
Programming Methods

1

PASCAL

The Algol language introduced many new concepts into language design, and as a consequence,

spawned a number of new languages (e.g. PL/I) all of which were very complex and

unmanageable. Pascal was a teaching language designed to reduce this burgeoning language

complexity.

Another idea at the time was to develop extensible languages, based on a small kernel of

functionality. Extensions added application specific functionality. However, extensible

languages turned out to be very inefficient, since variable extensions made parsing and

compiling difficult. As well, extensions were reduced to kernel functions, adding another level

of language complexity which could not be optimized. Since kernel errors were not expressed in

the application specific language, diagnosis was not transparent.

Pascal combines simplicity with generality, a result of learning how the innovations of Algol

can be efficiently and elegantly combined.

New concepts introduced in Pascal include:

• enumeration types
using names rather than numbers to represent finite sets

compiled like an array in contiguous memory, efficient

e.g.: type DayOfWeek = {Mon, Tues, Wed, Thur, Fri, Sat, Sun}

• subrange types
for contiguous subgroups

e.g.: type Weekday = {Mon .. Fri} of DayOfWeek

• set types
for arbitrary collections

efficient, encoded as binary array indicating set membership

bit level operations for union and intersection

subsets easy to define, e.g.: S := [1,3,5,6]

e.g.: type set of 1..9

• strong typing of arrays
static array types since typing is determined at compile-time

cannot write dynamic array manipulation procedures

• name structures include bindings for

constants, types, variables, functions, labels

• case statement

Pascal’s control structures embody the principles of structured programming. Control

structures have one entry and one exit point. All statements can be compound. Pascal

eliminated the idea of block structure, a precursor to structured programming.

Programming Methods

2

C

The C language mixes characteristics of several language generations, it is an amalgam of

structured high-level features, low level implementation features, and even machine-level

features. It lacks support for nested procedures and modular programming, and is machine

architecture specific. It’s creator Dennis Ritchie says: “C is quirky, flawed, and enormously

successful.”

Summary of Block Structuring

Activation Records

An activation record represents the state of a procedure or function call. It holds all the

information relevant to one execution unit, or activation. Thus a procedure consists of

1. the program code fixed, static, not part of the activation record

2. the activation record dynamic, keeps track of context and computational results

The activation record itself consists of

1. ip: the instruction pointer to the next statement to be executed after the

procedure call returns. Also called the resumption address.

2. ep: the environment pointer identifies the bindings and scope of variables

2a: local context: names declared by the procedure;

local parameters and variables.

Also the static link to the nonlocal scope

2b. nonlocal context: names declared by surrounding procedures

Also the dynamic link to the activation record of the caller.

A static link is required to locate the environment of the definition. A dynamic link is required

to locate the environment of the caller.

Env i ronments

An environment is simply a binding list of names and their values. Which names are in an

environment is determined by the scoping rules of the language. Scoping rules define how to

locate the values of names which are not immediately local to the procedure being executed. The

context of a procedure is the set of names declared by that procedure, together with the names

declared in the surrounding procedures, with “surrounding” being defined by scoping rules.

Every name and variable is local to some procedure, the default being the top level, or main

procedure. The activation record of that procedure contains the name and its binding.

Programming Methods

3

FORTRAN activation records are compiled statically; names are assigned a permanent memory

address. Languages which permit recursion require dynamic creation of activation records, and

dynamic searching of the context for variable bindings, since more than one copy of a procedure

may be active at the same time. Since a primary cost in computation is finding variables and

values, it is impractical to dynamically search for the context of every variable. Instead a two-
coordinate method is used:

1. the ep accesses the activation record of the current environment (calling procedure).

2. an offset locates the variable within the activation record

Scoping

Static scoping: a procedure executes in the environment of its definition (syntactic structure)

Dynamic scoping: a procedure executes in the environment of its caller (semantic structure)

Procedure Activation

To activate a procedure:

1. Save the state of the caller

Put the current ip in the caller’s activation record.

The local ep is already in the caller’s activation record.

The nonlocal ep is already in the static link of the caller’s activation record.

2. Create an activation record for the called procedure

Put the actual bindings of parameters in the parameter part.

These must be evaluated first, returning either

1) a value (call by value), or

2) an address (call by reference), or

3) a thunk (call by name) [thunk=address returning function]

Add the static link to the environment of definition.

The ip is not relevant until the called procedure calls a procedure itself.

The dynamic link points to the activation record of the caller.

3. Enter the called procedure in the context of the new activation record.

To exit a procedure, basically reverse the above process.

1. Delete the called procedure’s activation record.

2. Restore the state of the caller.

Programming Methods

4

C losures

In languages which can pass procedures as parameters, the procedure is passed as closure. A

closure is a ip-ep pair:

1. The ip contains the entry address of the actual procedure.

2. The ep contains a pointer to the environment of definition.

In order to pass functions as parameters, the entire activation record approach must be

changed, leading to a functional programming regime.

B locks

A block is a container for a collection of operations. Technically, blocks are implemented the

same as are procedures. Blocks are degenerate procedures; the ep and its dynamic link are not

needed in the block activation record.

D i sp l ay s

An alternative method to searching up a scoping chain for nonlocal variables is to have all

accessible contexts stored in an array which is searched directly when a nonlocal is referenced.

This produces constant look-up times.

E f f i c i enc ies

Both static and dynamic environments can be nested, often many levels deep. To locate a nonlocal

variable, the static environment must be searched outwardly. This is very inefficient. Here is

a listing of the costs of various static operations. SD stands for the static distance between the

context using a variable or procedure and the context defining the variable or procedure.

Operat ion Memory references Display references

local variable 1 2

variable access SD + 1 2

procedure call SD + 3 6

procedure return 2 5

pass procedure SD + 2

formal procedure call 5

goto SD

We can see than when operations are deeply nested, display is better than searching scoping

chains.

