
 Programming Methods

1

Ada

Ada was developed in recognition of the need for modular and reliable programs. It introduced

abstract data types supported by separable modules. Abstraction requires iinformation
hiding, users have to access modules through an abstract interface (mathematical not

implementation) which hid implementation details. The basic structure of the language closely

followed Pascal.

Ada was first developed for DoD applications of embedded computing. To assure portability, the

DoD did not allow the development of either subsets or supersets of the Ada language (this was

later changed in Ada95).

Dec larat ions

The most significant difference between Pascal and Ada is in declarations, those non-

executable statements in the front of a program which inform the compiler and other

preprocessors about the semantics of the language. Ada declarations are of five types:

1. Object constants and variables

2. Type object types

3. Subprogram functions and procedures

4. Package (new) modules

5. Task (new) modules which execute concurrently

Modules (packages and tasks) are disjoint environments which communicate through defined

interfaces. Module declarations have two parts: the interface specification and the body of the

implementation. The central difference between a package and a block is that packages have

names and formal parameters, while blocks do not.

Data Structures

Ada was the first to introduce floating-point and fixed-point number types. Floating-point

numbers have round-off errors while fixed-point numbers have an absolute error bound.

Ada introduced new typing tools. Subtypes are subsets of a type. Constraints are

restrictions on the members of a type which can be evaluated at runtime. Derived types
foreshadowed object-oriented inheritance, they are types which inherit operations, functions,

and attributes from a parent type.

Name Structures

The block structure of Algol still permitted global variables, in that blocks provided

encapsulation of control but not of names. The problem was side effects, which can be defined

as hidden access to a variable. A related problem was indiscriminate access, that is, no

programming tools prevented access to variables, even when access was inappropriate. There

 Programming Methods

2

was no way in block structured languages to prevent indiscriminant access. Yet another related

problem was vulnerability, there was no way to preserve access to a variable, in that a new

declaration might intervene between an old declaration and the use of variable, blocking the

scope of the old declaration. Finally, block structure permitted overlapping definitions,

that is, shared access to variables. This undermines modularity.

Parnas provided two principles of information hiding:

1. One must provide the user with all the information needed to use a module, and

nothing more.

2. One must provide the implementor with all the information needed to complete the

module and nothing more.

That is, the user cannot write programs which access the implementation details, while the

implementor has no knowledge of the context of usage of the module.

The Ada construct which supports information hiding is the package. This is achieved by

having two separate components of a module, the interface and the implementation. Packages

control name access by mutual consent: the package implementor nominates accessible

variables by making them public, while the package user imports a package when its public

variables need to be used.

Packages are abstracted by the notion of a generic package. Generic packages provide a

template which can be instantiated by multiple instances of the package. However, generic

packages are difficult to compile. Here is Ada code for a type independent generic module for

stacks:

generic
 Length : Natural := 100;
 type Element is private;
package stack is
 procedure Push (X : in Element);
 procedure Pop (X : out Element);
function Empty return Boolean;
function Full return Boolean;
Stack_Error : exception;
end Stack;

Element is a type parameter which is declared to be private. Thus the package can be

instantiated with stacks of different types. Here are two examples of construction of new stacks:

package Stack1 is new Stack (100, Integer)
package Stack2 is new Stack (256, Character)

Stack1 can accommodate 100 integers, while Stack2 can accommodate 256 characters.

 Programming Methods

3

Control Structures

Ada control structures are similar to those of Pascal. Since Ada was intended for embedded

applications, it was important that Ada have exception handling capabilities. Ada permits

definition of exceptional circumstances, and provides mechanisms for signaling their

occurrence and responding to their occurrence. Although all other names in Ada are bound

statically, exceptions are bound dynamically. (Thus exceptions are exceptional.)

Ada introduced position-independent parameters, that is, parameters can be in any order.

This is achieved by the simple expedient of labeling parameters with names. The names identify

the parameter’s function. As well, parameters could be given a default value. These changes

in the definition of parameters make compiling more complex.

Concurrency

Ada provides a tasking facility, which allows a program to do more than one thing at a time.

Tasks that are both concurrent and in communication must be synchronized. Ada

synchronization is very much like mutual procedure calls. When a task has some data to

communicate to another concurrent task, it calls that task, passing the data as parameter

bindings. The only difference is that the first task does not halt, rather it keeps on processing.

Should a concurrent task need data before it is sent by another task, that task simply waits until

the data is sent. Should a task send data before it can be received, the sending task again waits

until the data is received before continuing. This type of coordination is called a rendezvous;

the communication regime is called synchronized communication. Should a rendezvous fail

to take place, both tasks may wait indefinitely; this is called dead-lock.

Tasks are tightly-coupled when they mutually communicate, waiting in turn for data. Tight-

coupling has the disadvantage that both tasks must process at nearly the same speed. That is, the

speed of processing is limited to the slowest task. To loosely-couple tasks, a buffer must be

inserted into the communication stream.

Malignant Growth

Ada grew into a language which was too large, about three times larger than either Pascal or

Algol. This means that the language is difficult to learn and more difficult to manage. Increase

in language size can be viewed as a kind of entropy, causing the design to deteriorate over time.

Another term for this is featuritis, a phenomenon which is prevalent in committee designed

languages. The benefits of adding a feature appear to outweigh the cost of adding a small

increment to the language. Benefits seem clearer and easier to justify since they are small

changes. However, their accumulated effect is a global negative. Features are by definition

added piecemeal, independent of consideration of the entire language. This leads not only to

excessive size, but also to feature interaction which can, at worst, increase complexity and

errors exponentially.

 Programming Methods

4

Code Attachments

The attachment on the next page illustrates Ada code for the abstract data type Complex Number.

It includes the two parts of a package: the public interface and the private
implementation body.

The two pages after that contain a package for the type Communication, which includes Send and

Receive functions, and a buffer for loose-coupling.

The protected type construct of Ada controls concurrent access to shared data between tasks.

Since it is a type definition, it is a template which must be instantiated with an object definition

to create an actual instance. The effect of a protected type is to assure that only one task can

execute changes to internal data structures (here, a buffer) at one time. This ensures

consistent data management without the overhead of a third task. The coordination is achieved

through the entry construct, which is a guarded function call. A guard allows only one active

call at a time, other calls to the same entry are temporarily blocked until the controlling call is

finished. The final page includes code for the Communications task, making it a concurrent

procedure.

Language Generations (a recap)

Generat ion Exemp l a r s Character i s t ics

 0 pseudocodes syntactic sugar for primitive assembly languages

 1 FORTRAN data and control correspond to machine architecture,

linear, card-oriented

 2 Algol hierarchical name structures, block structure,

strong typing, still linear and machine oriented

 3 Pascal simplicity and efficiency, user-defined data types,

application-oriented

 4 Ada data abstraction, concurrency, still sequential,

summary refinement of previous generations

 5 LISP, Prolog, comprehensive, formal paradigms (functional, logical,

Smalltalk, JAVA object-oriented), self-documenting, recursive,

provable, simulations, semantic constraints

 6 ? hardware/software codesign, application specific,

embedded, fine-grained strong parallelism,

programming environments, language frameworks

The popular CC language is a relatively unprincipled combination of first, second, and third

generation language characteristics. The CC++ language modifies C to incorporate fourth and

fifth generation characteristics, again without strongly embedded design principles.

