
Programming the Interface

1

INFORMATION MAPPING (R. Horn)

Paper metaphors for hypertext

library card catalogues

footnotes

cross-reference

sticky notes

commentaries

indexes

quotes

anthologies

Computer metaphors for hypertext

linked note cards

popup notes

linked screens or windows

stretch text and outlines

semantic nets

branching stories

relational databases

simulations

Hypertext Links

system-supplied
command and control pathways

table of contents

history tracking

automated profiling

user-created
detours and shortcuts

notes, commentary, reminders

analogical links

new text

links to other knowledge bases

author-created
links to prerequisite knowledge

hierarchical classification

chronological structures

Kinds of links

hierarchical building a tree

keyword building an array

referential building a pointer list

cluster building a struct

Programming the Interface

2

Wayfinding in cyberspace (these don't work very well)

show all connections

go back to the beginning

show history of behavior

Node sizes

one sentence

text of arbitrary size (article, monograph)

index card size

screen size

scroll of any length

variable record sizing

variable size, precisely and flexibly chunked

Information types

structure

concept

procedure

process

classification

principle

fact

Information Blocks

chunking small, manageable hunks (blocks, maps)

relevance one main point per chunk, based on purpose or function to reader

consistency similar words, labels, formats, organization

labeling label every chunk based on specific criteria

Common types of information blocks

analogy example parts table

block diagram fact prerequisite

checklist flow chart principle

classification table flow diagram procedure table

classification tree formula purpose

comment input-procedure-output rule

cycle chart non-example stage

decision table notation synonym

definition objectives theorem

description outlines when to use

diagram parts-function table worksheet

Programming the Interface

3

Types of hypertrail, path

prerequisite

classification

chronological

sequence of events

storyline

natural development

geographic

project

structural

decision

definition

example

How readers behave

novices stop reading too soon

novices are mislead by superficial features

novices rarely seek non-linear information

readers construct a hierarchical mental representation

readers remember the top level of information better

readers depend on repetition of keywords

Reading cues

hierarchical text organization

explicit transitions

sequence signals

contrast and similarity cues

pronouns as cohesiveness cues

metaphors

content schemas

Document titles

just right: not too general, too specific, too long, too short

common language for the intended audience

itemize all possible readers and use lowest common denominator

no cuteness or silliness

no vague, mislabeled topic headers

same words in contents, titles, pages, and references

Programming the Interface

4

FORMAL KNOWLEDGE

A cconceptual model consists of

discrete objects, presumed to exist: the Universe of Discourse
interrelations between objects

functions: compound names for objects and for unnamed objects

relations: truth statements about objects

No matter how the world is conceptualized, there are other conceptualizations that are just as useful.

Declarative Style

An knowledge-based program consists of

a set of objects

a set of functions (names for compound objects)

a set of relations (facts)

a set of permissible transformations

State Space

The collection of facts (the database) at one given time defines the sstate of the world.

All possible state configurations define the sstate space.

To move from one state to another, apply a permitted ttransformation rule.

The state space and the moves between states from a graph.

Algorithms explore/search the state space.

Programmers control the search.

Knowledge Representation Labels

Constants:

names of specific objects: John, Tuesday, My-Phone-Number

names of specific functions: House-of[x], Phone-of[x], Truth-of[p]

names of specific relations: Likes[Mary, Tom], Phone-Number[Tom, x]

Var iab les:

refer to sets/classes/domains of objects

always scoped/introduced by a quantifier

Knowledge Representation Atoms

Named objects (object constants)

Indirect/compound named objects (functions)

Relations between objects (facts)

Logical connectives (and, or, not, if, iff) connect atoms. They cannot be used inside atoms.

Programming the Interface

5

yes: eyes-of[John] AND hair-of[John}

no: (eyes-of AND hair-of)[John]

no: hair-of[John AND Mary]

yes: hair-of[John] AND hair-of[Mary]

Example of a RELATIONAL KNOWLEDGE-BASE

Part of a knowledge-base about family relationships.

