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COURSE INFORMATION

Text:

No text.  The instructor will provide handouts from many different books.

Eva luat ion :

Available grades:

non-completion:  Incomplete, Withdraw, etc.

completion:   A  A-  B+  B  B- C

A: reserved for superior performance

A- or B+: expected grade for conscientious performance

B: adequate work

B - : barely adequate

C: equivalent to failing

Grading Options:

1.  Performance Quality:  attendance, participation,  assigned exercises

2.  Grading Contract:  specify a set of behaviors and an associated grade.

3.  Self-determined:  negotiate with instructor

Discussion:

If you prefer a clearly defined agenda, if you do well with concrete task assignments,

or if you need a schedule of activities for motivation, then OOption 1 is a good idea.

If you already understand the field, if you plan to excel in a particular area,

or if you need clear performance goals for motivation, then OOption 2 is a good idea.

If you are not concerned about grades, if you intend to do what you choose anyway,

or if you are self-motivated, then OOption 3 is a good idea.

I will notify any student who is not on a trajectory for personal success.

Languages and Style:

The course will emphasize how to think about, design, and select programming languages and

metaphors for particular applications.   Students may use the OS and programming languages of

the choice for programming exercises.  Most assignments will have an implementation

component.
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Designing the Curriculum

Your name:

1.  Write down three questions that you would most like answered by this class.

2.  Write down two things that almost everybody in the class will understand by June.

3.  Write down the one thing that most concerns or worries you about taking this class.
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Assignment 1

A short oral presentation in class.

Tell a detailed story about a programming experience you have had.

A good story revolves around a character and a life experience.  It might have some tension,

some humor, a critical event, and some learning.

A programming story should be about or include code, before and after the critical event.

You should include what you learned from the experience, and perhaps how you would like things

to change.

Tell why you chose the particular story that you did choose.  Why is it interesting or important

to tell?  Is there a moral?
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Course Syllabus

Week 1:

Overview of programming metaphors.

Curriculum planning.

Assignment 1:  Tell a programming story

Week 2:

Overview of major languages.  Pseudocode

Syntax, parsers, BNF, automata.

Assignment 1 due.

Week 3:

FORTRAN, subroutines, name space

ALGOL, hierarchy, blocks

Assignment 2:  Pseudocode compiler

Week 4:

PASCAL, simplicity, data typing

Dynamic and static scoping, control structures.

Program semantics and pragmatic modeling

Assignment 3:  Pseudocode emulator

4/18:  Assignment 2 due

Week 5:

ADA, modularity, abstraction

packages, concurrency

Assignment 4:  Semantic model

Assignment 3 due.

Week 6:

LISP, functional style, symbol processing, recursion, garbage collection

A small interpreted language.

Assignment 4 due.

Week 7:

PROLOG, declarative style

logical programming, pattern-matching

Assignment 5 (major):

Week 8:

Smalltalk and JAVA, object-oriented style

data abstraction and modularity, agents

Week 9:

Mathematica

modern and new techniques

Assignment 5 due

Week 10:

Closure.
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Versions of Factorial

Focal concepts:

Each of these encodings of the factorial function is functionally equivalent.  How they

achieve the functionality differs.

Almost all are legitmate Mathematica code.  Since the core process in Mma is the same

for each encoding, we have a demonstration that all are statically equivalent.  Dynamically, ie

how the code runs, all are different.

The style of encoding should match as closely as possible the form of the natural

problem.  Second, the style should match the coder’s natural way of thinking about the problem.

Types of dynamic differences include:

•  Syntactic sugar:  the same dynamic behavior (ie the same language).  Macros

expand the sugared notation at read-time into standard notation.  Eg:

(a + b)  ==>  +[a,b]

declare a=5;  (a + b)

•  Functional syntactic sugar:  shorter and specialized versions of functions.  The

compiler usually standardizes these variants.  Eg, all of the various loop constructs are the

same.

for i=1 to n do Process[i]

i:=0; (do Process[i]; i:=i+1 until i=n)

dotimes[n, Process[#]]

StreamProcess[IntegerStream[1, n]]

•  Functional model difference:  different processes for achieving the same

functional objective.  Most of these compile into different machine instructions, but a good

optimizing compiler might standardize some of them.  Eg:  iteration vs recursion vs mapping

do[i from 1 to n, acc from nil, Process[i, acc]]

(if i=n, acc, Process[i-1, F[acc, i]])

(if i=n, 0, F[i, Process[i-1]])

map[Process, {1,i,n}]
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•  Operational difference:  different engines achieve the same objective but use

different operational characteristics.  Eg:

F[1]=1; F[n]= G[n, F[n-1]]

(if test[n] then (res:=F[i], ++i) else res)

(send F, n)

•  Mathematical difference:  different mathematical computations achieve the same

objective but use different models.  Eg:

F[n] = G[n] eg Fac[n]=Gamma[n+1]

Decode[Process[Encode[F,n]]]

When (F[Guess[n1] - F[Guess[n2]] = <small>), F[n1]

•  Level of Implementation difference:  different processes occur at different

levels of abstraction.  Eg:

2 + 5 = 7

010 + 101 = 111

r1=Load[i0]; r2=Fetch[j0]; r3=Add[r1,r2]; Store[r3]

b0 = xor[i0,j0]; b[1] = xor[i1,j1]

VERSIONS

1.  proceduralFactorial[n] :=
if ( Integer[n] and Positive[n] )

then
Block[ {iterator = n,

 result = 1  },
    While[ iterator != 1,

result := result * iterator;
iterator := iterator - 1 ];

    return result]
else  Error

2.  sugaredProceduralFactorial[n] :=
Block[  {result = 1},
    Do[  result = result * i, {i, 1, n} ];
    result]
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3.  loopFactorial[n] :=
{ For[ i=1 to n, i++, result := i*result ];
  result }

4.  guardedFactorial[n, result] :=
Precondition:  Integer[n] and Positive[n]        /also end condition
Invariant:  factorial[n] = n * factorial[n - 1]
Body: guardedFactorial[ (n - 1), (n * result) ]
PostCondition:  result = Integer[result] and Positive[result]

and (result >= n)

5.  assignmentFactorial[n] :=
{ product := 1;
  counter := 1;
  return assignmentFactorialCall[n, product, counter] }

6.  assignmentFactorialCall[n, product, counter] :=
if[ (counter > n)

then
return product

else
{ product := (counter * product);       /error if these are
  counter := (counter + 1);           /in reverse order
  return assignmentFactorialCall[n, product, counter] } ]

7.  recursiveFactorial[n] :=
if[  n == 1, 1,  n*recursiveFactorial[n - 1] ]

8.  rulebasedFactorial[1] = 1;
    rulebasedFactorial[n] := n * rulebasedFactorial[n - 1]

9.  accumulatingFactorial[n, result] :=
if[ (n = 0)

then
return result

else
return accumulatingFactorial[ (n - 1), (n * result) ]

10. upwardAccumulatingFactorial[product counter max] :=
if[ (counter > max)

then
return product

else
return upwardAccumulatingFactorial[ (counter * product)

(counter + 1)
max ] ]
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11. mathematicalFactorial[n] =
Apply[ Times, Range[n] ]

12. generatorFactorial[n]
Times[ i, Generator[i, 1, n] ]

13. combinatorFactorial :=
Y f< n< COND (=0 n) 1 (* n (f (-1 n))) >>

14. sugaredCombinatorFactorial =
S (CP COND =0 1) (S * (B FAC -1)))

15. integralFactorial[n] =  Gamma[ n + 1 ]  :=
integral[ 0 to Infinity, (t^n * e^(1 - n)), dt ]

16. streamOfFactorials  =
    streamAttach[ 1 streamTimes[streamOfFactorials streamOfPositiveIntegers] ]
streamOfPositiveIntegers =
    streamAttach[ 1 streamBuild[ Add1 CurrentStreamValue ] ]

17. JamesCalculusFactorial[n] =
Decode[Standardize[Do[Stack[Encode[i], acc] {i,1,n}]]]

Stack[jf, acc] =
Subst[jf UnitToken acc]

From Abelson and Sussman, Structure and Interpretation of Computer Programs

18. abstractMachineFactorial =  <p385>

19. registerMachineFactorial =  <p511>

20. compiledFactorial = <p596-7>
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Good Books

Below is the best books (IMHO) in most of areas covered in this class.

Programming Languages

B.J. MacLennan  (1999)

Principles of Programming Languages, Third Edition

Oxford.  ISBN 0-19-511306-3

M.L. Scott  (2000)

Programming Language Pragmatics
Morgan-Kauffman.  ISBN  1-55860-442-1

R.W. Sebesta  (1999)

Concepts of Programming Languages, Fourth Edition

Addison-Wesley.  ISBN 0-201-38596-1

Functional Programming

B.J. MacLennan  (1990)

Functional Programming;  Practice and Theory
Addison-Wesley.  ISBN 0-201-13744-5

R. Plasmeijer and M vanEekelen  (1993)

Functional Programming and Parallel Graph Rewriting
Addison-Wesley.  ISBN 0-201-41663-8

Programming Theory

N.D. Jones  (1997)

Computability and Complexity from a Programming Perspective
MIT Press.   ISBN  0-262-10064-9

Data Structures, Algorithms and Programming

H. Abelson and G.J. Sussman  (1996)

Structure and Interpretation of Computer Programs, Second Edition

McGraw-Hill.  ISBN  0-07-000484-6

Comprehensive Reference on Algorithms

T.H. Cormen, C.E. Leiserson, and R.L. Rivest (1990)

Introduction to Algorithms
MIT Press.  ISBN 0-07-013143-0
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Very High-level Programming

S. Wolfram  (1996)

The Mathematica Book,  Third Edition

Wolfram Media, Cambridge U. Press.  ISBN 0-521-58889-8

Theory of Computation Complexity

J.E. Savage  (1998)

Models of Computation
Addison-Wesley.   ISBN  0-201-89539-0

Computer Architecture

J.L. Hennessy and D.A. Patterson  (1996)

Computer Architecture:  A Quantitative Approach, Second Edition

Morgan-Kaufmann.  ISBN  1-55860-329-8

R.Y. Kain  (1996)

Advanced Computer Architecture
Prentice-Hall.  ISBN  0-13-007741-0

Comp i l e r s

S.S. Muchnick (1997)

Advanced Compiler Design and Implementation
Morgan-Kaufmann.  ISBN 1-55860-320-4

Understanding Computing in Simple Language

R. P. Feynman  (A.J.G. Hey and R.W. Allen, Eds)  (1996)

Feynman Lectures on Computation
Addison-Wesley.  ISBN  0-201-48991-0

Programming Style

D.E. Knuth (1992)

Literate Programming
CSLI.  ISBN 0-9370-7380-6
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Assignment II:  Pseudocode Syntax

Hand in to instructor at beginning of class.

Pseudocode is a computing language which is designed to convey ideas, specifications, and

algorithms.  It eliminates as many implementation details as possible.  In theory, a pseudocode

program should be executable, given that the lower-level details are provided.

Design the syntax of a pseudocode programming language.

You will need to:

1.  Select a small set of primitives for abstracting control, data, and names.

2.  Decide upon a lexical form for your language primitives

3.  Decide upon a syntax which structures how primitives are combined.

4.  Use standard techniques to define acceptable lexical and syntactic forms.

Standard syntax specification techniques include task decomposition, regular languages, finite

state acceptors, formal grammars, BNF and/or diagrammatic BNF.

Language primitives can be seen as addressing control, data, or naming.  Control primitives are

included in imperative languages to steer the course of program evaluation.  Data primitives

provide typing and abstraction.  A language may provide a single data type, or several basic

built-in types, or user-defined types.  Naming primitives determine the binding of names to

values, and the location of names and values in memory.  Primitives that we have discussed in

class include loop, logic, let, and domain theories.  Others may include sequence, order
comparisons, subroutines, hierarchy, and i/o.

Important :

1.  The task is to think clearly and carefully about the meaning of the 19 Principles of
Programming Languages (handed out in the first week).  Check your design decisions for

conformance to each of these principles.

2.  You must be explicit about the tasks which your pseudocode is intended to address.  Ask why

each primitive and each structure is included in the design.  What part of the task does each

particular structure address?

3.  Attempt to avoid structures which are intended to enhance implementation efficiency.

Pseudocode is not intended to address implementation efficiency, rather it should maximize

readability, comprehension, and absence of ambiguity.

4.  The most difficult part of language design is minimizing interactions between primitives

when they are combined.

Challenge:  Implement a lexical scanner and syntactic parser for your language.
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Language Evolution

c. 1950 machine pseudocodes

1956 FFORTRAN I (no data types)

compiled

i/o formatting

subroutines

IF, DO (no nesting)

1958 LL I S P

uniform data structure (lists)

functional programming  (a formal model of computation)

1960 AALGOL 60

data typing

block structure

pass by value, pass by name

recursion

1960 CCOBOL

macros

hierarchical data structures

long names

1964 BBAS IC

remote terminal access

easy to use

1965 PP L / I (ALGOL+FORTRAN+COBOL)

general purpose

concurrency

runtime error handling

pointers

sub-array reference

1967 SSIMULA 67

co-routines

classes, data abstraction

1968 AALGOL 68

orthogonality  (few constructs and combinations)

user defined data types

dynamic arrays

1971 PPASCAL

teaching language  (simple, expressive)
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1972 CC

rich operator set

OS-based (Unix)

1972 PPROLOG (inefficient, few applications)

declarative

formal model using logic

1980 SSma l l t a l k

pure object-orientation

methods

messages, send

software development environment  (windowing)

1985 AAda

committee design  (too large and complex)

encapsulation

exception handling

generic procedures

concurrent tasks and synchronization

1985 CC + +

predefined classes

overloading

templating  (parameterized classes)

1988 MMathematica

very high level mathematical language

string rewrite engine, string uniform data structure

all programming styles

highly integrated development environment

1993 JJava

reference types  (no pointers)

Boolean control  (no control arithmetic)

pure methods, applets  (no functions or subprograms)

threads

garbage collection

limited coercions



Programming Methods

1

Syntactic Modeling Tools

The Compilation Process

Source program
|

<-------- Lexical analyzer
| |
<-------- Syntax analyzer
| |

Symbol table ---> Intermediate code, semantic analyzer  --> Optimization
| | |
--------> Machine language code generator  <---------------

|
Hardware computation

Lexical and Syntactic Analysis

Programs are strings.

Lexical analysis scans the program string for valid character sequences.  Syntactic analysis
parses the program string for valid word sequences.

Structural rules for both character and words strings are defined by a context-free language.

Formal specification techniques include BNF, diagrammatic BNF, finite automata, production

rules, and syntax graphs.

Formal Languages

alphabet a finite set of symbols {i,j,k,+,*,0,1,2,...}

string a finite ordered list of symbols

language all possible strings using a given alphabet

grammar a subset of all possible strings constrained by a set of composition rules

Classes of Languages

These categories form a hierarchy, in that regular languages are fully contained in context-free

languages, etc.

Context sensitive languages have rules

A --> B such that |A| =< |B|

That is, the result B is never smaller that the input B
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Context free languages have rules

A --> B such that A is a single non-terminal string

That is, the input A never branches.

Regular languages have rules

A --> B such that B is a terminal or a terminal and a non-terminal

That is, the output B either ends the rule, or triggers another terminating rule.

Context-free Languages

These three operations define a regular language:

JOIN concatenate tokens and strings

OR choose between alternatives for one location

LOOP Kleene closure, Kleene star *

The Kleene star, s*, is a notation for repeating a given string zero or more times.  The Kleene

plus, r+, means repeat the given string one or more times.

RECURSION handle nested structures

Expressed as production rules, recursion allows

A --> B such that B can contain reference to A

For termination, at least one rule associated with A must not contain recursive reference to A.

Regular languages are defined by placing a constraint on context-free languages, that of not

permitting recursion.  Recursion is necessary to construct nested and hierarchical forms;

regular languages permit only construction of flat strings and lists.

