster building a struct

Programming the Interface

2

Wayfinding in cyberspace (these don't work very well)

show all connections

go back to the beginning

show history of behavior

Node sizes

one sentence

text of arbitrary size (article, monograph)

index card size

screen size

scroll of any length

variable record sizing

variable size, precisely and flexibly chunked

Information types

structure

concept

procedure

process

classification

principle

fact

Information Blocks

chunking small, manageable hunks (blocks, maps)

relevance one main point per chunk, based on purpose or function to reader

consistency similar words, labels, formats, organization

labeling label every chunk based on specific criteria

Common types of information blocks

analogy example parts table

block diagram fact prerequisite

checklist flow chart principle

classification table flow diagram procedure table

classification tree formula purpose

comment input-procedure-output rule

cycle chart non-example stage

decision table notation synonym

definition objectives theorem

description outlines when to use

diagram parts-function table worksheet

Programming the Interface

3

Types of hypertrail, path

prerequisite

classification

chronological

sequence of events

storyline

natural development

geographic

project

structural

decision

definition

example

How readers behave

novices stop reading too soon

novices are mislead by superficial features

novices rarely seek non-linear information

readers construct a hierarchical mental representation

readers remember the top level of information better

readers depend on repetition of keywords

Reading cues

hierarchical text organization

explicit transitions

sequence signals

contrast and similarity cues

pronouns as cohesiveness cues

metaphors

content schemas

Document titles

just right: not too general, too specific, too long, too short

common language for the intended audience

itemize all possible readers and use lowest common denominator

no cuteness or silliness

no vague, mislabeled topic headers

same words in contents, titles, pages, and references

Programming the Interface

4

FORMAL KNOWLEDGE

A cconceptual model consists of

discrete objects, presumed to exist: the Universe of Discourse
interrelations between objects

functions: compound names for objects and for unnamed objects

relations: truth statements about objects

No matter how the world is conceptualized, there are other conceptualizations that are just as useful.

Declarative Style

An knowledge-based program consists of

a set of objects

a set of functions (names for compound objects)

a set of relations (facts)

a set of permissible transformations

State Space

The collection of facts (the database) at one given time defines the sstate of the world.

All possible state configurations define the sstate space.

To move from one state to another, apply a permitted ttransformation rule.

The state space and the moves between states from a graph.

Algorithms explore/search the state space.

Programmers control the search.

Knowledge Representation Labels

Constants:

names of specific objects: John, Tuesday, My-Phone-Number

names of specific functions: House-of[x], Phone-of[x], Truth-of[p]

names of specific relations: Likes[Mary, Tom], Phone-Number[Tom, x]

Var iab les:

refer to sets/classes/domains of objects

always scoped/introduced by a quantifier

Knowledge Representation Atoms

Named objects (object constants)

Indirect/compound named objects (functions)

Relations between objects (facts)

Logical connectives (and, or, not, if, iff) connect atoms. They cannot be used inside atoms.

Programming the Interface

5

yes: eyes-of[John] AND hair-of[John}

no: (eyes-of AND hair-of)[John]

no: hair-of[John AND Mary]

yes: hair-of[John] AND hair-of[Mary]

Example of a RELATIONAL KNOWLEDGE-BASE

Part of a knowledge-base about family relationships.

Vocabulary:

(father X Y)

(mother X Y)

(male Y)

(female Y)

(parent X Y)

(sibling X Y)

(brother X Y)

(sister X Y)

(uncle X Y)

(aunt X Y)

(gfather X Y)

(gmother X Y)

(ancestor X Y)

(cousin X Y)

Knowledge Base:

(if (father A B) (parent A B))

(if (mother A B) (parent A B))

(if (and (parent A C) (parent A B) (not (= B C))) (sibling B C))

(if (and (sibling A B) (male A)) (brother A B))

(if (and (sibling A B) (female A)) (sister A B))

(if (and (parent B C) (brother A B)) (uncle A C))

(if (and (parent B C) (sister A B)) (aunt A C))

(if (and (parent B C) (father A B)) (gfather A C))

(if (and (parent B C) (mother A B)) (gmother A C))

(if (parent A B) (ancestor A B))

(if (and (parent A B) (ancestor B C)) (ancestor A C))

(if (and (parent A C) (parent B D) (sibling A B)) (cousin C D))

(if (father A B) (male A))

(if (mother A B) (female A))

Facts:
(father arthur bertram)

(father arthur bailey)

(father bertram cornish)

(father bertram carey)

(mother beatrice cornish)

(mother beatrice carey)

Programming the Interface

6

(father bailey carleton)

(father bailey cassandra)

(mother bessie carleton)

(mother bessie cassandra)

(male cornish)

(male carey)

(male carleton)

(female cassandra)

Example questions:

(gfather arthur ?)

(cousin ? cassandra)

Technical Difficulties in Modeling and Knowledge Representaiton

(using blocks world in LISP as an example)

1. What is important to describe?

Build little theories of little worlds.

(Block A) (OnTable A) (Hand Empty)

2. How should descriptions be partitioned?

Functions or Relations, special or general objects?

