
Data Structures and Algorithms

1

Strings and Patterns

String Processing Design Issues

Size of alphabet: the alphabet is the set of characters in the string language

Boolean alphabet = {0,1}
simple English alphabet = {a,b,c,...,x,y z}
Larger alphabets require more effort for matching

Redundancy: strings with high character redundancy require more comparisons

e.g.: “abbaabbacdcdcd” is more redundant than “thisstringistoolong”

Processor/data-structure: Sometimes it is easier not to decrement the pointer index

(i.e. not to back up). Some languages do not support intertwined functional recursion.

B ru te - fo r ce -match

pattern[0..3] = “bcde”
string[0..14] = “abcdeabcdeabcde”

Compare the first character in the pattern to the first character in the string. If it matches,

compare the rest of the pattern to the string, one character at a time. When it doesn’t match,

compare the next character in the string to the beginning of the pattern. Repeat until the string

is exhausted.

pattern[0..M]
string[0..N]
brute-match[string] =
 i := 0; j := 0;
 loop until j=M or i=N
 if pattern[j] = string[i]
 then i++; j++ */increment if matching

 else i := i-j+1; j := 0 */reset if not matching

 if j=M */pattern match found

 then return (i-M) */location of start of match

 else return i */end of string

N*M comparisons worst-case, but average case is almost always N+M

KMP-match and Boyer-Moore-match

KMP-match is the same as brute-force-match, except when there is a mismatch, it backs up

the string pointer as little as possible by using the knowledge that the examined string

characters before the mismatch do not match the pattern.

Boyer-Moore-match is the same as KMP-match, except that it makes the comparisons from

right to left, thus assuring that the maximum number of mismatching characters can be

skipped. If the front of the pattern does not match, then you can only skip ahead one character in

Data Structures and Algorithms

2

the string, but if the end of the pattern does not match, then the entire length of the pattern can

be skipped. Boyer-Moore requires reverse traversal of an array, which is expensive in some

implementations.

Pattern-matching Languages

Expand the concept of a pattern to include different types of matches. These three define a

regular language:

Concatenation: characters must be adjacent (standard)

Or: a character location in the pattern may have more than one acceptable match.

A(B+C)D matches both ABD and ACD

Closure: a pattern may be repeated any number of times (including zero)
A* = AAA... (AB)* = ABABAB...

Parsing a context-free grammar

Parsers convert a string input into a tree, with tree-leaves forming the words/characters and

internal nodes describing the type of expression.

Example, simple arithmetic expressions:

expr --> expr op expr
expr --> (expr)
expr --> - expr
expr --> id
op --> +
op --> -
op --> *
op --> /
op --> ^

Parse 5 * (3 + 4):

 expr
 / | \

 expr op expr
 | | / | \
 id * (expr)
 | / | \
 5 expr op expr
 | | |

id * id
 | |

 3 4

Data Structures and Algorithms

3

Example, Backus-Naur form for a regular language:

<expression> ::= <term> | <term> <expression>
<term> ::= <factor> | <factor><term>
<factor> ::= (<expression>) | v | (<expression>)* | v*

Top-down Parsing

The input expression (in the above example, 5*(3+4)) is processed one character at a time.

The parser calls each production rule recursively until either the entire expression is accepted

or a syntax error is identified.

Example of a parser/recognizer:

input[0..6] */in the example, N=7 for the seven characters in “5*(3+4)”
i = 0
expression =

case input[i]
“(“ i++;

expression;
if input[i] = “)” then i++ else ERROR

“-” operator;
expression

id i++ */if id has more than one character

 */then need to process id length here
otherwise expression;

operator;
expression

operator =
if member[input[i], { “+”, “-”, “*”, “/”, “^” }]

then i++
else ERROR

Pattern Variables

Some programming languages allow patterns as variables. Identifiers within the pattern

control decomposition and construction.

Record:
((first-name last-name) (address-digits street-name city state) (phone))

Example:

Get-component [((_ _) (_ _ city_ _) (_)),my-record]
returns city = <my-city>

Change-city [record-pattern, new-city]
returns ((_ _) (_ _ new-city _) (_))