Backus-Naur Form

One way to specify structural rules is using BNF, Backus-Naur Form.  BNF is a collection of

transformation, or pattern-matching, rules to apply to a given expression.  BNF defines a

regular language.  Valid token strings can be specified by

Base cases: empty string E
single character u

Compound cases: concatenation r*s
disjunction r|s
repetition r*
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Parentheses are used to disambiguate forms.

A diagrammatic version of regular language specifications uses

JOIN A --> B arrow from A to B

OR A --> branching paths
 \-->

LOOP A --> Kleene star
\<--/

Example: PASCAL numerical strings

digit --> 0|1|2|3|4|5|6|7|8|9

integer --> digit digit*

number --> integer ((. integer)| E)

Language classes and grammars were developed by Noam Chomsky.  Computing languages became

connected to grammars because Backus’ BNF formalism was equivalent to Chomsky’s.  Thus, a

context-free language can be defined as a BNF form with recursion.

Examples of Grammars

Balanced Parentheses

alphabet {(,)}

strings {(,),S}

grammar1 S --> empty
S --> S S
S --> (S)

grammar2 S  --> S1* Star allows zero occurrences
S1 --> (S)

Simple Algebra

alphabet {,0,1,2,...,a,b,c,...,+,*,(,)}

strings {+,*,(...), id, Term, Factor, Expression}

grammar Expression --> Expression + Term | Term

Term --> Term * Factor | Factor

Factor --> (Expression) | id
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Terms, Factors, and Expressions are defined formally by the rules of the grammar.

Intuitively, an Expression is any valid linear algebraic form.  A Term is two forms

multiplied together.  A Factor is an id or any Expression (separated by parentheses for

grouping).

Simple Arithmetic Parsing Example

(3 * (4 + 5)) * (2 + 7)

(3 * (4 + 5)) * (2 + 7)  expression1
--> term1

(3 * (4 + 5)) * (2 + 7)  term1
--> term2 * factor1

(3 * (4 + 5))            term2
--> factor2

(3 * (4 + 5))            factor2
--> (expression2)

 3 * (4 + 5) expression2
--> term3

 3 * (4 + 5) term3
--> term4 * factor3

 3 term4
--> factor4

 3 factor4
--> id1

     (4 + 5) factor3
--> (expression3)

4 + 5 expression3
--> expression4 + term5

4 expression4
--> term6

4 term6
--> factor5

4 factor5
--> id2

    5 term5
--> factor6

    5 factor6
--> id3

   (2 + 7) factor1
--> (expression5)

    2 + 7 expression5
--> expression6 + term7

    2 expression6
--> term8

    2 term8
--> factor7

    2 factor7
--> id4

        7 term7
--> factor8

  7 factor --> id5



Programming Methods

1

FORTRAN

FORTRAN was the first language with the design goal of efficient performance.  Consequently, the

constructs of the language are designed to accommodate a specific machine architecture.

FORTRAN was also essentially a numerical processing language for scientific computation.  The

new features introduces by the language include:

Subprograms

modularity

communication through parameter binding

procedural abstraction

l ibraries

Two-part programs

declarations

non-executable, compile-time directives

memory allotment

names for the memory spaces

initial contents of memory

instructions

executable, runtime

computation through assignment (arithmetic and move ops)

control flow through IF and DO

input/output

Several processing stages  (for efficiency)

compile

relocatable object code  (subprograms may move)

l i nk

thread libraries and external references

load

absolute memory format

execute

program in memory controls computer

Imperative programming

flow and control governed by programmable control logic

GOTO

single low-level transfer of control

confusing mental model

static and dynamic models don’t match
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DO loop

initialization, iteration, and return all directly controlled within DO

Coerc ion

allow mixed operations

Limited arrays

optimize memory

use array index as memory address (rather than computing new addresses)

Implications of Subprograms

SUBROUTINE  <name>  <formal parameters>

Inefficient, naive invocation:

Substitute the subroutine for its name in the main calling body of code, and

substitute the calling values for the formal parameters

Pass by Reference (FORTRAN’s solution)

Substitute the location of the subroutine in memory

for its name in the main calling body of code

difficult to understand dynamic behavior

security risk when locations can be accessed

Pass by Value (preferred)

Substitute values for parameters in subroutine

Run subroutine in place

Return result to calling context

requires activation record to keep track of bookkeeping

Activation Records

parameter bindings new values passed to the subroutine

resume address place to return control when subroutine is done

dynamic link location of caller’s activation record,

for returning results

temporary storage for subroutine bookkeeping
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Subprogram Invocation

To CALL

1.  Place parameter binding values in callee’s activation record.

2.  Save caller state and resume address in caller’s activation record.

3.  Place pointer to caller’s activation record in callee’s activation record

4.  Enter subprogram (callee’s) first instruction

To RETURN

5.  Transfer to callee’s resume address.

6.  When caller gains control, restore caller state.

7.  When subroutine has return values (i.e. callee is a function),

place return values in caller’s activation record.

Name Structures  (Environments, Symbol Tables)

Environments define context and meaning.

Sample name space:

name type         locat ion        va l ue                      

IF reserved 0247 <control>
i integer 0248 3
res list 0249 (a b c)
my-plus function 0250 <body>

Each subprogram has its own name space for local variables.

Subprogram names must be global.

In FORTRAN, COMMON blocks declare shared data.  This aliasing makes code maintenance

confusing.
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ALGOL-60 and ALGOL-68

ALGOL-60 was developed cooperatively between the US and Europe, with the goal of

standardizing an international general-purpose programming language.  Its primary design goal

was portability.  Since I/O devices were nowhere close to standization, ALGOL depended upon

external libraries for device drivers.  That is, ALGOL had no read or print statements.

The language definition is 15 pages long, exemplifying brevity and clarity through the use of

BNF descriptions.  ALGOL-60 introduced several central programming tools, in particular

Hierarchical structure evolved into structured programming:

Typed procedures (functions)

Stack as central runtime data structure
managed by block structuring;  dynamic array sizing

Compound statements (regularity)

any valid operation can be written wherever variables can be written

block structure and nested scoping

implicit inheritance of accessible (within scope)  variables

No magic values
name lengths and array size and dimension are not restricted

Strong typing
all forms are typed without ambiguity

Generalized control structures
while, until, for, recursion

Free Format
layout of the program is not specified by  the language; reserved words are sacred

Implications of Block Structuring

Nested blocks introduced the issue of variable scoping.

Blocks enhance modularity and maintenance of large programs.

Blocks permit efficient storage management of stacks.

Symbol tables can be factored into smaller units for each block.

Symbol tables are accessible to the user, which compromises portability.

Blocks need to be bracketed to delineate start and end points.  Begin and end are

introduced as generic brackets.  In ALGOL, begin-end brackets both group

statements and delimit blocks.  This undermines orthogonality.
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Dynamic and Static Scoping

Static scoping:  procedure definitions are called in the defining context at compile-

time.  Variable bindings can always be determined by reading the source code.

Dynamic scoping:  procedure definitions are called in the calling environment at run-

time.  Variable bindings depend on dynamic context.  Example:

begin integer m; ;outer block
  procedure P;
    m := 1;
    begin integer m;
      m := 2;
      P ;first call to P
    end;
  P ;second call to P
end

In static scoping, the assignment m:=1 refers to the variable m in the outer block.  Static means

that no matter when a particular procedure is called, the binding context of its variables does

not change.  Thus both calls to procedure P use m=1.

In dynamic scoping, the assignment to m depends upon the calling context.  The first call to P is

in the context of m=2, thus it uses that value.  The second call to P is in the outer context where

m=1.  [Note that the value m=2 is changed to m=1 immediately upon entering P.]

Parameter Passing

Pass by value:  the actual value of the variable being passed to a procedure is copied

into the formal parameter of the procedure.  Secure, but inefficient for arrays.  For input

variables only.

Pass by name:  the name of the variable being passed to a procedure is copied into the

formal parameter of the procedure.  Powerful, but dangerous and expensive.

Each type of parameter passing differs in when it looks at the value of the variable being passed

(the actual) into the procedure (the formal parameter):

Pass by value:  When a procedure is called, the formal is bound to the value of the actual

as a snapshot.  Later changes in the actual will not be seen by the procedure. Early inspection

time.

Pass by reference:  When a procedure is called, the formal is bound to a reference to the

actual.  The reference cannot change (i.e. the location of the actual can not be changed), but the

value it refers to can change.

Pass by name:  When a procedure is called, the formal is bound to special address-

returning function (a thunk).  Although the thunk does not change, the address it  returns and

the value in the address location can vary.  Very late inspection time.
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Functional Programming

Imperative vs Applicative

Imperative languages rely heavily on assignment and on programmed changes in memory to

accomplish a program’s objectives.  Control is basically routing processes from one assignment

statement to another.

Applicative languages rely on function application, passing computational results from one

function to another.  Control is achieved through function nesting.

Functions are mathematical objects which have single entry and exit points.  Functions return a

value.  A function itself names its return value.  If the function is unevaluated, then the name is

compound.  When the function is evaluated, it returns a simpler name.  Since functions are

names, the text of a function, such as F[x], serves the same purpose as a variable, to name a

particular part of a computation.  More generally, function names can be compounded, so that

two composed functions yield a compound name for the composition of the two functions.

The hallmark of a functional program is that it is composed of function invocations and

conditionals only.  Functional programs contain no variables, no loops, no explicit sequencing,

and no assignments.

Functions do not permit side effects.  Therefore whenever a function is evaluated with the same

arguments, it produces the same results.  This is called referential transparency;  a type of

what-you-see-is-what-you-get.  Absence of side effects makes the meaning, or semantics, of a

functional program fairly simple.  Another advantage is a simple syntax which is easy to parse

and error-check.  Thus both syntax and semantics of functional programs is cleaner that

imperative programs.

Imperative languages are architecture specific in that they evolved for programming a

vonNeumann processor.  Applicative languages suggest a functional architecture.  Many such

machines have been built in university settings, however a diversity of hardware architectures

has yet to reach personal computing.

Uniformity and Simplicity

Pure LISP is unique in that it has only one data structure (the  list), and two control structures

(function-invocation as recursion and if-then-else).  This smallness and uniformity

makes the language design and implementation very elegant and efficient.

The most significant implication of uniformity is that data and program have the same structure

(both are lists).  Thus LISP programming emphasizes metaprogramming:  writing programs

which return other programs as output.  LISP encourages extreme abstraction.  For example,

rather than writing a parser for a particular language, LISP style would be to write a parser

generator which takes a language as input and returns a parsing program for that language as

output.
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Another level of uniformity in functional languages is that during processing, all functions have

only one argument.  The process of converting binary (and in general n-ary) functions to unary

functions is called currying.  Schematically:

F[a,b] => G[a][b]

The function G[a] is a functional, returning a function G’.  G’ then applies to the single

argument b.

Another simpler way to achieve unary functions is to collect all arguments into a list and pass

the list as a single argument.  Schematically:

F[a,b] => G[(a,b)]

Recursion vs Iteration

Almost all mathematical structures are defined and proved using induction.  Recursion

implements induction.  Thus recursive style has these benefits:

•  aligns with the mathematical approach

•  easier for most data structures in most cases

•  elegant and difficult to learn

Here is an example function which is straight-forward when written recursively and quite

difficult when written iteratively.  It tests the equality of two trees.

equal[x,y] =def=
(atom[x] and atom[y] and x=y) or
  (not[atom[x]] and not[atom[y]] and
    equal[first[x],first[y]] and equal[rest[x],rest[y]])

The iterative version requires parallel iteration of two variables, one for tree x and one for

tree y.  The difficulty for the iterative version occurs when x and y are not atoms.  How does a

loop manage to deconstruct the left and right branches of the tree without using recursion?

This example illustrates that although iteration and recursion are theoretically equivalent, from

a programming point of view, recursion is both more powerful and more elegant than iteration.

Imperative and applicative styles can be contrasted by comparing iteration with recursion.

I te ra t i ve : for I in 1..X do <accumulate results in A>

The above imperative loop contains three variables, each with a significantly different purpose.

I: the iteration variable, declared and scoped by the loop itself

A: the accumulation variable, again scoped within the loop, used to return values

X: the input variable, used as a parameter of the function containing the loop
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Functional programs minimize the use of variables, since functional programs do not rely on

memory manipulation for storing computational results.

App l icat ive : if X=0 then nil else (A + <recur on incremented X>)

In applicative, or functional, programming, the loop construct is replaced by recursion.  Each

recursive call modifies the input parameter until that parameter reaches a ground value.

Iteration variables are eliminated in favor of structured recursive descent

Accumulation variables are eliminated in favor of accumulating the results of each

recursive function call as they return values to the containing function.

Input variables directly incorporate iterations and accumulations.  The input variable is

incremented to achieve iteration.  The output of a recursive function incorporates the

accumulated results.

Pure Functions and Lambda

Pure functions, or ooperators, are functions which do not have any arguments.  Rather

operators apply to their context, to whatever forms are juxtaposed to the operator.  Operators

have a space for arguments, but the arguments are not constrained to any particular type, to a

reduced expression, or even to data.

Lambda calculus is the mathematical system upon which functional programming is based.  It

has two defined operations, apply and abstract.  A lambda expression defines an operator.  For

example, the square operator:

square =def= lambda[#,#*#]

The hashmark # stands in place of a variable, but it is not a variable per se.  Rather it

represents a space or a hole, a place where any form can be placed.  The second form, #*#, is not

an argument, it is rather the body of the lambda expression.  A hole stands in place of the

context of the expression.

The Rule of Application is simply that any form following the lambda expression is substituted

in place of the hashmark.  Thus, lambda expressions can take functions or data structures as

“arguments”.  In the above example:

lambda[#,#*#] 4 ==> 4*4 ==> 16

lambda[#,#*#] F[x+1] ==> F[x+1]*F[x+1]

In the first example, the 4 following the square-lambda replaces the hashmark, leaving a body

4*4 to be evaluated.  In the second example, the hashmark is replaced by a function call.  In

general:

Apply[E1,E2] =def= <substitute E2 for # in E1>
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The Rule of Abstraction is the inverse of apply; it provides a mechanism for removing the

dependence on variables by functional expressions.  In general:

Abstract[F[x]] =def= lambda[#,F]

Mapping and Functionals

Consider squaring each member of a list of integers.  Here are three programs representing

three different styles:

Iterative: for each element in list do
  <square element; store into accumulator>

Recursive: if list=nil then nil else
  <add square[first[list]] to recur[rest[list]]

Mappable: map <square> onto list

A data structure is mappable when a function applied to the entire list gives the same result as

applying the function directly to each element in the list.

The mmap function takes two arguments, a function and a list.  The function argument applies to a

single item, or element on the list.  The map function takes care of the mechanics of iteration.

When a function takes another function as an argument, that function is called a functional, a
function which acts on other functions.  Many languages do not allow functionals.

Filtering is a type of mapping in which the applied function is a Boolean test for membership in

the returned list.  The filter function is a functional:

filter[test-fn, list] =def= map[test-fn, list]

test-fn[i] =def= if <i meets criteria> then i else <nothing>

Functionals can also return functions as output.  Here is an example which selects the

appropriate operator for a data type:

pick-op[i] =def=
  case type[i]
    integer: + ;add
    list: cons ;push onto list
    string • ;prefix

Another example is the functional apply:  to apply a binary function to a list of arguments the

arguments are taken two at a time, combined using the function, and then the result is returned

to the list.  When all arguments are processed, a single value remains.  Example:

apply[+,(1,3,5)] ==> apply[+,(4,5)] ==> 9



Programming Methods

5

Mapping and similar functionals treat entire data structures as single objects.  This is an

example of the extreme abstraction of functional languages.  Functionals provide the right level

of abstraction for any compound data structure.

In all processes which address a program rather than a data structure (within a program)

require function-level analysis:  the “objects” being transformed are functions rather than

data.  Examples of program manipulation include proof of correctness, optimization and

compilation, program derivation, and metaprogramming.

Combinators

Combinators can be seen as macros for lambda calculus.  More accurately, they are a set of

functions which provide the same functionality as lambda calculus without the lambda construct.