(OnTable A) (On A Table) (not (OnTable Table))

3. How do we talk about groups and classes of objects?

Quantification and abstraction

(All (x) (Block x))

4. How do we address things with no names?

Functions as indirect, compound names.

(House-of John)

5. How do we handle things with more than one name?

unique name hypothesis, unification

(Uncle John) = (Brother (Father John)) = Bob

6. How do we make general rules which define the structure of relations?

quantification

(All (x) (iff (Uncle x) (Brother (Father x))))

7. How are typing and filters on domains represented?

predicates in conjunction

(All (x) (and (Person x) (Father x y)))

8. How do we join more than one fact?

conjunction

(and (F x) (G x))

Programming the Interface

7

9. How do we compute with logic?

inference as natural deduction and as resolution

(if (and (P x) (if (P x) (Q x))) (Q x))

10. How do we compute with quantifiers and classes of objects?

implicit universal quantification, Skolemization

(Exist (x) (P x)) ==> (P (Sk-1 x))

11. What is the difference between a fact and a query?

query combination rules

A. conjunction with negated query

(and (P x) (not (Q ?)))

B. Skolemization of query variables

(Q ?) ==> (Q Sk-1)

C. Facts imply Query

(if (P x) (Q ?))

D. The answer predicate

(if (P x) (Answer x))

12. What kinds of rules do we need for query answering?

A. definitions

(iff (P x) (Q (R x)))

B. mathematical structures (symmetry, transitivity, etc)

(if (and (if (P x) (Q x)) (if (Q x) (R x))) (R x))

C. permissible state transformations

(Pick-up x) = (Assert (not (onTable x)))

13. How can we control the inference/search procedure?

A. Pre and Post conditions

B. Compound queries

C. Searching databases of rules and facts

14. How do we steer the resolution process?

A. set of support

B. ordered resoultion

C. static vs dynamic approaches (compiled vs run-time)

D. lookahead, cheapest first, dependency directed search

15. How do we express meta-level reasoning (rules about rules)

measure the savings vs brute force

Programming the Interface

LECTURE NOTES

Design

Conceptual: requirements, system expectation, needed information

Physical: how to achieve objectives

Requi rements

Functional: what the interface must do

Data: what needs to be available for processing

Usability: user performance and satisfaction

System Models

Dataflow: data the passes between processes

rectangle: source or destination of data

circle: process which transforms data

named link: transacted data

bucket: database or store

Entity Relationship (ER)

entities: aggregate of data elements with a meaning

attributes: specific types of data

relationships: connections between entities

User Interface "Programming" Tools

command processors, scripting languages (SQL, UNIX shell, HTML)

menu systems (Mac, Windows)

form fill-in systems (Netscape, databases)

user interface toolkits (SUIT, NeXTStep, Visual Basic)

window managers (spreadsheets, MacOS, Win95)

user interface management systems (CLIM, JAVA)

Decision Types

structural: end user's conceptual model

functional: user actions and operations

dialog: content and sequence of information exchange

semantics, units of meaning

messages, units of content

sequences, flow of content

presentation: interaction objects and processes (widgets)

pragmatic: use of hardware and physical space

Programming the Interface

Desirable Properties of a Conceptual and Implementation Model

sufficiency: all the needed information

necessity: only the needed information

understandability: easy to learn, easy to use

independence: modify constructs with minimal interaction

reusability: generic and general

consistency: same activity in same manner

minimality: no overlapping definitions and actions

orthogonality: each object accomplishes a different objective

compatibility: all models use similar concepts

implementability: easy to build

Usabil ity requirements

learnability: time and effort to reach a level of proficiency

throughput: speed of execution and number of errors

flexibility: accommodation to changes in task and environment

attitude: satisfaction and acceptance

Task analysis techniques

Goals, tasks, actions

Hierarchical task analysis

Goals, operations, methods, selection rules (GOMS)

Task, semantic, syntactic, interaction

Usability testing techniques

direct observation

indirect observation (video recording)

verbal protocols (thinking aloud)

software logs

interviews (structured or flexible)

questionnaires

checklist, rating, semantic differential, ranking

Potential measurement criteria

time to complete task

percentage of task completed

speed (percentage of task per unit time)

ratio of success to failure

Programming the Interface

time spent on errors

number of commands used

frequency of use of help or documentation

time spent using help

percentage of favorable or unfavorable user comments

number of repetitions of failed commands

number of runs of success or failure

number of times the interface misleads the user

number of good and bad features recalled by users

number of available commands not invoked

number of regressive behaviors

number fo users choosing or preferring system

number of times users have to work around a problem

number of times user is disrupted from task

number of times user loses control of system

number of times user expressed frustration or satisfaction

Programming the Interface

1

Notes on the Programming Language JAVA

Features

simple

object-oriented (relatively pure oo, not procedural + oo extensions)

distributed

both interpreted and compiled instruction sets

robust

secure

architecture neutral

portable

high-performance

multi-threaded

dynamic

Object Orientation

class = abstraction

class variables

class functions

instance

fields are instance variables

methods are functions

hierarchy

subclasses = design by difference

inheritance

overloading

constructors

accessors

encapsulation (public, package, protected, private)

Implementation Features

virtual machine

byte-code = machine instructions for a virtual machine (VM)

