
Programming Methods

1

FORTRAN

FORTRAN was the first language with the design goal of efficient performance. Consequently, the

constructs of the language are designed to accommodate a specific machine architecture.

FORTRAN was also essentially a numerical processing language for scientific computation. The

new features introduces by the language include:

Subprograms

modularity

communication through parameter binding

procedural abstraction

l ibraries

Two-part programs

declarations

non-executable, compile-time directives

memory allotment

names for the memory spaces

initial contents of memory

instructions

executable, runtime

computation through assignment (arithmetic and move ops)

control flow through IF and DO

input/output

Several processing stages (for efficiency)

compile

relocatable object code (subprograms may move)

l i nk

thread libraries and external references

load

absolute memory format

execute

program in memory controls computer

Imperative programming

flow and control governed by programmable control logic

GOTO

single low-level transfer of control

confusing mental model

static and dynamic models don’t match

Programming Methods

2

DO loop

initialization, iteration, and return all directly controlled within DO

Coerc ion

allow mixed operations

Limited arrays

optimize memory

use array index as memory address (rather than computing new addresses)

Implications of Subprograms

SUBROUTINE <name> <formal parameters>

Inefficient, naive invocation:

Substitute the subroutine for its name in the main calling body of code, and

substitute the calling values for the formal parameters

Pass by Reference (FORTRAN’s solution)

Substitute the location of the subroutine in memory

for its name in the main calling body of code

difficult to understand dynamic behavior

security risk when locations can be accessed

Pass by Value (preferred)

Substitute values for parameters in subroutine

Run subroutine in place

Return result to calling context

requires activation record to keep track of bookkeeping

Activation Records

parameter bindings new values passed to the subroutine

resume address place to return control when subroutine is done

dynamic link location of caller’s activation record,

for returning results

temporary storage for subroutine bookkeeping

Programming Methods

3

Subprogram Invocation

To CALL

1. Place parameter binding values in callee’s activation record.

2. Save caller state and resume address in caller’s activation record.

3. Place pointer to caller’s activation record in callee’s activation record

4. Enter subprogram (callee’s) first instruction

To RETURN

5. Transfer to callee’s resume address.

6. When caller gains control, restore caller state.

7. When subroutine has return values (i.e. callee is a function),

place return values in caller’s activation record.

Name Structures (Environments, Symbol Tables)

Environments define context and meaning.

Sample name space:

name type locat ion va l ue

IF reserved 0247 <control>
i integer 0248 3
res list 0249 (a b c)
my-plus function 0250 <body>

Each subprogram has its own name space for local variables.

Subprogram names must be global.

In FORTRAN, COMMON blocks declare shared data. This aliasing makes code maintenance

confusing.