Combinators encapsulate all control structures.   Another perspective is that combinators are a

pattern-matching language for functions.

The syntax of a lambda calculus expression is a sequence of forms.  For example, factorial

expressed as a pure function (@ is used as another blank notation, like #):

fac =def= Y lambda[#, lambda[@, if @=0 then 1 else @*#[@-1]]]

The Y combinator is the way lambda calculus handles recursion.  In effect, it rewrites the entire

definition whenever it is called recursively.

There are two elementary combinators:  K and S.  K is True, and S is Sequence.  These

combinators replace lambda expressions using the following set of recursively defined rules:

lambda[#,E] ==> K E when E = constant, variable, or combinator

lambda[#,var] ==> S K K when var=#

lambda[#,E1 E2] ==> S lambda[@,E1] lambda[%,E2]

A set of pattern matching rules reduces combinator expressions.  For example,

K E1 E2 ==> E1

This can be read as a conditional:

if K then E1 else E2  where K = True.



Programming Methods

1

A Small Interpreted Language

What would you need to build a small computing language based on mathematical principles?

The language should be simple, Turing equivalent (i.e.: it can compute anything that any other

language can compute) and relatively easy to use.  Assume the computing hardware is

constrained to vonNeumann processes, with memory, an ALU, and appropriate registers.  We

will also assume that we know about formal mathematical languages and the necessary

mathematical pieces:  representation, recognizer, constructor, accessor,  invariants/facts,

functions, and induction/recursion.

Base Representation of Atoms

First, the alphabet of a language is simply a collection of unique identifiers, called atoms.  The

essential memory management trick is to divide each memory cell into two parts, an address

part (call it FFirst) and a contents part (call it RRest).  Addresses are also called pointers.   We

begin with an array of empty cells, each having some empty representation in both the FFirst

and the RRest parts.  This is the free list of memory cells.

The ground:  We need an atom which means nothing, the null atom.  Call it nnil.

The symbol table:   This table consists of a collection of non-empty memory cells, one cell

for each atom in the language.  The FFirst part of an atom cell contains nil.  The actual literal

representation of the atom is in the RRest of the cell.  The symbol table is a dynamic array.

Constructor of Compound Expressions

We need to construct compound expressions.  Consider an expression which uses two atoms, say

FOO BAR.  The symbol table contains each atom, so all we need is a way to connect them.  This can

be done simply by building another memory cell which contains the two addresses of FOO and

BAR.  We put all atom addresses in the FFirst part of a cell (see cell 005 below) and connecting

addresses in the  Rest part. The instruction to build connecting cells is called CCons.   The end of

an expression has nnil in the RRest.

If we build the expression  (TRUE BAR TRUE FOO) in cell 007, memory would look like this:

Address F i r s t Rest

000 nil nil symbol table
001 nil FOO
002 nil BAR
003 nil BAZ
004 nil TRUE end of symbol table
005 001 006 the expression (FOO BAZ)
006 003 000 end of expression
007 004 008 the expression (TRUE BAR TRUE FOO)
008 002 009
009 004 010
010 001 000 end of expression
011 empty empty begin free list
...
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To construct an expression, we CCons smaller pieces together.  For instance:

Cons JOHN (TRUE BAR TRUE FOO) ==> (JOHN TRUE BAR TRUE FOO)

The operational memory changes are:

011 nil JOHN the atom JOHN
012 011 007 connect JOHN to (TRUE BAR TRUE FOO)
013 empty empty

Consider CConsing two compound expressions together:

Cons (FOO BAZ) (TRUE BAR TRUE FOO) ==> (FOO BAZ TRUE BAR TRUE FOO)

This operation is slightly more complex.  For the entire expression to begin in cell 012, we

need memory to end up as

011 003 007 (BAZ TRUE BAR TRUE FOO)
012 001 011 (FOO BAZ TRUE BAR TRUE FOO)
013 empty empty

Several design decisions are involved with this result.  Technically, we have used structure
sharing for (TRUE BAR TRUE FOO) since both the original four atom expression and the final six

atom expression use some of the same memory cells.    However, the front of the expression,

(FOO BAZ) is not engaged in structure sharing, and this may seem a little unsymmetrical.  As it

is,  (TRUE BAR TRUE FOO) is confounded with RRest (RRest (FOO BAZ TRUE BAR TRUE FOO)).

An alternative which would allow us to continue to refer to the original would be to duplicate the

four atom expression entirely in constructing the six atom expression.

Note also that the construction is slightly different, rather than adding a symbol cell, as in the

case of JOHN, we have added a cons cell.  To acknowledge these differences, we might consider

Cons of two compound expressions to be a different operation.  Call it AAppend.    Now the first

object in a CCons operation is restricted to be an atom.  AAppend is used when the first object is

compound.  To keep the language simple, we would want to be able to build new operations out of

the existing ones.  For this, we use a recursive definition:

Append <obj1> <obj2> =def=
  If Isa-atom <obj1>
    then ERROR
    else if Is-empty <obj1>
      then <obj2>
      else Cons (First <obj1>)(Append (Rest <obj1>) <obj2>)

This recursive definition first does a type-check on <obj1>.  It then tests the base case, that

<obj1> is nnil.  Appending nothing onto <obj2> results in <obj2>.  Otherwise we proceed one

piece at a time.  The recursion bottoms-out when RRest <obj1> is nnil.  For this to be the case,

<obj1> must have only one atom, as in (BAZ), which is CConsed onto <obj2>. At that time, BAZ is

the FFirst of <obj1>.  Just prior to this case, <obj2> is actually (BAZ TRUE BAR TRUE FOO),

since we have CConsed BAZ to (TRUE BAR TRUE FOO).  <Obj1> is (FOO BAZ), and we are about to

Cons FFirst <obj1>, i.e. FOO, onto (BAZ TRUE BAR TRUE FOO).
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This description has backed up from the end to the beginning.  Tracing the events in memory:

Append nil (TRUE BAR TRUE FOO) ==> (TRUE BAR TRUE FOO)

011 000 007 Append nil
012 empty empty begin free list

By definition, cell 011 is the same as 007, so operationally this step is not necessary to take.

We leave 011 free, treating AAppending nnil as a no-op.

Cons BAZ (TRUE BAR TRUE FOO) ==> (BAZ TRUE BAR TRUE FOO)

011 003 007

Cons FOO (BAZ TRUE BAR TRUE FOO) ==> (FOO BAZ TRUE BAR TRUE FOO)

012 001 011
013 empty empty

What we have done here is to specify exactly the sequence of operations on memory that result

in the action of AAppending.  And we have used the single construction tool of CCons.

This example illustrates the close connection between a software program, the attendant changes

in memory, and the hardware architecture which unites both.

Recognizer of Atoms

The recognizer of each atom is a function which looks in the symbol table for the memory cell

which contains that atom.  For instance, the predicate IIsa-atom is true if its argument can be

found in the RRest portion of the symbol table.  At this point, we have three separate memory

areas (or uses):    free cells, atom cells, and cons cells.

Isa-atom: Atom cells are recognized by having nnil in the FFirst part.

Is-empty:  Empty expressions can be uniquely recognized

because they have nnil in the RRest part.

Equal:  Tests if two atoms are the same atom.

Isa-express ion :  CCons cells are recognized as those cells having two addresses.

An expression ends with nnil in the RRest part.

The above are close to operational definitions.  Here are some slightly more elaborated

operational definitions.  We will assume that each part of a memory cell (address, first, rest)

has eight bits.

Is-empty <obj>:

Assign nnil a special binary code, 00000000, and put it in address 00000000.

An object is empty, that is, it is equal to nnil, if the RRest part is equal to the code of nnil.

To distinguish nnil from an empty cell on the free list, we could put a special code in free

list cells, perhaps 11111111.  A better approach is to use only seven bits of the

address for address information, and use the eighth bit for marking if a cell is

free.  This is the basis for many garbage collection algorithms.

Is-empty <obj> =def= Equal (Rest <obj>) 00000000
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Isa-atom <obj>:

Test the encoding of <obj> against all the encodings in the RRest part of memory which

also have nnil in the FFirst part.

Isa-atom <obj> =def= for some memory cell
  (Equal (First <obj>) nil) and (Equal (Rest <obj>) <obj>)

Here is another design choice:  is nnil an atom or not?  If it is not an atom, we will have to have

special tests for atoms vs nnil.  For simplicity, let’s say it is an atom:

(Isa-atom nil) is True

This design choice is our first fact, or invariant.

More generally:

Isa-atom (Is-empty <obj>) =def=
True iff (Is-empty <obj>) is True

Recognizer of Expressions

We can use the instructions FFirst and RRest to access and decompose all expressions.

(FFirst <obj>) looks at the first part of memory for the specific object, (RRest <obj>)  looks at

the rest part.

To recognize compound expressions, we test to see if each part of that expression is in the

memory table, and the linking structure of the expression matches the rules for constructing

that expression.  Operationally:

Isa-expression <obj> =def=
  (Isa-expression (First <obj>)) and
  (Isa-expression (Rest <obj>))

Since we know that decomposing an expression will end in either atoms or nil, we will have to

add those rules:

Isa-expression (Isa-atom <obj>) =def=
  True iff (Isa-atom <obj>) is True

(Isa-expression nil) is True.

This is another application of recursive decomposition.  The rules specify the base cases, while

the definition specifies the general recursive case.  The two together specify a program.

The definition above is another example of pseudo-code, that is, machine specific instructions

written in a mathematical style that is independent of the specifics of any programming

language, yet specific enough to be implemented in any language.  Of course, a high level
programming language accepts something very close to pseudo-code specification as valid input.

Another strong advantage of pseudo-code is that it can be proven to be correct using the

Induction Principle.
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The primary reasons that current programming languages appear to be very different than

pseudo-code are

1.  Many programming tasks lack a formal model (i.e. they are hacks).

2.  Many programming languages lack mathematical structure (i.e. they are machine

architecture specific.)

Accessors of Atoms and Expressions

First and RRest are the accessors.  They let us take apart an expression.  In this

implementation, FFirst and RRest have simple mappings onto the idealized physical structure of

memory.

All objects except nnil are constructed by CCons.  Since CCons uses two objects as arguments, this

means that all FFirst and RRest parts are also objects.  Eventually all objects end in nnil, so nnil

is also an object, although a very special kind.

Cons is related to FFirst and RRest by the following invariant, or rule:

<obj> = Cons (First <obj>) (Rest <obj>)

This says that all valid objects have been constructed by CCons to have a FFirst part and a RRest

part in memory.  Alternatively, all objects in memory can be accessed through their FFirst and

Rest parts.  The essential mathematical condition is that all valid objects are decomposable into

unique subcomponents which bottom-out at the base cases.  This is simply to say that all

compound expressions are defined recursively.

Although recursive composition and decomposition are necessary to define data structures and

algorithms, the more important aspect of recursive definition is to provide access to proof

through the Induction Principle.  Procedural languages do not provide this capability;  they are

thus immature.  Declarative, functional, and mathematical programming languages all provide

the capability of abstract proof (minimally in pseudo-code).

Note that recognizing, constructing, and accessing an expression involve almost the same steps.

The difference is in the initial goal and the final result.

GOAL PROCESS RESULT

Constructor:

build a pattern rearrange memory the pattern is in memory

Recognizer:

test a pattern access memory true if the pattern is accessible

Accessor:

get a pattern access memory return the pattern if found
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SUMMARY of the ABSTRACT DATA STRUCTURE FUNCTIONS

First <obj> returns the expression indicated by the FFirst of the <obj>

Rest <obj> returns the expression indicated by the RRest of the <obj>

Is-empty <obj> returns True if the cell containing <obj> has nnil in RRest.

Isa-atom <obj> returns True if the <obj> is in the RRest part of a cell

and nnil is in the FFirst part.

Isa-expression <obj> returns True if the <obj> has either nnil or any address in the

First part.

Equal <obj1> <obj2> In the case of atoms, returns True if both objects are in the RRest

of the same symbol cell.  In the case of compound expressions,

returns True if following the addresses in the FFirst leads to the

same set of RRest symbol cells.

Cons <obj1> <obj2> builds an expression by adding <obj1> to the front of <obj2>

I n va r i a n t s

The equality invariant (also called the Uniqueness Axiom) assures that each object is

unambiguous.  That is, objects are the same object when they are equal;  equal objects are

constructed and deconstructed in exactly the same way.  This is a physical kind of equality,

structural equality, in that the structure of memory is the same for two objects.  It is not

necessary that the same memory cells are used for both objects (structure-sharing), just that

the contents of memory for both objects are the same.  Recursively,

Equal <obj1> <obj2> =def=
  (Equal (First <obj1>) (First <obj2>)) and
  (Equal (Rest <obj1>) (Rest <obj2>))

We need to support this definition with base cases.  For instance,

(Equal nil nil) is True

This is also an example of the Induction Principle at work in our implementation.  To implement

an equality test for expressions, the computation will test for identical structure over all

memory cells of both objects.  The Induction Principle is the only guarantee that this recursive

process will end.  The only end point is (EEqual nnil nnil), all other cases are failures.

Note that equality for atoms is also covered in the above definition.  What happens, though, when

we have two atoms which have the same encodings, but each is in a different memory cell?  This

is an inconvenience for an implementation, since testing each object would require looking

through the entire symbol table.  A better approach is to insist that each atom is unique and

occurs only once in the symbol table.  This is why Equality and Uniqueness are the same ideas.
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The uniqueness of atoms is implemented by having each new atom register itself in the symbol

table.  In the background, when an unrecognized, new atom is entered, the implementation

verifies that it is new, and then puts it in the symbol table.  To do this is to intern the atom.  If

the atom already exists, then the address of the cell which contains that object is associated with

the new input.

 A different kind of equality refers to equality under transformation.  The actual expressions

may be different, but transformation rules allow us to say that the meaning of the different

expressions is the same.  This is semantic equality, also called algebraic equality and

mathematical equality.  Only defined transformations are allowed;  all transformations (with

the exception of CCons) are required to keep meaning consistent.  It takes a special symbolic
architecture to implement mathematical equality, mainly because transformations refer to sets

or classes of objects rather than to specific objects.  In the above, we have designed a literal
architecture, as yet it has no capacity for dealing with sets of objects.

Now on to the functional part of the language.  We will elect to use lambda calculus as the

mathematical model.

Functions and Recurs ions

A function is an expression with the function name first and then the arguments.  (The order of

operators and arguments is somewhat arbitrary, just so long as it is consistent and

unambiguous.)  For example:

+ 3 4

The Arithmetic Logic Unit (ALU) can process logical and arithmetic operators when applied to

atoms.  Internally, both arithmetic and logic are encoded by binary sequences, so it is the

responsibility of the operator, or of a type test, to make sure that expressions meant to

represent numbers are channeled to the arithmetic units and expressions intended to represent

logic are channeled to the logic units.

One way to implement the difference between logic and arithmetic is to assign another single bit

in the memory cell that records the type of object in that cell.  Note that silicon gates process

only logic.  Thus arithmetic objects must be encoded into a logical form for processing.  In

computation, logic is fundamental, arithmetic is derivative.

All logic functions can be defined in terms of a single function, so we need only one primitive

logic function.  Let's use IIfThenElse (NNand and NNor are alternatives).

IfThenElse <obj1> <obj2> <obj3>

IfThenElse will evaluate <obj1> and then either evaluate <obj2> (if <obj1> is True) or

evaluate <obj3> (if <obj1> is False).  Here we have another function which uses different types

of objects (the first example was CCons).  In particular, <obj1> must be a logical type,

returning either True or False.

Function composition permits complex sequences of operations.   A function expression can be

put in any place that an atom can be put, since all functions will reduce to single atoms.  To

separate composed functions, we can use parentheses to contain each function expression.  We

will choose to evaluate all inner arguments first, then use these results to evaluate outer
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functions.  Lambda calculus permits another order of evaluation, outermost first.  This choice is

a design decision, and is based on mathematical characteristics of each form of evaluation.