VM maps closely to most native hardware machine

call-by-value parameter passing (compare to call-by-name, call-by-need)

the value of an object is its reference

copies binding into parameter field of method

automatic garbage collection

streams

type-safe references (strong typing)

exception handling

multiple threads (multitasking, lightweight)

simultaneous processes and shared objects

locks; user provided deadlock avoidance

automatic switching, scheduling, synchronization

Programming the Interface

2

Language Features

base data-types are not objects

first-class strings, read-only

international Unicode character set

first-class exceptions, checked by compiler

HTML inline interface

first-class network interface (URL, TCP, sockets)

protection and security model

class Object is root

interface concept for limited multiple inheritance

no pointers (use references instead)

no global variables (use root classes)

no goto (use catch/throw and labels)

no operator overloading (static basic operators)

no delete

Language Keyword Features

final: constants, unforgable classes, non-overridden methods

this: reference to self object

new: constructs a new object or class

. : accessor function

[] : arrays

{ } : sequential block

super: references things from the superclass(es)

try-catch-finally: exception handling

labelled break: for skipping sequences and exiting loops

Packages

class libraries

functionality groups

user interface code provided

user provide application specific abstract data types

Provided Java API Packages

java.lang the language

java.net networking

java.io streams and files

java.util utilities, higher-order data-structures

(enumeration, vector, stack, dictionary, hashtable)

java.awt Abstract Window Toolkit

java.awt.image image processing

java.awt.peer interface with native interfaces

java.applet basic applets

plus plenty more on the net and by vendors

Programming the Interface

3

Interfaces

unique in Java

separate design inheritance from implementation inheritance

can inherit a contract without inheriting an implementation

tie together dissimilar classes for object reference

subclasses provide code for all interface methods

multiple inheritance (classes can implement multiple interfaces)

no root, does not default to Object root-class

constrained to:

abstract class (no instances, only subclasses)

no code, only abstract method declarations

static and final variables

public methods

Exceptions

catch and throw handlers

programmer declared compile-time errors

cleanly checks for errors without cluttering code

try/catch/throw environment

finally clean-up

Protect ion

runtime system does not permit memory access

public full access by all classes

package access by classes in common library

protected access by subclasses only

private no access by other classes

Streams

usually paired as InputStream, OutputStream

Piped, Filter, Buffered

StreamTokenizer

System Programming Classes

Runtime (state of Java at runtime)

Process (running java process)

System (state of environment)

Math (standard computations)

Native (foreign function interface)

Mu l t imed i a

MediaTracker image maintenance

Sound AudioClip

Animation sprites

Programming the Interface

4

Abstract Window Toolkit (AWT)

embedding within the local browser

standard component set

button, checkbox, choice, label, list

scrollbar, textarea, textfield,

windows, menus, dialog boxes

containers

graphical collections of components

layout management

event handling

mouse clicks and movements

keyboard

graphics

drawing, color, fonts, clipping, image handling

Sample HTML Applet Call

<HTML>

<HEAD>

 <TITLE>Applet Page</TITLE>

</HEAD>

<BODY>

<H4>This is an example of a Java applet:</H4>

<HR> <APPLET CODE="MyApplet.class" WIDTH=100 HEIGHT=50> </APPLET> <HR>

</BODY>

</HTML>

Sample Applet

import java.applet.Applet;

import java.awt.Graphics;

public class MyApplet extends Applet

{public void paint(Graphics g)

{ g.drawString("Hello world.", 5, 10); } }

Web Resources (1997)

http://java.sun.com/ ...from the Source

http://www.rpi.edu/~decemj/works/java.html/ a Java book author

http://www.gamelan.com/ registry of programs

http://sunsite.unc.edu/javafaq/javafaq.html FAQs

http://www.well.com/user/yimmit/ links to resources

http://www.natural.com/ major developer

http://www.io.org/~mentor/J__Notes.html more resources

http://www.acm.org/~ops/java.html ACM resources

http://www.yahoo.com/Computers/Languages/Java/ search engine resources

http://rendezvous.com/Java/hierarchy class diagrams

Programming the Interface

1

A Complete User Interface System

Primary Examples:

MacOS, Visual Basic, NeXTStep, Java, Common Lisp Interface Manager

• windowing abstraction

containers, views

• display components

button, checkbox, choice box, label, list, table,

scrollbar, textarea, textfield, window, menu, dialog box

• display tools

fonts and points

color

graphics system (drawing, clipping, 3D)

image handling

layout management

• temporal data tools

time and synchronization model

sound manager

video manager

animation manager

• interactivity tools

event handling and management (mouse, keyboard, arbitraty input devices)

streams and buffers

scripting language

• programming interface tools

object-oriented class, instance, and message system (initialize-, make-)

load, compile, link, and evaluate

language-specific text editor

interface construction toolkit

debugging and exception handling

namespaces and packages

foreign function interface

• operating system tools

threads and multitasking

concurrency, switching, scheduling, and synchronization

memory management

file system interface

network interface and security

low level: internal data structures, pointers, memory blocks, traps

Programming the Interface

2

Extended Examples (Java, CLIM)

using widget interactions as a simple example

Generic object operators/functions:

constructors: make-, initialize-, set-

assessors: get-

queries: ? -

functions: act-on-

relations: constrain-

Turnkey dialog boxes

throw-cancel and catch-cancel <aborts>

message-dialog

yes-or-no-dialog

get-string-from-user-dialog

select-item-from-list-dialog

Windows

nested-views, size, position, scroller, click-handler

title, font, color, active?, layer, zoom, grow, drag

Mac Common Lisp Menu Class structure

menu-element

menubar (class, variable, function)

set-menubar

find-menu

<color-functions>

default-menubar

menu

initialize-, set-

menu-title, menu-items, menu-colors

update-function

help-spec (balloon-help system)

install, deinstall, installed?