Vocabulary:

(father X Y)

(mother X Y)

(male Y)

(female Y)

(parent X Y)

(sibling X Y)

(brother X Y)

(sister X Y)

(uncle X Y)

(aunt X Y)

(gfather X Y)

(gmother X Y)

(ancestor X Y)

(cousin X Y)

Knowledge Base:

(if (father A B) (parent A B))

(if (mother A B) (parent A B))

(if (and (parent A C) (parent A B) (not (= B C))) (sibling B C))

(if (and (sibling A B) (male A)) (brother A B))

(if (and (sibling A B) (female A)) (sister A B))

(if (and (parent B C) (brother A B)) (uncle A C))

(if (and (parent B C) (sister A B)) (aunt A C))

(if (and (parent B C) (father A B)) (gfather A C))

(if (and (parent B C) (mother A B)) (gmother A C))

(if (parent A B) (ancestor A B))

(if (and (parent A B) (ancestor B C)) (ancestor A C))

(if (and (parent A C) (parent B D) (sibling A B)) (cousin C D))

(if (father A B) (male A))

(if (mother A B) (female A))

Facts:
(father arthur bertram)

(father arthur bailey)

(father bertram cornish)

(father bertram carey)

(mother beatrice cornish)

(mother beatrice carey)

Programming the Interface

6

(father bailey carleton)

(father bailey cassandra)

(mother bessie carleton)

(mother bessie cassandra)

(male cornish)

(male carey)

(male carleton)

(female cassandra)

Example questions:

(gfather arthur ?)

(cousin ? cassandra)

Technical Difficulties in Modeling and Knowledge Representaiton

(using blocks world in LISP as an example)

1. What is important to describe?

Build little theories of little worlds.

(Block A) (OnTable A) (Hand Empty)

2. How should descriptions be partitioned?

Functions or Relations, special or general objects?

(OnTable A) (On A Table) (not (OnTable Table))

3. How do we talk about groups and classes of objects?

Quantification and abstraction

(All (x) (Block x))

4. How do we address things with no names?

Functions as indirect, compound names.

(House-of John)

5. How do we handle things with more than one name?

unique name hypothesis, unification

(Uncle John) = (Brother (Father John)) = Bob

6. How do we make general rules which define the structure of relations?

quantification

(All (x) (iff (Uncle x) (Brother (Father x))))

7. How are typing and filters on domains represented?

predicates in conjunction

(All (x) (and (Person x) (Father x y)))

8. How do we join more than one fact?

conjunction

(and (F x) (G x))

Programming the Interface

7

9. How do we compute with logic?

inference as natural deduction and as resolution

(if (and (P x) (if (P x) (Q x))) (Q x))

10. How do we compute with quantifiers and classes of objects?

implicit universal quantification, Skolemization

(Exist (x) (P x)) ==> (P (Sk-1 x))

11. What is the difference between a fact and a query?

query combination rules

A. conjunction with negated query

(and (P x) (not (Q ?)))

B. Skolemization of query variables

(Q ?) ==> (Q Sk-1)

C. Facts imply Query

(if (P x) (Q ?))

D. The answer predicate

(if (P x) (Answer x))

12. What kinds of rules do we need for query answering?

A. definitions

(iff (P x) (Q (R x)))

B. mathematical structures (symmetry, transitivity, etc)

(if (and (if (P x) (Q x)) (if (Q x) (R x))) (R x))

C. permissible state transformations

(Pick-up x) = (Assert (not (onTable x)))

13. How can we control the inference/search procedure?

A. Pre and Post conditions

B. Compound queries

C. Searching databases of rules and facts

14. How do we steer the resolution process?

A. set of support

B. ordered resoultion

C. static vs dynamic approaches (compiled vs run-time)

D. lookahead, cheapest first, dependency directed search

15. How do we express meta-level reasoning (rules about rules)

measure the savings vs brute force