For example, an innermost evaluation:

(* (+ 3 4) (+ 1 2)) or ((3 + 4) * (1 + 2))

means that expressions with atoms as arguments are evaluated, or reduced, first.

The memory for this object would look like this:

Address F i r s t Rest
000 nil nil symbol table
001 nil   1
002 nil   2
003 nil   3
004 nil   4
005 nil   +
006 nil   * end of symbol table
007 006 008 expression ((3 + 4) * (1 + 2))
008 005 009
009 003 010
010 004 011
011 005 012
012 001 013
013 002 000 end of expression
014 empty empty begin free list
...

There are several things to note about the above memory configuration.

Operators and numbers are not distinguished in memory, they are distinguished by what

happens when they are handed to the ALU.

Each operator has two arguments, but we have no way to have two references in one memory

cell.  The solution is to order the expression so that operators are followed by their arguments.

When an operator is fetched for evaluation, the machine code recognizes that that operator

requires two more fetches.  Should a fetch return another operator, then the first operator

waits until the second operator converts its two arguments into one result.

Fetches occur by following the addresses in sequence.  This is efficient since the address register

(the register which keeps track of what to fetch next) need only be decremented by one to find

the next memory cell.

It is possible to turn all functions into one argument functions (the technique is called

currying).  This is effectively what has happened by storing the expression in the operator first
form (also known as reverse Polish notation).

Finally, consider how close the syntax of many programming languages is to what actually

happens at the register transfer level of the computer.  We are still at the very early stages of

development of computing languages, since the syntax reflects low level data shuffling rather

than high level task requirements.  Progress means moving our profession toward human

capabilities, and moving away from low level machine details.
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We need a way to define arbitrary functions and a way to bind the variables of functions to

values for the ALU to process.  For example

Square <obj> =def= (* <obj> <obj>)

so that  Square 4 => (* 4 4) => 16

First consider variables, names which stand for any valid object.  We have been using the names

<obj1>, <obj2>, etc. as variables names.  The angle brackets notate that the name in question is

not the name of a single thing, but rather it is the name of a class, or set, of things, all of which

are of a particular type.

Variables (or parameters, when the names are arguments of a function) are atoms also, so they

are simply added to the symbol table.  To assign a value to a variable symbol, we can put a

reference to the location of the value we wish to associate with the variable in the FFirst part of

the memory cell for the variable.  Thus variables are distinguished from objects representing a

specific value because their FFirst part is not nnil.  It is an error to access a variable which has

nil as the FFirst part.  Objects which do have nnil in the FFirst part are called ground objects.

The function which assigns ground objects to variable objects is called LLet.

We can use this same mechanism to store the definitions of functions.  The memory cell which

contains the name of the function in the RRest part can contain the address of the definition of the

function in its FFirst part.  Consider the memory configuration for the above definition of

Square:

Address F i r s t Rest
000 nil nil symbol table
010 nil OBJECT
011 nil * end of symbol table
012 013 SQUARE function definition
013 011 014
014 010 015
015 010 000 end of function definition

When the call SSquare 4 is added to memory we get:

016 nil 4 symbol table
017 012 018 function call (Square 4)
018 016 000

To bind OBJECT to the value 4, we use the call LLet object 4:

019 nil LET symbol table
020 019 021 function call   (Let object 4)
021 010 022
022 016 000

Finally we need to get the processor to actually evaluate the function call.  Let's call this EEval.

We can actually make EEval the default.  Whenever a new expression is added it can be

automatically evaluated.  This just shifts the issue to needing an instruction to stop evaluation.

Let's call this evaluation stopper QQuote.
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What the above memory configuration contains is QQuote (SSquare 4), which simply puts the

data structure  SSquare 4 into memory.  If we write the function  SSquare 4, then evaluation

will happen automatically.  This process consists of changing the value of object from nnil to 4,

and following the sequence until a single atom is returned.  That is, the function LLet says to the

processor:  go to the symbol which immediately follows LLet and put the address of the second

symbol which follows LLet (i.e. 4) in its FFirst part.  This results in

010 016 OBJECT

Now the definition of SSquare will find the value of OBJECT and use it rather than using the

symbolic variable “OBJECT”.  And, of course, symbolic variables are the only items in the

symbol table which can contain something other than nnil.

There is a slight problem here because the symbol “OBJECT” might be used in more than one

function.  This can be handled in one of two ways:

1)  make sure all of the symbols are unique, or

2)  divide the symbol table into subtables which associate and isolate each function with

its own variables.

Finally, we simply use recursion  directly as repeated actions of the same sort, since nothing in

the above structuring stops this from working.

The Function Eval

In the above description, evaluation is an implicit action of the ALU.  By claiming evaluation is

automatic, we are committed to wiring the ALU in a specific way.  However the above mechanism

for handling memory can be made flexible by defining EEval in the programming language itself.
This process is called meta-circular evaluation, cause it uses a language itself to define how that

language should behave.  All we have to do is to define the evaluation function by telling the

system what to do when an expression is typed in.  The function EEval takes two arguments, the

expression to be evaluated and the binding environment, that is, an address of the memory array

which contains all of the primitive functions and atoms (and any other symbols which we may

have added) in the language.  The binding environment contains the definitions of all user defined

functions, and the values of each of the variables (function arguments).

Since the binding environment does not change in this example, (i.e. we have not designed the

language to establish separate environments for each function call), we will treat the token

Eval to mean “Eval-in-environment”

The definition of EEval which follows uses only primitive functions introduced above.  Some of

the syntax has been changed to make it more readable.

This EEval function recognizes seven operators:

F i r s t Rest Cons

I fThenE lse Equa l Quote Let

In addition, EEval uses built-in tests to determine the types of objects, as operationalized above.

I s - e m p t y I sa -a tom I sa - exp res s i on
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Eval exp  =def=

If Isa-atom exp
 Then ;process atom
   If ((Is-empty exp) or (Equal exp (Quote True)))
    Then ;return the SYMBOL
      exp
    Else ; or its VALUE
      Get-value-in-env exp
 Else ;process expression
   If Isa-atom (First exp)
    Then ;process Atom in First*

      Let token (First exp) ;naming the atom
        If Equal token (Quote Quote)
         Then ;return what follows
           Second exp
         Else ;other operators
           If Equal token (Quote IfThenElse)
            Then ;process logic operator
              EvalLogic (Rest exp)
            Else ;other operators
              If Equal token (Quote First)
               Then                                       ;First of Eval of Rest
                 First (Eval (Second exp))
               Else ;other operators
                 If Equal token (Quote Rest)
                  Then ;Rest of Eval of Rest
                    Rest (Eval (Second exp))
                  Else ;other operators
                    If Equal token (Quote Isa-atom)
                     Then ;Isa-atom Eval of Rest
                       Isa-atom (Eval (Second exp))
                     Else ;other operators
                       If Equal token (Quote Cons)
                        Then ;Cons Eval of Rest**
                          Cons (Eval (Second exp))
                                (Eval (Third exp))
                        Else ;other operators
                          If Equal token (Quote Equal)
                           Then ;Equal Eval of args
                             Equal (Eval (Second exp))
                                    (Eval (Third exp))
                           Else                           ;replace the token with

                             Eval (Cons                  ;its value
                                     (Get-value-in-env token) (Rest exp))
    Else ;compound First
      If Isa-expression (First exp)
       Then ;process expression
         EvalExp exp
       Else ERROR
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EvalLogic exp  =def=

If Equal (Eval (First exp)) (Quote True) ;if First is TRUE

 Then ;Eval second argument
   Eval (Second exp)
 Else ;Eval third argument
   Eval (Third exp))

EvalExp exp   =def=

If Is-empty exp ;if at the end

 Then ;return ground
   nil
 Else ;Eval the parts

  Cons (Eval (First exp)) (Eval (Rest exp)) ; and put them together

Notes:

*  process Atom in First:  Here we have defined a syntax for parsing.  Every expression begins

with an atom or is an atom.  If an expression begins with an atom, that atom is taken by

the processor to be an operator, and thus a processing instruction.  The operator QQuote

is the no-op.

**  Cons Eval of Rest:  This is again a syntax constraint.  Once we have removed the beginning

operator of an expression, what follows is either an atom, or another expression which

itself begins with an atom operator.

The syntax of the language is thus:

Expression ::= Atom | (Atom Expression*)

The Kleene star means that an operator atom can have any number of following arguments.  Note

that this BNF specification is one of a regular language.

Finally, note that a meta-circular language can evaluate its own definition of EEval, since the

above definition is self-consistent.

The Punch Line

The above programming language actually exists, it is one of the very few oldest programming

languages still in active use.  Its name is LISP.

In 1955, John McCarthy followed a similar line of reasoning in developing LISP.  Currently

LISP stands uniquely among programming languages in that it is rigorous, efficient, largely

machine independent, and permits simulation of all other programming language models (such

as procedural, functional, object-oriented, logical, and mathematical).  As well, when the

function EEval is processing input, LISP is interpreted, responding dynamically to new inputs

and definitions, and requiring no compilation or linking.  It thus provides a powerful interactive

programming environment which supports real-time debugging and symbolic proof of

correctness.
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Pure LISP

LISP is a unique language in the following ways:

•  symbolic rather than numeric computation.

•  functional/applicative style.

•  indefinitely extensible.

•  interpreted/interactive rather than compiled.  LISP can be compiled after debugging.

•  uniform data representation.  Programs are data, which means LISP programs can

modify themselves at run-time.

•  LISP is written in LISP.  This bootstrapping means that the LISP evaluation

mechanism and compiler are easily available to the programmer for modification

and customization.

Pure LISP excludes most of the programming ideas which lead to poor code.  Most programming

language innovations (such as garbage collection, streams, closures and continuations, symbol

packages, first-class errors, object orientation, provability) were pioneered in LISP.  Pure

LISP does not allow:

•  destructive data operations

•  gotos

•  explicit pointers and dereferencing

•  side effects  (only the direct results of the function being processed)

•  unbound and global variables

•  do loops  (use recursion instead, this rule is not firm)

•  block structure  (functions provide grouping)

P r i m i t i v e s

LISP has a very small kernel of primitive functions.  These are:

n i l empty list, false, nothing to return

atom predicate to determine valid labels

eq predicate to test equality of atoms

car, cdr selectors/accessors of list data structure

cons constructor for list data structures

cond basic logic function

eval, quote controlling the difference between program and data

Special functions have a non-standard format.  Some important special functions include:

setq setting or assigning labels to the results of functions

l i s t constructing a list
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defun defining named functions

lambda constructing an unnamed function

l e t defining the scope of variables

LISP debugging tools include:

<whitespace> ignored by the evaluator

trace follow the evaluation sequence

p p r i n t print data in pretty form

r e a d - e v a l - p r i n t the basic evaluation process

Disadvantages of LISP (and their solutions)

•  hard to read syntax with lots of parentheses
redefine the syntax to look the way you want it to

•  one data type
build the data types you want and wrap them in an abstraction barrier

•  inefficiency
no longer true, LISP runs at 95% the speed of C.  It is possible to write

inefficient LISP programs, but the rules to avoid this are straight  forward and

can be learned with practice.  It is easier to write inefficient programs in other

languages.

•  many dialects
the community has standardized on Common LISP.  Dialects built from the same

foundation are a good idea.

•  no first class functions
dialects for higher order programming are available (i.e. Scheme)

Storage Reclamation

Most programming languages use explicit erasure to reclaim storage cells.  This is a bad idea

since it makes a low-level maintenance chore the responsibility of the programmer.  As well, it

violates security.  Suppose the value in a cell is erased, but the cell is still referenced by some

data structures.  These dangling pointers are unprotected and undocumented, and the source of

difficult to trace errors.

Once automated way to keep track of memory usage is reference counting.  Whenever a cell is

used, or referred to, by part of a program, the reference count of that cell is increased by one.

When a cell has no existing references, that cell is not accessible to the current program, and is

thus on the list of free cells.

Another approach is garbage collection.  Here inaccessible cells are simply abandoned.  When the

list of free cells is exhausted, the processor interrupts normal computation and enters a



Programming Methods

3

garbage collection phase.  A mark-and-sweep garbage collector passes twice over all memory

cells.  On the first pass, inaccessible cells are marked as such.  On the second pass, the marked

cells are returned to free storage.  A serious problem for garbage collection is nonuniform
response time, in that processing halts while garbage collection is occurring.  If there are many

cells to be reclaimed, this interrupt may be several seconds.

Some Observations about the LISP Language

•  All valid expressions are valid programs.  This provides arbitrary granularity.

Programming consists of building up hierarchical languages built on a solid foundation.

•  You are always in control of what is data and what is process.  Programming is building data,

then testing processes on it, then making those processes into data, and so on.

•  All defined functions are provable, that is they are data structures you can talk about, and the

way to talk about them is to assert their correctness.

•  The programmer is always part of the computation.  The rread-eval-print loop can be seen

as an interactive dialog.  RRead means listen to what the person says.   Eval means do what the

person asks you.  PPrint means tell the person the results of the request.

•  All objects are the same.  There are base objects (atomic data) and compound objects built

from atomic objects.  Atomic objects (atoms) are the pieces of a program, the bricks.  Function

composition is the cement holding the atoms together.  Nothing else is happening.  Atoms define

your conceptualization, the pieces of the world.  Functions just define bigger pieces.  Object-

orientation is function composition turned inside out.

•  Variables are just convenient and arbitrary names for compound objects.  So a variable is

meaningful only when it is in the same context as the object it names.  This is called scoping.

•  Function names are also variables.  You can rename functions at any time, and you should

always use names that are meaningful to you.  Write languages not programs.  Think like a

human, not like a computer and write code that matches human thought.

•  There are always two levels when programming, the syntactic and the semantic:  what you see

and what you mean.  Representation and value.  Try to align the two by defining the look of a

program to remind you of its meaning.  In general, programs that look good are good.

•  Formulate knowledge in terms of patterns, and look for those patterns.  Patterns can be

abstract, with many things of the same class fitting a particular spot.

•  Formulate operations as functions.  Operations can be abstract, with many functions fitting

the same operation.  Use operations that address all objects at the same time.  For example,

rather than explicitly checking each object for a property (by writing a DO loop), just ask if

the property is true for everything (using the function EVERY).
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Assignment III:  Pseudocode Emulation

Nothing to hand in.

Implement an emulator for your pseudocode formal syntax.

An emulator of a program is a different program, usually in a different language, that does the

same thing as the target program.  Emulators are often built for hardware:  a software module

performs the same functionality as the target hardware, but in software.  Software emulation is

usually much slower.  Another example is programs which simulate, say, a Windows

environment on a Mac OS;  these programs emulate Windows on a Mac.

In Assignment II, you designed a language fragment and formalized it with BNF or another

structuring tool.  In this assignment, you will implement the syntax of your language.  (You may

elect to use a different fragment, or a completely different formal specification.)

The assignment is simple if there is a one-to-one correspondence between your specification

and some existing language.  For example, if you specify a WHILE construct, then the

specification language can translate directly to WHILE is some existing language like C.  What

gets tricky is verifying that the correspondence holds for all cases and for all implementation

strategies.

You can view the assignment as one of metaprogramming.  You will be writing a program in say

language A.  This program takes another program in language B (the BNF spec for example) as

input and translates it into a third program as output which is in language A but does the

functionality of the input in language B.

A good emulator will include a lexical scanner and a syntactic parser to assure structural

properties of the output.
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PASCAL

The Algol language introduced many new concepts into language design, and as a consequence,

spawned a number of new languages (e.g. PL/I) all of which were very complex and

unmanageable.  Pascal was a teaching language designed to reduce this burgeoning language

complexity.

Another idea at the time was to develop extensible languages, based on a small kernel of

functionality.  Extensions added application specific functionality.  However, extensible

languages turned out to be very inefficient, since variable extensions made parsing and

compiling difficult.  As well, extensions were reduced to kernel functions, adding another level

of language complexity which could not be optimized.  Since kernel errors were not expressed in

the application specific language, diagnosis was not transparent.