enable, disable, enabled?

font-style, <color-functions>

add-menu-item, remove-menu-item, get-menu-item, find-menu-item

menu-item

initialize-, set-, get-, query?-

owner, title

command-key, checked

action, action-function (call vs get)

disabled?

colors, font-style

update-function, help-spec

window-menu-item

close, save, save-as, save-copy-as, revert, hardcopy

cut, copy, paste, clear, select-all, undo, undo-more

load/evaluate-selection, load/evaluate-whole-buffer

Programming the Interface

3

Mac Common Lisp Dialog-items

initialize-, set-, get-, make-

view-size, view-container, view-position, view-nickname, view-font

dialog-item-text, dialog-item-handle, dialog-item-enabled?

part-color-list, dialog-item-action, help-spec, window-pointer

install, activate, activate-event-handler, default

button-dialog-item

press-button, default-button-dialog-item (make-, get-, set-, ?-)

static-text-dialog-item

editable-text-dialog-item

<key-stroke-handlers>

check-box-dialog-item (check-box-check, -uncheck, -checked?)

radio-button-dialog-item (radio-button-cluster, -push, -unpush, -pushed?)

table-dialog-item

<table-constructors>, <cell-contents-handlers>, sequence-dialog-item

pop-up-menu (<handlers>)

scroll-bar (<handlers>)

Interface Toolkit

The toolkit provides a drag-and-drop interface for constructing display interfaces.

After selecting and positioning the interface, the toolkit writes the appropriate source code for

that interface. Toolkit components:

Menubar Editor

Add Menu

Add Menu Item

Command key, Disabled, Check Mark

Menu Item Action (provide function), Menu Item Colors

Menu Colors

Print Menu Source

Rotate Menubars

Add New Menubar

Delete Menubar

Menubar Colors

Print Menubar Source

Use Dialogs (toggle with Design Dialog)

Design Dialogs

Document

Document with Grow

Document with Zoom

Tool (with title bar and close button)

Single Edge Box

Double Edge Box

Shadow Edge Box

 Design Dialog Methods

Include Close Box

Color Window

Add Dialog Item

Programming the Interface

4

Static Text

Editable Text Field (Allow Returns, Allow Tabs, Draw Outline)

Button (Default Button)

Radio Button (Radio Button Pushed, Set Item Cluster)

Checkbox (Checkbox Checked)

Table (Set Cell Size, Horizontal Scroll Bar, Vertical Scroll Bar

Set Table Sequence, Set Wrap Length, Orientation)

 Add Dialog Item Methods

Dialog Item Text

Enabled/Disabled

Set Item Action

Set Item Font

Set item Name

Set Color

Print Item Source

New Dialog

Add Horizontal Guide (for alignment during editing)

Add Vertical Guide

Edit Dialog

Print Dialog Source

Java Code for constructing some widgets

Named Button:

public void okButton() {

Button b = new button("OK");

add(b); }

Unnamed button:

add(new Button("OK"))

Labe l :

add(new Label("Look at me"))

Checkbox:

add(new Checkbox("Check here if hungry"))

 Checkbox Methods:

getLabel(), setLabel(String), getState(), setState(boolean)

Choice Menu:

{Choice myClassesMenu = new Choice;

 myClassesMenu.addItem("SE101");

 myClassesMenu.addItem("SE561");

 myClassesMenu.addItem("Special Project");

 add(myClassesMenu); }

 Choice Menu Methods:

getItem(int), countItems(), getSelectedIndex(),

getSelectedItem, select(int), select(String)

Programming the Interface

5

 PRODUCTION LISP CODE for a WINDOWING SYSTEM

Unedited, little documentation, good style.
This code is what you would have to write if you were developing an application
windowing system without a toolkit or a class library.
Redundant code templates are omitted.

First the class structure for the windowing environment,
next the menu system with its corresponding action functions,
then the control panel with its corresponding action functions,
finally the event handler for text entry into the control window.