Pascal combines simplicity with generality, a result of learning how the innovations of Algol

can be efficiently and elegantly combined.

New concepts introduced in Pascal include:

•  enumeration types
using names rather than numbers to represent finite sets

compiled like an array in contiguous memory, efficient

e.g.:  type DayOfWeek = {Mon, Tues, Wed, Thur, Fri, Sat, Sun}

•  subrange types
for contiguous subgroups

e.g.:  type Weekday =  {Mon .. Fri} of DayOfWeek

•  set types
for arbitrary collections

efficient, encoded as binary array indicating set membership

bit level operations for union and intersection

subsets easy to define, e.g.:  S := [1,3,5,6]

e.g.:  type set of 1..9

•  strong typing of arrays
static array types since typing is determined at compile-time

cannot write dynamic array manipulation procedures

•  name structures include bindings for

constants, types, variables, functions, labels

•  case statement

Pascal’s control structures embody the principles of structured programming.  Control

structures have one entry and one exit point.  All statements can be compound.  Pascal

eliminated the idea of block structure, a precursor to structured programming.
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C

The C language mixes characteristics of several language generations, it is an amalgam of

structured high-level features, low level implementation features, and even machine-level

features.  It lacks support for nested procedures and modular programming, and is machine

architecture specific.  It’s creator Dennis Ritchie says:  “C is quirky, flawed, and enormously

successful.”

Summary of Block Structuring

Activation Records

An activation record represents the state of a procedure or function call.  It holds all the

information relevant to one execution unit, or activation.  Thus a procedure consists of

1.  the program code fixed, static, not part of the activation record

2.  the activation record dynamic, keeps track of context and computational results

The activation record itself consists of

1.  ip: the instruction pointer to the next statement to be executed after the

procedure call returns. Also called the resumption address.

2.  ep: the environment pointer identifies the bindings and scope of variables

2a:  local context: names declared by the procedure;

local parameters and variables.

Also the static link to the nonlocal scope

2b.  nonlocal context: names declared by surrounding procedures

Also the dynamic link to the activation record of the caller.

A static link is required to locate the environment of the definition.  A dynamic link is required

to locate the environment of the caller.

Env i ronments

An environment is simply a binding list of names and their values.  Which names are in an

environment is determined by the scoping rules of the language.  Scoping rules define how to

locate the values of names which are not immediately local to the procedure being executed.  The

context of a procedure is the set of names declared by that procedure, together with the names

declared in the surrounding procedures, with “surrounding” being defined by scoping rules.

Every name and variable is local to some procedure, the default being the top level, or main

procedure.  The activation record of that procedure contains the name and its binding.
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FORTRAN activation records are compiled statically;  names are assigned a permanent memory

address.  Languages which permit recursion require dynamic creation of activation records, and

dynamic searching of the context for variable bindings, since more than one copy of a procedure

may be active at the same time.  Since a primary cost in computation is finding variables and

values, it is impractical to dynamically search for the context of every variable.  Instead a two-
coordinate method is used:

1.  the ep accesses the activation record of the current environment (calling procedure).

2.  an offset locates the variable within the activation record

Scoping

Static scoping:  a procedure executes in the environment of its definition (syntactic structure)

Dynamic scoping:  a procedure executes in the environment of its caller (semantic structure)

Procedure Activation

To activate a procedure:

1.  Save the state of the caller

Put the current ip in the caller’s activation record.

The local ep is already in the caller’s activation record.

The nonlocal ep is already in the static link of the caller’s activation record.

2.  Create an activation record for the called procedure

Put the actual bindings of parameters in the parameter part.

These must be evaluated first, returning either

1)  a value (call by value), or

2)  an address (call by reference), or

3)  a thunk (call by name)   [thunk=address returning function]

Add the static link to the environment of definition.

The ip is not relevant until the called procedure calls a procedure itself.

The dynamic link points to the activation record of the caller.

3.  Enter the called procedure in the context of the new activation record.

To exit a procedure, basically reverse the above process.

1.  Delete the called procedure’s activation record.

2.  Restore the state of the caller.
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C losures

In languages which can pass procedures as parameters, the procedure is passed as closure.  A

closure is a ip-ep pair:

1.  The ip contains the entry address of the actual procedure.

2.  The ep contains a pointer to the environment of definition.

In order to pass functions as parameters, the entire activation record approach must be

changed, leading to a functional programming regime.

B locks

A block is a container for a collection of operations.  Technically, blocks are implemented the

same as are procedures.  Blocks are degenerate procedures;  the ep and its dynamic link are not

needed in the block activation record.

D i sp l ay s

An alternative method to searching up a scoping chain for nonlocal variables is to have all

accessible contexts stored in an array which is searched directly when a nonlocal is referenced.

This produces constant look-up times.

E f f i c i enc ies

Both static and dynamic environments can be nested, often many levels deep.  To locate a nonlocal

variable, the static environment must be searched outwardly.  This is very inefficient.  Here is

a listing of the costs of various static operations.  SD stands for the static distance between the

context using a variable or procedure and the context defining the variable or procedure.

Operat ion Memory references Display references

local variable       1 2

variable access SD + 1 2

procedure call SD + 3 6

procedure return       2 5

pass procedure SD + 2

formal procedure call       5

goto      SD

We can see than when operations are deeply nested, display is better than searching scoping

chains.
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Assignment IV:  Pseudocode Semantics

A three-minute presentation to the class.

Describe the semantics of a small pseudocode fragment.

There is no generally agreed upon model of the semantics, or meaning, of computation.  This

assignment may require research and creativity.

1.  Select a small pseudocode fragment.

2.  Define the way it behaves at the register-transfer level.  Ie: what interactions with memory

occur;  what parts are moved and to where; what processes change the configuration of memory.

What are the exact changes?  This is the operational semantics.

3.  Describe the assurances that the fragment does what it is supposed to do.  Develop a set of

preconditions and postconditions.  Attempt to use the postconditions to prove the preconditions,

and thus to prove the correctness of the program fragment.  This is the axiomatic semantics.

4.  Think about other possible ways that you can clearly and unambiguously define or describe

the intended functionality of your code fragment.
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Semant ics

Semantics refers to the behavior of a program, while syntax refers to its structure.  At this

time there is no generally agreed upon representation for semantics.  Theories of program

semantics are also hotly debated.  (In my opinion this is because the semantics of imperative

languages is tied to machine architecture, and thus does not even address the relevant issue of

program meaning.)

Static Semantics

Static semantics refers to programming language characteristics which cannot be expressed in

BNF form, but can be verified by a compiler.  This does not refer to semantics at all, thus it is a

misnomer.  It does make obvious that even syntax is inadequately defined, and the entire

enterprise of assuring the meaning or behavior of a program is suspect, at least for imperative

languages.

Examples:

Type compatibility rules:

Consider adding an integer to a real:

3 + 4.1 = ?

The types of these objects do not match.  In a strongly typed language, such an addition would be a

typing error.  More conveniently, languages have coercion rules which permit some types to

be dynamically converted to other types.  In the above example, Int -> Real.

Variable declaration:

How can you assure that all variables are declared before they are used?  This structural

requirement cannot be stated in BNF, so it requires a meta-language stronger than BNF to talk

about how the program behaves.

Closing brackets:

In some block structured languages, the beginning and end of each block is labeled:

begin do <body> end do

There is no way to specify that the name of the end statement (do here) matches the name of the

begin statement.
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Attribute Grammars

Attribute grammars extend the expressability of context-free grammars like BNF, to include

the checks for static semantics.  An attribute grammar is a context-free parse tree with each

token augmented with a set of attributes (such as type and initialization information).

Intrinsic attributes are those properties of leaf nodes (i.e. names) which are not contained in

the parse tree itself.  The type of a variable is an example.  It is usually included in the symbol

table, but may not show up as part of the parse tree.  These are also called synthesized
attributes, since they pass information up the parse tree starting at the variable names.

In contrast, inherited attributes are those that are passed down the parse tree, properties that

depend on the operator structure of the parse tree.

Example:  Simple Assignment Statements for adding two numbers

Here is the attribute grammar for typing for an assignment statement, A := B + C

Syntax BNF:

<assign> ::=  <var> := <expression>

<expression> ::=  <var> + <var>  |  <var>

<var> ::=  A  |  B  |  C

Parse tree:

        <assign>
      /    |    \
 <var>1    |     <expression>
   |       |      /    |    \
   |       |  <var>2   |   <var>3
   |       |    |      |     |
   A      :=    B      +     C

Static semantics:

We will assume that {A,B,C} are either integers or reals.

actual-type:  a synthesized attribute which stores the actual type of a <var> or an

<expression>.  In the case of an <expression>, the type is computed given the types of the

component <var>s.

expected-type:  an inherited attribute which stores the expected type of

<expression>.  It is determined by the type of the <var> on the left-hand-side of the

expression statement.
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Attribute grammar:

Syntax: <assign> ::=  <var> := <expression>
Semantics: <var>.actual-type implies <expression>.expected-type

Syntax: <expression> ::=  <var>1 + <var>2
Semantics: if (<var>1.actual-type = int) and (<var>2.actual-type = int)

  then int else real
<expression>.actual-type = <expression>.expected-type

Syntax: <expression> ::=  <var>2
Semantics: <var>.actual-type implies <expression>.actual-type

<expression>.actual-type = <expression>.expected-type

Syntax: <var> ::=  A  |  B  |  C
Semantics: lookup-type[<var>.string] implies <var>.actual-type

One of the difficulties of attribute grammars is that specifying the semantic rules for an actual

programming language is very difficult due to language size and complexity.

Types of Dynamic Semantics

The semantics of non-imperative languages is usually clear and straight-forward, because these

languages were designed with their meaning in mind.

Functional languages: substitution semantics defined by lambda calculus

Logical languages: implication semantics defined by predicate calculus

Object-oriented languages: mathematical semantics defined by domain theories

There have been several approaches to specifying semantics for imperative languages, none

are entirely satisfactory.

Dynamic Semantics for Imperative Languages

A clear definition of semantics is necessary for

1.  knowing how the language actually works

2.  compiler design

3.  proof of correctness

For program understanding, the semantic specification must also be small and intelligible.
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Operational Semantics

Operational semantics defines the meaning of a program by executing its statements, either in

hardware, or simulated in software.  Meaning is the changes which occur in a machine’s state,

or memory.

Naturally the specifics of a machine architecture, its hardware implementation, and its

operating system interact strongly with operational semantics.  This makes operational

semantics difficult to understand and very machine specific (i.e. non-portable).

The concept of a virtual machine was introduced to buffer operational semantics from

machine specific details.  The changes of state of the virtual machine (i.e. the software

simulation) define program meaning;  that is, a program is defined in terms of another

program.  For this idea to work, we must first translate a program into appropriate low-level

statements in the assembly language of the virtual machine (i.e. statements about virtual

registers, memory, and data movement).  Then we must cast the changes in machine state in

terms of changes that align with the programmer’s intentions.

Since operational semantics, even on a virtual machine, is defined in terms of algorithms rather

than mathematics, knowledge of machine changes does not help with program understanding or

verification.  As yet, there is no principled theory of algorithms.

Denotational Semantics

Denotational semantics is a rigorous attempt to define program behavior in terms of recursive
function theory.  Each language object is defined both as a mathematical object and as a

function which maps instances of the language object (as they occur in a program) onto the

appropriate mathematical object.  The problem with this approach is that it is not at all clear

what the appropriate mathematical objects are for programming constructs.

Example: BBinary Numbers

Domain: N  the set of all non-negative integers

We will associate each decimal number with some non-negative integer.  The functional mapping

M follows :

M[‘0’] = 0

M[‘1’] = 1

M[<binary-number> ‘0’] = 2 * M[<binary-number>]

M[<binary-number> ‘1’] = 2 * M[<binary-number>] + 1

Note that this is implemented by a recursive function:
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M[bin] =def=
  if bin=’0’ then 0
    elseif bin=’1’ then 1
      elseif last[bin]=’0’ then 2* M[but-last[bin]]
        elseif last[bin]=’1’ then 2* M[but-last[bin]] +1
          else ERROR

The functions last and butlast are accessors for the binary number, decomposing by

separating the last digit from all digits butlast.  If we reversed the binary number before

decomposition, then the accessors would be first and rest.  That is:

last[bin] =def= first[reverse[bin]]

butlast[bin] =def= reverse[rest[reverse[bin]]]

Since recursive functions are a model for computation, there is a close relationship between

operational semantics and denotational semantics:  both require a virtual machine to identify the

state changes which define the meaning of a computation.  Denotational semantics is an

improvement, since it relies on mathematical functions for definition rather than on

algorithms.

Example: AAssignment Statement

Let the environment E (i.e. the state of the computation) be represented by pairs (name1,
value1) of variable names and their current values.  The mathematical function M defines the

meaning of the assignment x := <expression>

M[x := expression, E] =
  if M[expression, E] = ERROR then ERROR ;expression is not valid

    else E’ = {...(namei’, valuei’)...} ;new environment
      where for j=1..n
        if namej=x then ;compare names
          M[expression,E]
          else valuej’ = get-value-from-environment[namej, E]

Axiomatic Semantics

This method evolved out of proving program correctness.  The idea is that each program

statement is surrounded by constraints (preconditions and postconditions) which specify the

behavior of program variables.  The language of these constraints is Predicate calculus.  The

constraints are called assertions.  Assertions are specified in a program by enclosing them in

curly brackets.

Example:

{x isa integer, x>0}
  sum := 2*x + 1
{sum > 2}
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The precondition specifies constraints on the input x. The postcondition specifies constraints on

the output sum.

In designing preconditions, the weakest precondition is the least restrictive assertion which

still guarantees the validity of the postcondition.  If you can compute the weakest precondition

given the postcondition, then a correctness proof for the statement can be developed.  Continuing

the example:

Given ((sum > 2) and (sum = 2x+1)),

2 < 2x+1
1 < 2x
x >= 1/2

We derive that x is greater than 1/2.  The assertion that x is an integer cannot be proved, but it

is know from the static semantics analysis.  Thus

x>0 is true

It is also true that x>5 (or any other integer) when sum>10.  Since there are cases where this

precondition is not true (i.e. when sum<11), x>5 is not the weakest precondition.

The usual abstract syntax for assertions is:

{P} S {Q}

where P is the precondition, Q is the postcondition, and S is the statement.

Axioms cannot cover sequences of statements, since that would require a separate axiom for each

different sequence of program statement types.  Rather sequences are analyzed using rules of

inference of the form

Preconditions imply S1;  S1 implies S2; ...; Sn implies postconditions

Thus to use axiomatics, the entire mechanism of proofs in predicate calculus is needed.  This is

both hard to understand and difficult to use.  Like denotational semantics, although axiomatic

semantics is a tractable idea, it becomes very complex for normal programming languages, and

is thus of very limited utility.
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Operator Calculus

Functional programming and mathematical programming are similar in that both support a

formal semantics.  Here are some examples of lambda calculus abstraction and evaluation.

F1[x] = +[x,1] x+1

F2[x,y] = *[x,-[2,y]] x(2-y)

Abstract F1:

F1[x] = +[x,1] x-->#

F1 = [#,+1 #]

Apply F1:

F1[3] = [#,+1 #] 3 = (subst 3 # (+1 #)) = +1 3 = 4

Abstract F2:

F2[x,y] = *[x,-[2,y]]   x-->%  y-->@

F2 = [%, *% (-2 y)] = [@, [%, *% (-2 @)]]

Apply F2:

F2[3,8] = [@, [%, *% (-2 @)]] 3 8 = [@, [%, *% (-2 @)] 3] 8

Note:  The binding x=3 must descend inward so that the abstraction x=% is paired correctly with

the binding 3.  The direct descent used above is non-standard (I have changed the notation

slightly so that the rule is easier to follow).

There are two possible evaluation orders, normal  and applicative.  These align with the

mathematical and accumulative forms of recursion.

Normal evaluation expands functions within functions, without accumulating intermediate

results.  When all functions are evaluated, the entire expression is then simplified.  Should

some bindings not be available, normal evaluation returns the remaining function.  In normal

order, a function that is not fully defined could be passed for expansion (lenient semantics).

Applicative evaluation is standard in programming languages.  Innermost functions are

evaluated, reduced to ground, and then that reduced result is handed to the next outer function.

In applicative order, all variables to be evaluated are guaranteed to be bound (strict semantics).

Evaluation strategies can be mixed, any step can be of either type.  As with all algebraic

languages, the order of application of substitutions does not matter.
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Applicative Order, innermost leftmost first (data-driven, eager, call-by-value)

F2[3,8] = [@, [%, *% (-2 @)] 3] 8

        = [@, (subst 3 % (*% (-2 @))] 8

        = [@, (*3 (-2 @))] 8

        = (subst 8 @ (*3 (-2 @))

        = (*3 (-2 8)) = *3 -6 = -18

Normal Order, outermost leftmost first (demand-driven, lazy, call-by-need)

F2[3,8] = [@, [%, *% (-2 @)] 3] 8

        = (subst 8 @ [%, *% (-2 @)]) 3

        = [%, *% (-2 8)] 3

        = (subst 3 % (*% (-2 8)))

        = (*3 (-2 8)) = -18

Composing F1 and F2:

F1[F2[x,y]]

F1 = [#,+1 #]
F2 = [@, [%, *% (-2 @)]]

F3 = F1[F2] = [#,+1 #] [@, [%, *% (-2 @)]]

Evaluating F3:

F3[3,8] = [#,+1 #] [@, [%, *% (-2 @)]] 3 8

        = [#,+1 #] [@, [%, *% (-2 @)] 3] 8

Note that there are three forms in sequence:  F1 F2 8.  We could apply F1 to F2 first (normal),

or we could apply F2 to 8 (mixed), or we could apply the inner abstraction in F2 to 3
(applicative).
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Applicative Order:

F3[3,8] = [#,+1 #] [@, [%, *% (-2 @)] 3] 8

        = [#,+1 #] [@, (subst 3 % (*% (-2 @)))] 8

        = [#,+1 #] [@, (*3 (-2 @))] 8

        = (subst [@, (*3 (-2 @))] # (+1 #)) 8

        = +1 [@, (*3 (-2 @))] 8

        = +1 (subst 8 @ (*3 (-2 @))

        = +1 (*3 (-2 8)) = -17

Normal Order:

F3[3,8] = [#,+1 #] [@, [%, *% (-2 @)] 3] 8

        = [#,+1 #] (subst 8 @ [%, *% (-2 @)]) 3

        = [#,+1 #] [%, *% (-2 8)] 3

        = [#,+1 #] (subst 3 % (*% -6))

        = [#,+1 #] (*3 -6)

        = [#,+1 #] -18

        = (subst -18 # (+1 #))

        = +1 -18 = -17

In the following example of the recursive factorial function, the Y combinator in lambda

calculus specifies the recursive use of a function.  Its behavior is to substitute the function

definition whenever an operator hole is filled with the name of the recursive function.
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FACTORIAL:     (define FAC (n) (if n=0 then 1 else (* n (FAC (-1 n)))))

Abstract  n --> %   FAC --> Y #

FAC = Y [#, [%, (COND (=0 %) 1 (* % (# (-1 %))))]]

FAC 2 = Y [#, [%, (COND (=0 %) 1 (* % (# (-1 %))))]] 2

      = Y [#, [%, (COND (=0 %) 1 (* % (# (-1 %))))] 2]

      = Y [#, (subst 2 % (COND (=0 %) 1 (* % (# (-1 %)))))]

      = Y [#, (COND (=0 2) 1 (* 2 (# (-1 2))))]

      = Y [#, (COND False 1 (*2 (# 1)))]

      = Y [#, (*2 (# 1))]

      = (subst FAC # (*2 (# 1)))

      = *2 (FAC 1)

      = *2 (Y [#, [%, (COND (=0 %) 1 (* % (# (-1 %))))]] 1)

      = *2 Y [#, [%, (COND (=0 %) 1 (* % (# (-1 %))))] 1]

      = *2 Y [#, (subst 1 % (COND (=0 %) 1 (* % (# (-1 %)))))]

      = *2 Y [#, (COND (=0 1) 1 (* 1 (# (-1 1))))]

      = *2 Y [#, (COND False 1 (* 1 (# 0)))]

      = *2 Y [#, (*1 (# 0))]

      = *2 (subst FAC # (*1 (# 0)))

      = *2 (*1 (FAC 0))

      = *2 (*1 (Y [#, [%, (COND (=0 %) 1 (* % (# (-1 %))))]] 0))

      = *2 *1 Y [#, [%, (COND (=0 %) 1 (* % (# (-1 %))))] 0]

      = *2 *1 Y [#, (subst 0 % (COND (=0 %) 1 (* % (# (-1 %))))]

      = *2 *1 Y [#, (COND (=0 0) 1 (* 0 (# (-1 0)))]

      = *2 *1 Y [#, (COND True 1 (*0 (# -1))]

      = *2 *1 Y [#, 1]

      = *2 *1 (subst FAC # 1)

      = *2 *1 1 = 2
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Logic Programming

Prolog, and logic programming languages, take a formal approach to writing programs, using

Predicate Calculus as the mathematical model.  Unlike functional languages, logic languages

provide a different type of programming interactivity:  declarative style.  Non-procedural
programming relies on an inbuilt computational engine within a language.  Rather than

describing how the computational engine should behave, a logic program describes the problem

and the structure of the desired solution.  The logic engine then searches possible structures to

find the answer.  This search process is not under user control, rather it is prescribed by the

rules of logical inference.  Logic program is synonymous with automated theorem proving,

in that the process of constructing an result is the same process as proving that result, given

the input program as axioms.

Languages that do not require knowledge of control structures, internal implementations, and

machine level details are called higher-level languages.  These languages represent the

future of programming constructs.  The syntax of high-level languages approaches direct

mathematical description.

Example:  The specification of a sort program for a set S of records might be:

For all i,j in S: if i<j then S[i] =< S[j]

Note that this program does not specify an algorithm;  the choice of implementation strategy is

under control of the logic engine.

Technique

Each statement, or clause, in a Prolog program makes an assertion.  An assertion can be either

a statement of fact or a rule.  The difference between facts and rules is that facts do not contain

variables, whereas rules do.  Computation is initiated when a query is placed with the set of

facts.  Queries are the way to state the goals of a program.

A logic program returns the result of a query.  When the query is answered, Prolog returns an

example case for which the query is true.  When a query result is false, either the query can be

shown to be false through deduction, or there is simply no enough information in the program

database to deduce a result to the given query.

Prolog generates answers purely through pattern-matching.  Patterns without variables

must have exactly matching syntax.  Variables within patterns can match arbitrary patterns.

The matching technique is called unification, which finds an assignment of values to the

variables in a form which makes the goal statement syntactically identical to the head of some

clause.

Prolog assumes that all available information is in its fact base.  All statements that can be

proved true are derived from the facts and rules of the Prolog program.  This approach works

well for most problems, especially for object-oriented and entity models.
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It is possible to view Prolog clauses as definitions of procedures.  Prolog relationships then

become procedure invocations.  One significant difference is that logic clauses can be processed

(“evaluated”) in any order, making logic programming a parallel process.  Due to difficulties

described below, Prolog itself cannot be executed in parallel.  Another primary difference

between conventional and logic programming is that the relational forms in logic do not

distinguish between input and output.

No Data Types

There are no algorithms and no data structures in Prolog.  Data types are defined implicitly by

their properties.  Properties are defined, as might be expected, by the mathematical model of

the data structure.  That is, Prolog data structures are necessarily and unavoidably abstract.

Accessors, constructors and recognizers are all the same thing.

The implication token in Prolog, :-, can be read as “right-hand-side implies left-hand-side”.

Thus A :- B is “A is asserted if B is asserted”.

Example, lists:

Prolog uses a shorthand notation for cons, head, and tail, the constructors and accessors of

lists.

Mathemat ica l P ro l og

list = cons[head,tail] list[[X|L]] :- list[L]

head = head[cons[head,tail]] :- head[[X|L],X]

tail = tail[cons[head,tail]] :- tail[[X|L],L]

The “list” object is an abstraction, not an implementation.  Therefore [X|L] can be interpreted

as a generic decomposition operator;  the underlying model and implementation could be of sets,

list, arrays, or any other one dimensional data structure.

Example, append:

:- append[[],L,L]

append[ [X|L], M, [X|N] ] :- append[L,M,N]

This can be read:  If appending L to M gives N, then appending (cons X L) to M gives (cons X N).

The components of a list, or of any data structure are accessed implicitly, as part of the

accessor-like decomposition of a form.

Example, set membership:

:- member[X,[X|T]]
member[X,[H|T]] :- member[X,T]
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Example, sort:

:- sort[[]]
:- sort[[X]]
sort[[A,B|T]] :- A =< B, sort[[B|T]]

The form [A,B|T] separates the first two members of the list from the rest.

No Algorithms

Logic programming is designed to separate the control of a computation from the code.  In fact,

the ordering of clauses in a Prolog program determines the control flow.  It is mandatory to put

the base case of an inductive definition before the inductive case, since Prolog looks for matches

by sequentially examining each clause in order.

Example, adding integers:

:- sum[0,X,X]

sum[succ[X],Y,succ[Z]] :- sum[X,Y,Z]

The successor function increments an integer by 1.  The first clause says:

0+X=X

This is the base of the recursive definition.  The second clause is the inductive case.  It says:

if X+Y=Z, then (X+1)+Y=(Z+1)

There are two evaluation methods for Prolog engines, top-down (also called backward-

chaining), and bottom-up (called forward-chaining).  In backward chaining, we start from

the goal and attempt to match clauses until the matching arrives at a fact.  Backward chaining is

similar to recursion.  In forward-chaining, we start from the facts and propagate matches

until the goal is reached.  Forward-chaining is similar to iteration.

Horn Clauses

The Satisfiability Problem for propositional calculus is NP, so logic programs can conceivably

encounter great inefficiencies.  To combat this, Prolog and other logic systems often restrict the

form of logical assertions to those that are computationally tractable.

All logical propositions can be expressed in clausal form.  A clause has the structure:

A or B or C... :- W and X and Y...

One common subset of clauses is Horn clauses.  A Horn clause is a logical assertion with at

most one conclusion.  Horn clause forms are:
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A :- W and X and Y... (one conclusion)

or

:- W and X and Y... (no conclusions, a fact)

Prolog notation for Horn clauses uses a comma in place of and in the antecedent of the clause, so

Prolog code would look like:

A :- W, X, Y,...

As well, Prolog drops to leading :- sign when the clause is a fact.

Reso lut ion

We tend to think of logic as natural deduction, that form of logic which is closest to our natural

language.  Almost all machine implementations of logic, however, use resolution, a

computational form of logic.  Resolution is a standardized representation of logic consisting of a

conjunction of clauses.  Each clause consists of a set of literals.  A literal is either an atom or

a negated atom.

Clauses can be of three different types:

Facts: :- mother[Mary, John] (Mary is the mother of John)

Goals: :- father[John, X] (John is the father of someone, X)

Ru l e s : parent[X,Y] :- father[X,Y] (the father of Y is a parent of Y)

A clause specifies a relation between its components.  In contrast to functions, relations do not

have a direction of application;  they can be used to find inputs given goals as easily as finding

goals given inputs.

Functional form: F[X,Y] => Z

Relational form: R[X,Y,Z]

A relational form can optionally be read as a data structure and as a pattern to be matched.

The resolution technique converts clausal form into sets of literals:

A or B or C... :- W and X and Y...
becomes

{-W,-X,-Y,A,B,C}

A resolution step consists of combining two clauses, one with a positive literal and one with the

negative literal for the same variable.  The members of each clause are combined, while the

target literal is omitted, generating a new clause which is asserted into the collection of existing

clauses.  An example:
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{-A,B,-C,D} + {A,B,-E}  ==>  {B,-C,D,-E}

Horn clauses are those sets with at most one negated literal.

A :- B, C (B and C imply A)
B :- E (E implies B)

becomes

{-A,B,C}
{-B,E}

A resolution step would match B with -B, delete both, and form the new clause with the rest of

the literals in both the source clauses:

{-A,C,E} (C and E imply A)

Control Structures

A Prolog program still has control structures, they are just not under control of the user.  As in

lambda calculus, control of pattern-matching can occur in two basic ways: from goals to facts,

and from facts to goals  Also like lambda calculus, the two evaluation strategies can be mixed in

any order.  Example, the Fibonacci relation:

fib[0,1]
fib[1,1]
fib[N,E] :- N=M+1, M=K+1, fib[M,G], fib[K,H], E=G+H, N>1

The inductive clause says that the Nth Fibonacci number is E, if it is the case that

1.  M is N-1th Fibonacci number

2.  K is the M-1th number, ie the N-2th number.

3.  The Mth Fibonacci is G.

4.  The Kth Fibonacci number is H.

5.  E is the sum of G (the Mth number) and H (the Kth number).

6.  N is greater than 1.

The matching algorithm is straight-forward.  Suppose the following fact was asserted (the

Fibonacci of 2 is R):

fib[2,R]

Using a backward chaining strategy, this pattern would be matched against all the left-hand-

side goals of the logic program.  The first match would be

fib[2,R]
fib[N,E] :- N=M+1, M=K+1, fib[M,G], fib[K,H], E=G+H, N>1

N gets the pattern 2, E gets the pattern R, generating a new clause with substitutions:
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fib[2,R] :- 2=M+1, M=K+1, fib[M,G], fib[K,H], R=G+H, 2>1

This clause reduces by arithmetic to:

fib[2,R] :- M=1, M=K+1, fib[M,G], fib[K,H], R=G+H

fib[2,R] :-      1=K+1, fib[1,G], fib[K,H], R=G+H

fib[2,R] :-      K=0,   fib[1,G], fib[K,H], R=G+H

fib[2,R] :-             fib[1,G], fib[0,H], R=G+H

For the clause to be satisfied, each conjunct on the right-hand-side must be satisfied.  Thus, the

above clause would call fib[1,G] and fib[0,H], both of which are ground cases:

fib[1,G]
fib[1,1]

G gets bound to 1.

fib[0,H]
fib[0,1]

H gets bound to 1.  This leaves R equal to 2.:

fib[2,R] :-             fib[1,1], fib[0,1], R=1+1
fib[2,2]

Note that the ordering both of clauses and of conjuncts within clauses strongly interacts with the

efficiency of the matching algorithm.  This means that Prolog fails to achieve control structure

independence.

Using a forward-chaining strategy, the fact patterns are matched against the antecedents on the

right-hand-side of the clauses.

fib[0,1]
fib[1,1]
fib[N,E] :- N=M+1, M=K+1, fib[M,G], fib[K,H], E=G+H, N>1

Matching fib[0,1], M gets 0, G gets 1,  and simplifying:

fib[N,E] :- N=0+1, 0=K+1, fib[0,1], fib[K,H], E=1+H, N>1

This fails due to a contradiction, N is both equal to 1 and greater than 1.  The matching then

continues with the next match opportunity, K gets 0, H gets 1:

fib[N,E] :- N=M+1, M=0+1, fib[M,G], fib[0,1], E=G+1, N>1

fib[N,E] :- N=M+1, M=1,   fib[M,G],           E=G+1, N>1
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fib[N,E] :- N=1+1,        fib[1,G],           E=G+1, N>1

fib[2,E] :-               fib[1,G],           E=G+1, 2>1

fib[2,E] :-               fib[1,G],           E=G+1

The matching starts again form the top, with nothing matching fib[0,1].  Using fib[1,1], G
is bound to 1:

fib[1,1]
fib[2,E] :-               fib[1,G],           E=G+1

fib[2,E] :-               fib[1,1],           E=1+1

fib[2,E] :-                                   E=2

fib[2,2] :-

With no more antecedents, the result fib[2,2] becomes a fact.  This fact matches the query,

binding R to 2, and completing the computation:

fib[2,2]
fib[2,R]

Whether or not a backward or forward chaining strategy is better depends entirely upon the

structure of the fact and rule bases.  In the Fibonacci example, note that forward chaining avoids

recomputing the Fibonacci numbers in each recursion.  When a clause fails (as in the above

example), the Prolog engine must backtrack, that is, it must restart pattern-matching from

where it previously left off, abandoning the exploration which ended in failure (and in

unavoidable wasted effort).  Also note that logic programming does not distinguish between input

and output, since all structures are relations rather than functions.  This makes questions such

as the example below as easy to answer as finding output from input:

sum[X,3,5] find X

Here we are asking what number added to 3 yields 5?  Subtraction, the inverse of addition, is not

a necessary concept.  Since Prolog treats structures relationally, inverses are not used.