;;;
;; PARENT-WINDOW

(defclass parent-window (window)
 ((children :accessor children :initarg :children :initform nil)
 (common-data :accessor common-data :initarg :common-data :initform nil)))

(defmethod initialize-instance ((self parent-window) &rest rest)
 (apply #'call-next-method self rest)
 (map-children self #'set-child-parent self))

(defmethod find-parent-child ((self parent-window) type)
 (car (member type (children self) :key #'type)))

(defmethod add-parent-children ((self parent-window) &rest children)
 (setf (children self) (append children (children self))))

(defmethod remove-parent-children ((self parent-window) &rest children)
 (setf (children self) (set-difference (children self) children)))

(defmethod parent-children ((self parent-window) &rest children)
 (apply #'add-parent-children self children)
 (mapcar #'(lambda (child) (set-child-parent child self)) children))

(defmethod map-children ((self parent-window) func &rest args)
 (mapcar #'(lambda (child) (apply func child args)) (children self)))

(defmethod open-child ((self parent-window) type &rest rest)
 (cond
 ((eq type 'entry) self)
 ((find-parent-child self type))
 ((eq type 'database)
 (apply #'make-instance 'database-window :parent self rest))
 (T
 (apply #'make-instance 'display-window
 :type type :parent self rest))))

Programming the Interface

6

(defmethod window-close ((self parent-window))
 (call-next-method self)
 (map-children self #'window-close))

(defmethod set-window-title ((self parent-window) new-title)
 (map-children self #'set-window-title new-title)
 (call-next-method self new-title))

;;;six window subclasses and methods omitted here

;;;
;; DISPLAY-WINDOW

(defclass display-window (child-window)
 ((display-view :accessor display-view :initform nil)
 (title :accessor title :initform "Display"))
 (:default-initargs
 :window-type :document-with-zoom
 :view-font '("Monaco" 9)
 :view-size #@(300 150)))

(defmethod initialize-instance
((self display-window) &rest rest &key (type 'display-view))

 (declare (dynamic-extent rest))
 (apply #'call-next-method self :type type rest)
 (let ((view (make-instance type
 :view-container self
 :view-size (subtract-points (view-size self) #@(15 15))
 :view-position #@(0 0)
 :draw-scroller-outline nil)))
 (setf (display-view self) view)
 (setf (title self) (title view))
 (when (parent self)
 (set-window-title self (window-title (parent self))))
 (mapcar #'(lambda (x) (setf (scroll-bar-scroll-size x) 12))
 (view-scroll-bars view))
 (set-common-data view (common-data self))))

(defmethod set-view-size ((self display-window) h &optional v)
 (declare (ignore h v))
 (without-interrupts
 (call-next-method)
 (let* ((new-size (subtract-points (view-size self) #@(15 15))))
 (set-view-size (display-view self) new-size))))

(defmethod window-zoom-event-handler ((self display-window) message)
 (declare (ignore message))
 (without-interrupts
 (call-next-method)
 (let* ((new-size (subtract-points (view-size self) #@(15 15))))
 (set-view-size (display-view self) new-size))))

(defmethod clear ((self display-window))
 (call-next-method self))

Programming the Interface

7

(defmethod save-to-eval ((self display-window))
 `(make-instance 'display-window
 :type ',(type self)
 :window-title ,(window-title self)
 :view-position ,(view-position self)
 :view-size ,(view-size self)))

(defmethod window-close ((self display-window))
 (when (parent self)
 (remove-parent-children (parent self) self))
 (call-next-method self))

(defun make-trace-output-window (parent)
 (make-instance 'display-window
 :type 'trace
 :parent parent
 :close-box-p nil
 :window-title "Trace Output Window"))

;;;
;;; LOSP-MENU

(defvar *losp-menu* nil)
(defvar *db-edit-menu* nil)

(defun initialize-losp-menu ()
 (menu-install (setq *losp-menu* (make-losp-menu)))
 (menu-install (setq *db-edit-menu* (make-db-edit-menu))))

(defun make-losp-menu ()
 (MAKE-INSTANCE 'MENU
 :MENU-TITLE "Losp"
 :MENU-ITEMS
 (LIST (MAKE-INSTANCE 'MENU-ITEM
 :MENU-ITEM-TITLE "About..."
 :MENU-ITEM-ACTION #'make-losp-ABOUT-WINDOW)
 ;(MAKE-INSTANCE 'MENU-ITEM
 ; :MENU-ITEM-TITLE "Load"
 ; :MENU-ITEM-ACTION #'menu-load-losp)
 (MAKE-INSTANCE 'MENU-ITEM
 :MENU-ITEM-TITLE "Entry Window"
 :MENU-ITEM-ACTION #'menu-make-entry-window)
 (MAKE-INSTANCE 'MENU-ITEM
 :MENU-ITEM-TITLE "Control Panel"
 :MENU-ITEM-ACTION #'make-losp-CONTROL-PANEL
 :COMMAND-KEY #\=
 :MENU-ITEM-CHECKED nil)
 (MAKE-INSTANCE 'MENU-ITEM
 :MENU-ITEM-TITLE "Test Minimizer"
 :MENU-ITEM-ACTION #'run-min-test)
 (MAKE-INSTANCE 'MENU-ITEM
 :MENU-ITEM-TITLE "Quit Losp"
 :MENU-ITEM-ACTION #'close-LOSP
 :command-key #\Q))))

Programming the Interface

8

;;;
;;; MENU ACTION FUNCTIONS
;;;
;;; Menu items: Activation function:
;;; About... make-losp-about-window
;;; Load menu-load-losp [in initialize file]
;;; Entry Window make-entry-window
;;; Control Panel make-losp-control-panel
;;; Test Minimizer run-min-test
;;; Quit Losp close-losp

(defun menu-make-entry-window ()
 (setq *current-entry-window* (make-entry-window))
 ;(make-losp-control-panel))

(defun close-losp ()
 (if *current-entry-window* (window-close *current-entry-window*))
 (menu-deinstall *db-edit-menu*)
 (menu-deinstall *losp-menu*))

;;;several menu functions omitted here

;;;
;;; ABOUT-LOSP

(defun make-losp-about-window ()
 (modal-dialog
 (MAKE-INSTANCE 'COLOR-DIALOG
 :WINDOW-TYPE :DOUBLE-EDGE-BOX
 :WINDOW-TITLE "about-losp"
 :VIEW-POSITION #@(426 60)
 :VIEW-SIZE #@(370 185)
 :CLOSE-BOX-P NIL
 :VIEW-FONT '("Chicago" 12 :SRCOR :PLAIN)
 :VIEW-SUBVIEWS
 (LIST (MAKE-DIALOG-ITEM
 'STATIC-TEXT-DIALOG-ITEM #@(58 8) #@(260 16)
 "Losp Boolean Minimization Engine 1.0" 'NIL)
 (MAKE-DIALOG-ITEM
 'STATIC-TEXT-DIALOG-ITEM #@(146 31) #@(73 16)
 "May 1995" 'NIL)
 (MAKE-DIALOG-ITEM
 'STATIC-TEXT-DIALOG-ITEM #@(8 58) #@(345 32)
 "Copyright (C) 1995, OZ...International, Ltd. and Interval
Research Corporation, All Rights Reserved." 'NIL)
 (MAKE-DIALOG-ITEM
 'STATIC-TEXT-DIALOG-ITEM #@(20 102) #@(345 16)
 "Authored by William Bricken and Jeffrey James." 'NIL)
 (MAKE-DIALOG-ITEM
 'BUTTON-DIALOG-ITEM #@(130 140) #@(114 23)
 "OK"
 #'(lambda (item) (declare (ignore item))
 (return-from-modal-dialog t))
 :DEFAULT-BUTTON T)))))

Programming the Interface

9

;;;
;;; CONTROL-PANEL

(defun make-losp-control-panel ()
 (setq *problem-number-comtab* (make-comtab))
 (comtab-set-key *problem-number-comtab*
 '(#\Newline) 'accept-problem-number-text-entry)
 (setq *isolate-variable-comtab* (make-comtab))
 (comtab-set-key *isolate-variable-comtab*
 '(#\Newline) 'accept-isolate-variable-text-entry)
 (setq *losp-control-panel*
 (MAKE-INSTANCE 'control-panel-window
 :WINDOW-TYPE :TOOL
 :WINDOW-TITLE (format nil "Losp Control Panel")
 :VIEW-POSITION '(:TOP 208)
 :VIEW-SIZE #@(230 254)
 :VIEW-FONT '("Chicago" 12 :SRCOR :PLAIN)
 :parent *current-entry-window*
 :VIEW-SUBVIEWS (losp-control-panel-subviews)))
 (set-radio-buttons-when-opened)
 (set-logic-check-box-when-opened)
 (set-circuit-check-box-when-opened)
 (set-trace-check-box-when-opened)
 (set-database-check-box-when-opened))

(defun losp-control-panel-subviews ()
 (LIST (MAKE-DIALOG-ITEM
 'STATIC-TEXT-DIALOG-ITEM #@(10 5) #@(56 16)
 "Analysis"
 'NIL)
 (MAKE-DIALOG-ITEM
 'BUTTON-DIALOG-ITEM #@(70 3) #@(60 18)
 "Apply"
 #'(LAMBDA (ITEM) (apply-button-action item))
 :VIEW-FONT '("Courier" 12 :SRCOR :PLAIN)
 :view-nick-name 'apply-button
 :DEFAULT-BUTTON NIL)
 (MAKE-DIALOG-ITEM
 'RADIO-BUTTON-DIALOG-ITEM #@(10 28) #@(110 16)
 "Transcribe"
 #'(LAMBDA (ITEM) (transcribe-radio-button-action item))
 :VIEW-FONT '("Geneva" 12 :SRCOR :PLAIN)
 :view-nick-name 'transcribe-radio-button
 :RADIO-BUTTON-PUSHED-P nil)
 (MAKE-DIALOG-ITEM
 'EDITABLE-TEXT-DIALOG-ITEM #@(160 222) #@(52 15)
 ""
 #'(LAMBDA (ITEM) (case-variable-text-action item))
 :VIEW-FONT '("Geneva" 12 :SRCOR :PLAIN)
 :view-nick-name 'isolate-variable-text-box
 :comtab *isolate-variable-comtab*
 :ALLOW-RETURNS T)))

;;;18 other dialog-item specifications omitted here

Programming the Interface

10

;;;
;;; ACTIONS
;;;
;; see process file for usage of the globals
;; *valid-analysis-levels* *current-analysis-level*
;; *active-displays* *most-recent-analysis-result*
;; *current-entry-window*