In fact, there are dozens of matching strategies that have been explored by the theorem proving

community.

Bui lt- in Arithmetic

In the examples above, arithmetic simplification is built-in.  This is not purely logical since it

requires a different kind of evaluation mechanism.  To have Prolog evaluate arithmetic using

pattern-matching, the rules of arithmetic must be added to the rulebase.  The new Fibonacci

pattern is:

fib[0, succ[0]]
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fib[succ[0], succ[0]]

fib[N,E] :-
      sum[M,succ[0],N], sum[K,succ[0],M], fib[M,G], fib[K,H], sum[G,H,E]

The successor pattern computes arithmetic relations by stepping though the numbers from 1 to N.

However using the successor relation to define numbers is very clumsy since it provides no base

system to abstract magnitude.

Data Structure Predicates

Compound terms can usually be expressed as trees.  To represent a tree in Prolog, we label each

node and specify a relationship between that node and its children.

Example: (3 * (4 + 5)) * (2 + 7)

String: *[*[3,+[4,5]],+[2,7]]

Tree:
   *

      /     \
     /       \
    *         +
  /   \     /   \
  3    +    2    7
     /   \
    4     5

Prolog:

sum[4,5,N1]
times[3,N1,N2]
sum[2,7,N3]
times[N2,N3,Ans]

Problems with Prolog

There are several problems with Prolog, as it was first formulated.  Recently work on Prolog

III has reduced these difficulties, turning Prolog into a pure constraint-based language.

Sequencing and Hard-wired Control

Logic programming still suffers from necessary sequencing of clauses and antecedents within

clauses.  This undermines the independence of program and control.  The search strategy in

Prolog is hardwired, it is depth-first.  This also abandons the parallelism of a pure logic

language.  Since the language does not include control over different search approaches, Prolog

search strategies have can be very inefficient, in some cases even non-terminating.  Consider

the following Prolog program:
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ancestor[Mary,Tom]
ancestor[M,N] :- parent[M,N]
ancestor[X,Z] :- ancestor[X,Y], parent[Y,Z]

The intent of this code is to assert that a person is an ancestor if they are a parent, or if their

parent is an ancestor.  The problem is that binding ancestor results in an infinite sequence when

backward chaining is used.  In the first match,

M gets Mary, N gets Tom:

ancestor[Mary,Tom] :- parent[Mary,Tom]

The first rule yields the query “Is Mary Tom’s parent?”.  This fails since there is no match to

the parent pattern.  The search backtracks, trying the second rule:

ancestor[Mary,Tom]
ancestor[X,Z] :- ancestor[X,Y], parent[Y,Z]

X gets Mary, Z gets Tom:

ancestor[Mary,Tom] :- ancestor[Mary,Y], parent[Y,Tom]

The search is looking for a missing link, Y, between Mary and Tom.

ancestor[Mary,Y]
ancestor[X’,Z’] :- ancestor[X’,Y’], parent[Y’,Z’]

Since the second rule has been used twice, the names of the logic variables must be changed to

avoid name conflicts.  The second rule is matched, in pursuit of the missing ancestor:

X’ gets Mary, Z’ gets Y:

ancestor[Mary,Y] :- ancestor[Mary,Y’], parent[Y’,Y]

Two queries are generated, and the first one is explored.  Again the first rule fails to identify the

missing ancestor.  The second rule is tried again:

ancestor[Mary,Y’]
ancestor[X’’,Z’’] :- ancestor[X’’,Y’’], parent[Y’’,Z’’]

X’’ gets Mary, Z’’ gets Y’:

ancestor[Mary,Y’] :- ancestor[Mary,Y’’], parent[Y’’,Y’]

This match continues by looking for a pattern to resolve the new antecedents:

ancestor[Mary,Y’’]
ancestor[X’’’,Z’’’] :- ancestor[X’’’,Y’’’], parent[Y’’’,Z’’’]
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The search has entered an infinite loop, looking for a binding for Y, Y’, Y’’, etc.

Programming Prolog is not purely declarative, since a programmer must know the exact

behavior of the search-and-match algorithm in order to avoid infinite looping.

Cuts

In order to stop needless and possibly infinite search, Prolog introduced the cut operator, !!.  In
essence this is saying that Prolog does not have control orthogonality, the central reason for the

language has been negated.  For example, consider the false query “Is the factorial of 4 equal to

15?”.  The goal is stated as a conjunction of two assertions:

fac[4,A], A=15
fac[0,1]
fac[N,E] :- N1=N+1, fac[N1,R1], E=R1*N.

The first subgoal, fac[4,A], succeeds, binding A to 24.  Next the second goal is attempted and it

fails, since A cannot be both 24 and 15.  This causes backtracking to the last successful goal,

which was the ground case of the factorial pattern as it was solved recursively.  This is

fac[0,R].  Prolog thinks the match to the first clause, fac[0,1], must have been in error, so

it abandons the (correct) ground case, and attempts to bind the current query to the second,

inductive clause.  With a forward-chaining strategy, this yields:

fac[0,R]
fac[N,E] :- N1=N+1, fac[N1,R1], E=R1*N.

N1 gets 0, R1 gets R:

fac[N,E]  :- 0=N+1, fac[0,R], E=R*N.

fac[-1,E] :-                  E=R*-1

Prolog is now looking for factorial of -1, and about to enter an infinite loop.  The solution to this

problem is to use the cut operator:

fac[0,1] :- !
fac[N,E] :- N1=N+1, fac[N1,R1], E=R1*N.

This tells the engine to stop if a ground case is satisfied.  The problem is that the programmer is

now using a procedural metaphor, defining the steps of the actual computation.

Negation as Failure

Prolog uses negation is two senses.  At the logical level, negation specifies the complement of its

argument.  At the control level, when a clause returns false (not true), negation is interpreted

as the failure of a clause, which then triggers backtracking.

The essential problem is that the dual use of negation makes it impossible to make and verify

negative assertions.  The source of the problem is actually in using Horn clauses rather than a

fully expressive logic.  The limited expressability of Horn clauses eliminates the use of negated

clauses (but not negated literals).
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Example:

append[X,Y,[a,b,c]]

yields all possible solutions:

X=[], Y=[a,b,c]
X=[a], Y=[b,c]
X=[a,b], Y=[c]
X=[a,b,c], Y=[]

The assertion

not[not[append[X,Y,[a,b,c]]]]

should behave identically to append, since the double negation cancels out.  However, the Prolog

execution makes the following error.  The outer not sets up the inner not as a goal.  The inner

not sets up append, which succeeds.  Therefore the inner not fails, since

not[append[X,Y,[a,b,c]]] is false.  This failure deletes the prior successful bindings of X
and Y.  Finally the outer not succeeds, however the logical variables at this point are unbound.
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Ada

Ada was developed in recognition of the need for modular and reliable programs.  It introduced

abstract data types supported by separable modules.  Abstraction requires iinformation
hiding, users have to access modules through an abstract interface (mathematical not

implementation) which hid implementation details.  The basic structure of the language closely

followed Pascal.

Ada was first developed for DoD applications of embedded computing.  To assure portability, the

DoD did not allow the development of either subsets or supersets of the Ada language (this was

later changed in Ada95).

Dec larat ions

The most significant difference between Pascal and Ada is in declarations, those non-

executable statements in the front of a program which inform the compiler and other

preprocessors about the semantics of the language.  Ada declarations are of five types:

1.  Object constants and variables

2.  Type object types

3.  Subprogram functions and procedures

4.  Package (new) modules

5.  Task (new) modules which execute concurrently

Modules (packages and tasks) are disjoint environments which communicate through defined

interfaces.  Module declarations have two parts:  the interface specification and the body of the

implementation.  The central difference between a package and a block is that packages have

names and formal parameters, while blocks do not.

Data Structures

Ada was the first to introduce floating-point and fixed-point number types.  Floating-point

numbers have round-off errors while fixed-point numbers have an absolute error bound.

Ada introduced new typing tools.  Subtypes are subsets of a type.  Constraints are

restrictions on the members of a type which can be evaluated at runtime.  Derived types
foreshadowed object-oriented inheritance,  they are types which inherit operations, functions,

and attributes from a parent type.

Name Structures

The block structure of Algol still permitted global variables, in that blocks provided

encapsulation of control but not of names.  The problem was side effects, which can be defined

as hidden access to a variable.  A related problem was indiscriminate access, that is, no

programming tools prevented access to variables, even when access was inappropriate.  There
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was no way in block structured languages to prevent indiscriminant access. Yet another related

problem was vulnerability, there was no way to preserve access to a variable, in that a new

declaration might intervene between an old declaration and the use of variable, blocking the

scope of the old declaration.  Finally, block structure permitted overlapping definitions,

that is, shared access to variables.  This undermines modularity.

Parnas provided two principles of information hiding:

1.  One must provide the user with all the information needed to use a module, and

nothing more.

2.  One must provide the implementor with all the information needed to complete the

module and nothing more.

That is, the user cannot write programs which access the implementation details, while the

implementor has no knowledge of the context of usage of the module.

The Ada construct which supports information hiding is the package.  This is achieved by

having two separate components of a module, the interface and the implementation.  Packages

control name access by mutual consent:  the package implementor nominates accessible

variables by making them public, while the package user imports a package when its public

variables need to be used.

Packages are abstracted by the notion of a generic package.  Generic packages provide a

template which can be instantiated by multiple instances of the package.  However, generic

packages are difficult to compile.  Here is Ada code for a type independent generic module for

stacks:

generic
  Length : Natural := 100;
  type Element is private;
package stack is
  procedure Push (X : in Element);
  procedure Pop (X : out Element);
function Empty return Boolean;
function Full return Boolean;
Stack_Error : exception;
end Stack;

Element is a type parameter which is declared to be private.  Thus the package can be

instantiated with stacks of different types.  Here are two examples of construction of new stacks:

package Stack1 is new Stack (100, Integer)
package Stack2 is new Stack (256, Character)

Stack1 can accommodate 100 integers, while Stack2 can accommodate 256 characters.
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Control Structures

Ada control structures are similar to those of Pascal.  Since Ada was intended for embedded

applications, it was important that Ada have exception handling capabilities.  Ada permits

definition of exceptional circumstances, and provides mechanisms for signaling their

occurrence and responding to their occurrence.  Although all other names in Ada are bound

statically, exceptions are bound dynamically.  (Thus exceptions are exceptional.)

Ada introduced position-independent parameters, that is, parameters can be in any order.

This is achieved by the simple expedient of labeling parameters with names.  The names identify

the parameter’s function.  As well, parameters could be given a default value.  These changes

in the definition of parameters make compiling more complex.

Concurrency

Ada provides a tasking facility, which allows a program to do more than one thing at a time.

Tasks that are both concurrent and in communication must be synchronized.  Ada

synchronization is very much like mutual procedure calls.  When a task has some data to

communicate to another concurrent task, it calls that task, passing the data as parameter

bindings.  The only difference is that the first task does not halt, rather it keeps on processing.

Should a concurrent task need data before it is sent by another task, that task simply waits until

the data is sent.  Should a task send data before it can be received, the sending task again waits

until the data is received before continuing.  This type of coordination is called a rendezvous;

the communication regime is called synchronized communication.  Should a rendezvous fail

to take place, both tasks may wait indefinitely;  this is called dead-lock.

Tasks are tightly-coupled when they mutually communicate, waiting in turn for data.  Tight-

coupling has the disadvantage that both tasks must process at nearly the same speed.  That is, the

speed of processing is limited to the slowest task.  To loosely-couple tasks, a buffer must be

inserted into the communication stream.

Malignant Growth

Ada grew into a language which was too large, about three times larger than either Pascal or

Algol.  This means that the language is difficult to learn and more difficult to manage.  Increase

in language size can be viewed as a kind of entropy, causing the design to deteriorate over time.

Another term for this is featuritis, a phenomenon which is prevalent in committee designed

languages.  The benefits of adding a feature appear to outweigh the cost of adding a small

increment to the language.  Benefits seem clearer and easier to justify since they are small

changes.  However, their accumulated effect is a global negative.  Features are by definition

added piecemeal, independent of consideration of the entire language.  This leads not only to

excessive size, but also to feature interaction which can, at worst, increase complexity and

errors exponentially.
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Code Attachments

The attachment on the next page illustrates Ada code for the abstract data type Complex Number.

It includes the two parts of a package: the public interface and the private
implementation body.

The two pages after that contain a package for the type Communication, which includes Send and

Receive functions, and a buffer for loose-coupling.

The protected type construct of Ada controls concurrent access to shared data between tasks.

Since it is a type definition, it is a template which must be instantiated with an object definition

to create an actual instance.  The effect of a protected type is to assure that only one task can

execute changes to internal data structures (here, a buffer) at one time.  This ensures

consistent data management without the overhead of a third task.  The coordination is achieved

through the entry construct, which is a guarded function call.  A guard allows only one active

call at a time, other calls to the same entry are temporarily blocked until the controlling call is

finished.  The final page includes code for the Communications task, making it a concurrent

procedure.

Language Generations (a recap)

Generat ion Exemp l a r s Character i s t ics

      0 pseudocodes syntactic sugar for primitive assembly languages

      1 FORTRAN data and control correspond to machine architecture,

linear, card-oriented

      2 Algol hierarchical name structures, block structure,

strong typing,  still linear and machine oriented

      3 Pascal simplicity and efficiency, user-defined data types,

application-oriented

      4 Ada data abstraction, concurrency, still sequential,

summary refinement of previous generations

      5 LISP, Prolog, comprehensive, formal paradigms (functional, logical,

Smalltalk, JAVA object-oriented), self-documenting, recursive,

provable, simulations, semantic constraints

      6 ? hardware/software codesign, application specific,

embedded, fine-grained strong parallelism,

programming environments, language frameworks

The popular CC language is a relatively unprincipled combination of first, second, and third

generation language characteristics.  The CC++ language modifies C to incorporate fourth and

fifth generation characteristics, again without strongly embedded design principles.
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Assignment V:  A New Method

One written page recounting your experiences.

Explore a new style of programming.

1.  Select a programming language and metaphor that you have not previously used.  Obtain a

copy of the appropriate programming language (this can be time-consuming).

2.  Select a small fragment of code that you have written (alternatively you can use your

pseudocode fragment from previous assignments, or you can select some code from a published

source).

3.  Transcribe and implement your code fragment in the new language.

4.  What did you learn?  Prepare a one to two page report on your experiences.  Concentrate on

the differences between the languages you are using.