(defun set-radio-buttons-when-opened ()
 (cond
 ((eq *current-analysis-level* '*TRANSCRIBE*)
 (radio-button-push
 (view-named 'transcribe-radio-button *losp-control-panel*)))
 ((eq *current-analysis-level* '*CLEAN*)
 (radio-button-push
 (view-named 'clean-radio-button *losp-control-panel*)))
 ((eq *current-analysis-level* '*SORT*)
 (radio-button-push
 (view-named 'sort-radio-button *losp-control-panel*)))
 ((eq *current-analysis-level* '*EXTRACT-LITERALS*)
 (radio-button-push
 (view-named 'extract-literals-radio-button *losp-control-panel*)))
 ((eq *current-analysis-level* '*CANCEL-BOUNDS*)
 (radio-button-push
 (view-named 'cancel-bounds-radio-button *losp-control-panel*)))
 ((eq *current-analysis-level* '*INSERT-BOUNDS*)
 (radio-button-push
 (view-named 'insert-bounds-radio-button *losp-control-panel*)))
 ((eq *current-analysis-level* '*MINIMIZE*)
 (radio-button-push
 (view-named 'minimize-radio-button *losp-control-panel*)))
 (T nil)))

(defun transcribe-radio-button-action (self)
 (setq *current-analysis-level* '*TRANSCRIBE*)
 self)

(defun clean-radio-button-action (self)
 (setq *current-analysis-level* '*CLEAN*)
 self)

(defun sort-radio-button-action (self)
 (setq *current-analysis-level* '*SORT*)
 self)

(defun database-display-box-action (self)
 (let ((win (when *current-entry-window*
 (find-parent-child *current-entry-window* 'database))))
 (if win
 (window-close win)
 (make-database-window *current-entry-window*)))
 self)

;;;20 other action specifications omitted here

Programming the Interface

11

;;;
;;; ENTER LOSP-ENTRY-WINDOW
;;;
;; Controls the behavior of the 'return' key in the entry buffer.
;; If the cursor is not on the last line of the buffer, 'return' copies
;; the current line (without the prompt) to the end and moves the cursor
;; there too. No error handling is provided here.

(defun accept-entry (entry-window &optional force)
 (let* ((bmark (fred-buffer entry-window))
 (end (buffer-line-end bmark))
 (eob (buffer-size bmark))
 (entry (string-left-trim *entry-prompt*
 (buffer-substring bmark (buffer-line-start bmark) end)))
 (symbol-entry (string2symbol-boxed entry)))
 (cond ;; accept input
 ((or force (= end eob))
 (set-mark bmark eob)
 (ed-insert-char entry-window #\Newline)
 (if (null symbol-entry)
 (buffer-insert-at-end bmark "return")
 (let ((logic-type
 (intersection (flat symbol-entry) *valid-logic-functions*))
 (assertion-type (member *assertion-token* symbol-entry)))
 (cond
 (logic-type
 (buffer-insert-at-end bmark *multiple-form-message*))
 (assertion-type
 (buffer-insert-at-end bmark "Assert: ")
 (buffer-insert-at-end bmark
 (assert-entry entry-window (remove-assert-mark symbol-entry))))
 (T (let ((result (process-entry entry-window symbol-entry)))
 (buffer-insert-at-end
 bmark (prepare-text-out result)))))))
 (ed-insert-char entry-window #\Newline)
 (buffer-insert-at-end bmark *entry-prompt*))
 ;; otherwise copy entry to the end of the buffer
 (T (buffer-insert-at-end bmark entry)))))

(defun force-accept (entry-window) (accept-entry entry-window T))

(defun buffer-insert-at-end (bmark string)
 (buffer-insert bmark string (buffer-size bmark))
 (set-mark bmark (buffer-size bmark)))

(defun prepare-text-out (form)
 (cond
 ((null form) "")
 ((marked form) "()")
 (T (let ((string-form (symbol2string form)))
 (remove #\) (remove #\(string-form :count 1)
 :count 1 :from-end t)))))

;;;many other handlers and functions omitted here

Programming the Interface

1

PROJECT REFINEMENT

For our class project, we will be developing a single website which demonstrates knowledge-
based hyperlinks (perhaps just SSmartLinks). Active items (words, graphics, diagrams,

sections, etc) will permit traversal of the website based on semantic rather than syntactic

references.

Discussions and decisions:

1. Review of relevant class handouts, and research into possible approaches.

2. Identify the task that the potential user of the website will be trying to accomplish. Develop

several scenarios which capture the semantic need and intent.

3. Identify the types of traversal available to the user. Rough out the engine functionality and

the system architecture.

4. Select a content area for the site which facilitates task accomplishment. The types of smart

links will depend directly on the content and functionality of the site.

5. Identify the requisite languages, skills and roles for the project. (content and site

development, link definition, engine development, interaction design,...)

6. Discuss the issue of novice vs expert users.

7. Brainstorm possible models of interactivity and interface displays. How will the user:

1) know what is possible? 2) know what to do? 3) communicate their needs?

8. Assignment of tasks to individuals.

R e c a l l

• Our links will be more useful if they are filters rather than generators.

• We may use several types of traversal, but each type will have a separate underlying

traversal graph. We will eliminate interaction between semantic components.