Language Sources:

JAVA (pure object oriented): http://jave.sun.com                                  

Haskell (pure functional): http://haskell.org                               

Scheme (functional): http://www-swiss.ai.mit/ftpdir/scheme-7.4/                                                                               

Forth (tiny, threaded) http://chemlab.pc.maricopa.edu/pocket.html                                                                           

LISP: http://www.franz.com/downloads/                                                          

Prolog:

http://www.cs.cmu.edu/Groups/AI/html/faqs/lang/prolog/prg/part2/faq-doc-2.html                                                                                                                                                

ATLAST (tiny, embedded) and DIESEL (tiny, string-based):  http://fourmilab.ch/                                    

Screamer (constraint-based extension of LISP, untested):

http://www.cis.upenn.edu/~screamer-tools/index.html                                                                                             

In general: http://dir.yahoo.com/Computers_and_Internet/Programming_Languages/                                                                                                                           
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JAVA

Features

simple

object-oriented   (relatively pure oo, not procedural + oo extensions)

distributed

both interpreted and compiled instruction sets

robust

secure

architecture neutral

portable

high-performance

multi-threaded

dynamic

Object Orientation

class = abstraction

class variables

class functions

instance

fields are instance variables

methods are functions

hierarchy

subclasses = design by difference

inheritance

overloading

constructors

accessors

encapsulation  (public, package, protected, private)

Implementation Features

virtual machine

byte-code = machine instructions for a virtual machine (VM)

VM maps closely to most native hardware machine 

call-by-value parameter passing  (compare to call-by-name, call-by-need)

the value of an object is its reference

copies binding into parameter field of method

automatic garbage collection

streams

type-safe references (strong typing)

exception handling

multiple threads  (multitasking, lightweight)

simultaneous processes and shared objects

locks;  user provided deadlock avoidance

automatic switching, scheduling, synchronization
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Language Features

base data-types are not objects

first-class strings, read-only

international Unicode character set

first-class exceptions, checked by compiler

HTML inline interface

first-class network interface  (URL, TCP, sockets)

protection and security model

class Object is root

interface concept for limited multiple inheritance

no pointers (use references instead)

no global variables  (use root classes)

no goto  (use catch/throw and labels)

no operator overloading (static basic operators)

no delete

Language Keyword Features

final:  constants, unforgable classes, non-overridden methods

this:   reference to self object

new: constructs a new object or class

. :   accessor function

[ ] : arrays

{ } : sequential block

super: references things from the superclass(es)

try-catch-finally:  exception handling

labeled break:  for skipping sequences and exiting loops

Packages

class libraries

functionality groups

user interface code provided

user provide application specific abstract data types

Provided Java API Packages

java.lang the language

java.net networking

java.io streams and files

java.util utilities, higher-order data-structures

(enumeration, vector, stack, dictionary, hashtable)

java.awt Abstract Window Toolkit

java.awt.image image processing

java.awt.peer interface with native interfaces

java.applet basic applets
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Interfaces

unique in Java

separate design inheritance from implementation inheritance

can inherit a contract without inheriting an implementation

tie together dissimilar classes for object reference

subclasses provide code for all interface methods

multiple inheritance  (classes can implement multiple interfaces)

no root, does not default to Object root-class

constrained to:

abstract class (no instances, only subclasses)

no code, only abstract method declarations

static and final variables

public methods

Exceptions

catch and throw handlers

programmer declared compile-time errors

cleanly checks for errors without cluttering code

try/catch/throw environment

finally clean-up

Protect ion

runtime system does not permit memory access

public full access by all classes

package access by classes in common library

protected access by subclasses only

private no access by other classes

Streams

usually paired as InputStream, OutputStream

Piped, Filter, Buffered

StreamTokenizer

System Programming Classes

Runtime (state of Java at runtime)

Process (running java process)

System (state of environment)

Math (standard computations)

Native  (foreign function interface)
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Abstract Window Toolkit (AWT)

embedding within the local browser

standard component set

button, checkbox, choice, label, list

scrollbar, textarea, textfield,

windows, menus, dialog boxes

containers

graphical collections of components

layout management

event handling

mouse clicks and movements

keyboard

graphics

drawing, color, fonts, clipping, image handling

Sample HTML Applet Call

<HTML>
<HEAD>
<TITLE>Applet Page</TITLE>
</HEAD>
<BODY>
<H4>This is an example of a Java applet:</H4>
<HR> <APPLET CODE="MyApplet.class" WIDTH=100 HEIGHT=50> </APPLET> <HR>
</BODY>
</HTML>

Sample Applet

import java.applet.Applet;
import java.awt.Graphics;
public class MyApplet extends Applet

{public void paint(Graphics g)
{ g.drawString("Hello world.", 5, 10); } }

Web Resources

http://java.sun.com/ ...from the Source

http://www.rpi.edu/~decemj/works/java.html/ a Java book author

http://www.gamelan.com/ registry of programs

http://sunsite.unc.edu/javafaq/javafaq.html FAQs

http://www.well.com/user/yimmit/ links to resources

http://www.natural.com/ major developer

http://www.io.org/~mentor/J__Notes.html more resources

http://www.acm.org/~ops/java.html ACM resources

http://www.yahoo.com/Computers/Languages/Java/ search engine resources

http://rendezvous.com/Java/hierarchy class diagrams
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DEFINITIONS

Abstract (oo)

a class which is intended to have no instances

Accessor (prog)

special function to retrieve hierarchical data

Applet (java)

a dynamic, interactive program that runs inside a Web page

Attr ibutes (prog)

the instance variables of an object

Bytecode (java)

machine instructions for a virtual machine

Casting (java)

changing the type of data.  Coercing.

C lass (oo)

template which abstracts objects with similar features

C l i p p i ng (graphics)

redrawing within a container

Constructor (prog)

special method for creating and initializing new instances

Contract (java)

semantics of the set of methods, no class implementation

Encapsulat ion (oo)

limited access to class methods and fields (public, package, protected, private)

E r r o r s (java)

Runtime violation of system constraints;  usually not recoverable.

Exceptions (java)

Compiler checked violations of typing, ranges, assignments; usually catchable.

F i n a l i z e r (java)

special method for closing and reclaiming old instances.  Inverse of constructor.

Garbage Collection (java)

automated management of memory

Inher i tance (oo)

hierarchy of included functionality;  design and implementation by difference.

Single inheritance:  inherit from only one superclass (tree)

Multiple inheritance: inherit from several superclasses (DAG)
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Instance (oo)

concrete digital objects with bound properties.  Same as Object.

Interface (java)

limited type of class which provides multiple inheritance

abstract class, no method implementation, static and final variables

Method (oo)

the functions within an object or a class

Ove r r i d i ng (oo)

subclass methods which redefine superclass methods

Package (oo, java)

set of classes, usually with functional similarities.  Same as Class Library

Po l ymorph i sm (oo)

objects belong to all classes in their class hierarchy

S ignature (prog)

the abstract form of a method (name, type of object returned, parameter list)

Statement (prog)

A program component.  Expressions return a value; declarations define a scope.

Streams (prog, java)

A communication path between data source and destination

Subc lass (oo)

the class(es) below a class in the class hierarchy

Superc lass (oo)

the class(es) above a class in the class hierarchy

Threads (prog)

basic unit for multitasking, used for long processes

Var iable (prog)

the data within an object or a class

Virtual Machine (java)

software which emulates a physical machine
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Smal l ta lk

Object-oriented programming is a fifth-generation style which emphasizes simulation of the

behavior of objects.  Smalltalk was the first pure object-oriented (oo) language;  Java is the

most popular oo language currently.

Alan Kay lead the development of Smalltalk, following his intuition in the late 60s that personal

computing (which did not exist at the time) would not succeed without a more friendly

programming language.  Recall that Algol and other second generation languages of the time were

still closely tied to mainframe computing, and thus in the domain of computer specialists.

Smalltalk was the programming language for Kay’s seminal idea of the laptop computer.  The

developmental philosophy was:

Simple things should be simple, complex things should be possible.

Smalltalk evolved from Simula (Nygaard), a simulation language, and LOGO (Papert), a very

simple pedagogical language used to teach programming to children 8-12 years old.  The design

was also heavily influenced by research in developmental psychology (Dewey, Montesorri,

Piaget, Bruner), and by Sutherland’s Sketchpad, the first prototype VR system (late 60s).  It

was also conceived as part of an integrated graphical development environment which was

developed at Xerox PARC in the early 70s, and lead eventually to the MacIntosh WIMP interface

(Windows, Icons, Menus, Pointing device).

These are the characteristics which were seen to compose a user-friendly language:

object-oriented simulation

graphical interface

interactive (interpreted)

programming through dialog

integrated development environment

Objects, Messages and Methods

The programming unit in oo languages is the object.  Objects have both state and behavior.

Behavior is triggered by sending messages to objects.  Repetitive behavior is simplified by

control structures.  The functions which define object behavior are called methods.

It is important to realize the oo programming on a single processor machine is simply a

reorganization of code at the user level.  Messages are procedure invocations.  Objects are data

structures.  Methods are functions.  Consider finding the area of a rectangle:

rectangle[area-of] object-oriented

area-of[rectangle] functional

Swapping function and argument turns object-oriented into functional programming.
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An abstract object, one with parameters rather than bound values, is a class.  Instances are

created by instantiating a class description with values.  In functional terms, a class is a set of

operators, an instance is applicative expansion of an operator.  Class inheritance is normal

expansion of an operator.

The data values inside an object represent the properties and relations in which that object

participates.  The methods inside an object simulate the behavior of the corresponding semantic

object.  Objects then hold the state of the computation.  In general, each object acts as an

autonomous agent that is responsible for its own behavior, and is not responsible for the

behavior of any other object.  The memory organization of a computation is organized around

objects;  the information usually carried in function activation frames is stored within each

object.

Classes

A class definition specifies all the properties and behaviors which are common to all instances

of that class.  Decomposing a problem into classes is analogous to functional decomposition in

functional languages.

The biological analogy is that classes are genotypes while instances are phenotypes.  Classes

contain the organization of an entity, those characteristics which are present in all individuals

of that type.  Instances contain the structure of an entity, those characteristics which

differentiate one individual from another.

Classes (abstract objects) also have methods.  Class methods are used to create new instances.

When a new message is sent to a class, the class constructs a copy of itself and binds the class

parameters to the instance values conveyed by the new message.

A class hierarchy develops when the class abstraction principle is applied to classes themselves.

(This is simply saying that operators can be composed without instantiation.)  The class

hierarchy is an organizational technique at the interface.  Unfortunately, semantic objects are

not orthogonal, class decomposition (like function decomposition) can be achieved in many

equally valid ways, each way being appropriate for some behaviors, and blind to other behaviors.

For example, consider the class mammal.  A biological taxonomy places mammals in a kingdom-

phylum-species hierarchy, comparing mammals to other living creatures.  A pragmatic

classification, on the other hand, may classify mammals by their utility, as pets, beasts of

burden, pests, sources of food, etc.  A geological classification may classify mammals by their

ecological zone, temperate, island, arctic, etc.  Each of these classification schemes is orthogonal

to the others, however a particular mammal gets classified by each differently.

The original solution was multiple inheritance, objects could inherit from several classes.  This

idea introduces as many problems as it solves.  For instance, inherited methods from two classes

may be contradictory.  Inheritance from many classes builds objects which are far larger than

any class they may inherit from.  And from an coding perspective, multiple inheritance is

extremely difficult to implement, essentially doubling the size of an oo compiler.  Multiple

inheritance, from a functional perspective, is attempting to insert control logic into lambda
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calculus, thus undermining the semantics of the model.  For these reason, the Java language does

not provide the option of multiple inheritance.

As an example of a class hierarchy, a partial listing of the built-in classes in Smalltalk is

presented on the next page.

Object

Magnitude

Character

Date

Time

Number

Float

Fraction

Integer

LargePositiveInteger

LargeNegativeInteger

SmallInteger

Collection

SequenceableCollection

LinkedList

ArrayedCollection

Array

Bitmap

String

Interval

OrderedCollection

Bag

MappedCollection

Set

DisplayObject

DisplayMedium

Form

Cursor

DisplayScreen

InfiniteForm

OpaqueForm

Path

Arc

Curve

Line

Spline

Behavior

In this class hierarchy we see a structured decomposition of concepts from mathematics (e.g.

collections), programming (e.g. float numbers), and graphics (e.g. DisplayObject).  The

decomposition is rather ad hoc (e.g. bags are a mathematical extension of sets but both are listed

at the same level of abstraction), and is quite interface dependent (e.g. DisplayObejcts assume a

WIMP interface).
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Overloading, Information Hiding and Extensibility

Overloading refers to using the same token to trigger different behaviors in different objects.

Since the organizational structure isolates bindings and methods within specific objects and

classes, the issues of scoping and binding regimes are not troublesome.  That is, oo techniques

remove the machine dependencies associated with names in procedural languages.  Again from

the functional perspective, this is simply that functional organization does not require

variables.

Classes serve as abstract data types, therefore they provide an abstraction barrier between

model and implementation.  These ideas are the same as those which motivated packages, generic

packages, and tasks in Ada.  Classes provide enforced modularity.

Due to class inheritance, Smalltalk is flexible and extensible.  The programmer can define a new

class which inherits from existing classes, thus significantly reducing both programming effort

and possibility of errors.

Message Sending and Protocols

In procedural languages, programs are active and data structures are passive.  This reflects a

hardware architecture model in which memory is used to passively store, while computational

circuitry is used to modify bits and words.  In oo, objects are active, they respond to

communications from other objects, modify themselves, and send messages intended to

communicate with and change other objects.

The set of messages a particular object responds to is called its protocol.  It is an error to send a

message to an object which does not include that type of message in its protocol.  Names in

Smalltalk are not typed, any name can be associated with any object.  Instead, protocols provide

strong type checking, in that all valid messages are responded to by the receiving object.  Since

messages are sent at runtime, Smalltalk uses dynamic, as opposed to static, type checking.

Dropped messages signal run-time errors which halt computation (without crashing the

system), much like an interpreted language.

All objects are identified by a pointer, or object reference.  Since there are no functions in an oo

language, the cost of storing both variables and message invocations is identical.  Activation

frames are no longer a relevant concept.  OO techniques allow algorithms to be factored out of the

program without complication.

In a single processor system, messages are still procedure invocations.  The major difference

from procedural approaches is that instances of objects are constructed and initialized

dynamically, at run-time, rather than statically in the object code.

There are three message formats in Smalltalk.  For messages with no parameters, the name of

the message serves as a keyword to trigger the message functionality.  For messages with one or

more parameters, keywords are again used to identify parameters, as in

Box grow: 100 color: green scrollbar: false
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This approach however is awkward for numerical operators, for instance

x plus: 2

sends the plus message to the object x, with the parameter binding 2.  Smalltalk originally

began as a pure oo language, even each number was an object.  In a design concession, Smalltalk

was changed to treat numerical computational more conventionally.  So,

x + 2

is written instead, although this code still sends the + message to the object x.

Top Level

Smalltalk is meta-circular, its main loop is written in Smalltalk:

true whileTrue: [Display put: user run]

The true object is sent the  whileTrue message which is bound to the object generated by

sending the Display object a put message bound to user.  Inside user, an object userTask
responds to the run message by reading an expression, evaluating it, and returning the result to

Display.  Run is defined as:

run =def= Keyboard read eval print

Note that the Smalltalk style is similar to function invocation.  The operational semantics of the

language is to send the leading object the first message which follows.  The object returns a

different object which then responds to the next remaining message, and so on.

Above, the Keyboard object responds to the read message by prompting the user interface and

returning the string typed by the user.  This input string then responds to the message eval by

calling the Smalltalk interpreter for evaluation.  The resultant object responds to the message

print by printing the result to output.

Concurrency

The autonomous nature of objects makes concurrency natural for oo languages.  In Smalltalk,

concurrency is achieved by having an object capable of processing a set of messages.  Smalltalk

uses the functional concept of mapping.  To run several concurrent tasks, map the object over

the tasks.  This in turn is converted into time-sharing threads by the os.

concurrent-run =def= scheduler map: [...]


	01-info.pdf
	02-curriculum-design.pdf
	03-a1-story.pdf
	04-final-syllabus.pdf
	05-factorial.pdf
	06-books.pdf
	07-a2-syntax.pdf
	08-languages.pdf
	09-modeltools.pdf
	10-fortran.pdf
	11-algol.pdf
	12-functional.pdf
	13-interpreted.pdf
	14-purelisp.pdf
	15-a3-emulate.pdf
	16-pascal.pdf
	17-a4-semantics.pdf
	18-semantics.pdf
	19-operators.pdf
	20-logic.pdf
	21-ada.pdf
	22-a5-explore.pdf
	23-java.pdf
	24-smalltalk.pdf