Individual assignment:

Construct a ggraph of a possible site, with nodes being content chunks and links being

traversals. You will need to

1. make up some rough content chunks in a content area (the class should have decided

the content area tonight),

2. imagine some tasks, queries and traversals,

3. identify the type of connection being traversed,

4. specify in detail some content containing the link and some content being traversed to,

with emphasis on the semantic connection between the two, and

5. be prepared to show this graph to the class.

Programming the Interface

1

PROJECT REFINEMENT

The content of our project is CChildhood Ailment Diagnosis. The rough architecture is to

use SSmartLinks to connect the HTML-page-structure to a semantic-network, traverse the

semantic-network, and then return to the HTML location which correcsponds to the end of the

semantic-network path.

So we’ll be constructing two (or more) databases: the sstructural-HTML-database and the

semantic-net-database. Then we’ll be constructing a llinking database, which contains

the connectivity between syntactic and semantic elements. We will also need a ttraversal

engine as the back-end, and a qquery interface as the front-end.

I ssues :

1. Review class assignments; make a rough pass at the data structures (the HTML structure

graph and the semantic network graph).

2. Refine content area.

3. Refine semantic nets, and identify what we can do semantically. Types of traversal. Identify

the language of the semantic-net (ie what types of nodes and links)

4. Discuss the types of structural (HTML) forms. Grainsize of information units; grainsize of

textual and paragraph HTML; types of knowledge units. Other types of syntactic organization.

Other types of semantic queries.

5. Rough pass at the control structure architecture.

6. Discuss the implications of the semantic-net modleling approach, the notion of ontology and

the mappings from semantic-nets to relational calculus.

7. Discuss the limitations and traps in the proposed control architecture.

8. Identify roles, esp. who will be writing what code. Identify the requisite languages, skills

and roles for the project. (content and site development, link definition, engine development,

interaction design,...)

9. Continue to develop usage scenerios.

10. Consider the interaction and user-interface issues.

11. Discuss the issue of novice vs expert users.

12. Discuss the issue of partial vs. complete knowledge. Hypothesis testing in diagnosis.

Programming the Interface

1

Evolving the Interface

The WIMP metaphor (windows, icons, menus, pointer) appeared in public in 1984, designed

for personal computers with naive users, narrow applications, weak processors, impoverished

bandwidth and i/o, and stand alone usage. Isn’t it time for a change?

W I M P B U F F

• Metaphor Reality, virtuality

The book, desktop, office room, etc are all weak metaphorical maps. We should

be interacting with a strong mapping of the task itself.

• Direct Manipulation Delegation

Drag and drop makes drudgery easy but it provides no abstractions. Wouldn’t you

prefer to delegate those repetitive jobs to the system?

• See and Point Describe and Command

It’s nice to see what you are manipulating, but this is a regression to first grade.

We need tools that are driven by language and abstraction, not by touch

• Consistency Diversity

Consistency reduces the need for thought, but the world is actually complex and

diversified. The pencil and paper suggest an ideal flexible, easy-to-use tool.

• WYSIWYG Represent meaning

Wysiwyg is a mapping to output that ignores the meaning of the output. We need

semantics included at the display level, so that the interface knows why a phrase

is in italics.

• User Control Shared Control

Letting the user steer the process gives a feeling of control, but is far too much

work. We don’t write essays by a single button push, so we must recognize that

control is difficult and we should welcome help from agents and others.

• Feedback and Dialog System handles details

Clear, consistent feedback is like having your boss always looking over your

shoulder. We should hide most processes; do you really want feedback from the

garbage collection algorithm?

• Forgiveness Model User Actions

Programming the Interface

2

Reversible actions permit a user to make and revoke errors. With a little bit of

contextual understanding, however, the system can forbid letting those errors

from happening directly.

• Aesthetic Integrity Graphic Variation

Simple, clean interfaces are also limited in capability, drab and boring. We need

help navigating large spaces; variation and diversity are appropriate roadsigns.

• Modelessness Richer Cues

It is idealistic and foolish to expect to do anything at any time. Modes are task

specific, lets learn to identify contexts rather than to blur our vision.

I S S U E W I M P B U F F

users naive post-nintendo

applications productivity ubiquitous

power weak humungous

communication impoverished r ich

connect standalone deep and dynamic

language icons English language

objects weak and big many, small, rich

origin finder/files personal information

travel surf push to you

image be your best don’t work hard

What is suggested is a paradigm change, not an incremental improvement. The components of a

paradigm are all mutually reinforcing, so that the desktop metaphor does not readily adapt to

changes of the parts.

Main Points:

• Language must play a central role at the interface. Language is abstract,

negotiable, contextual, multimodal, and ambiguous, it is not a physical metaphor.

• Objects need richer representations, multiple views for multiple uses.

Objects need to include some notion of their meaning.

• The interface needs more expressive power and diversification to handle

information complexity.

• There are more expert users and more agents and proxy users. The user base

is smarter, networked, and dealing with too much information too readily

accessible but not organized.

	01-introduction.pdf
	02-project.pdf
	03-syllabus.pdf
	04-hypertext.pdf
	05-design.pdf
	06-java.pdf
	07-completewindow.pdf
	08-projrefine.pdf
	09-ontology.pdf
	10-buff.pdf

