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COURSE INFORMATION

Text

Matt Ginsberg (1993)  Essentials of Artificial Intelligence, Morgan-Kaufmann

(except for Chapters 10,11,12,15,16)

Eva luat ion

Available grades:

non-completion:  Incomplete, Withdraw, etc.

completion:   A  A-  B+  B  B-     

A: reserved for superior performance

A-, B+: expected grade for conscientious performance

B: adequate performance

B - : equivalent to failing

Grading Options:

1.  Performance Quality:  attendance, participation,  assigned exercises

2.  Grading Contract:  specify a set of behaviors and an associated grade.

Course Outline

     week                  topic                                text chapters

1 ) Introduction to AI and Overview  1 and 2

2 ) Knowledge Representation, Logic        6 and 7

3 ) Languages (LISP)

4 ) Reasoning and Deduction 8 and 9

5 ) Search 3, 4, and 5

6 ) Frames, Objects, and Agents 13

7 ) Expert Systems 18

8 ) Planning 14

9 ) Natural Language 17

10) Ethics, Review and Discussion 19
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FREE LISP ENVIRONMENTS

You will be learning a foreign language called LISP.  Here are some pointers to find out more

about it:

References

http://www.apl.jhu.edu/~hall/Lisp-Notes/Lisp-References.html

http://www.yahoo.com/Computers_and_Internet/Programming_Languages/Lisp/

http://www.cs.cmu.edu/Web/Groups/AI/html/faqs/lang/lisp/top.html

ftp://rtfm.mit.edu/pub/usenet/news.answers/lisp-faq/

http://www.cambridge.apple.com/other-langs/lisp.html                                                                                              

http://www.elwoodcorp.com/alu/                                                         

http://www.ai.mit.edu/projects/iiip/doc/cl-http/home-page.html

http://www.psychologie.uni-trier.de:8000/projects/ELM/elmart.html

Primary LISP Documentation

Guy Steele, Common LISP the Language, 2nd edition
Digital Press, 1990 ISBN 1-55558-041-6

online at:

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/cltl2.html

Free LISP

Free LISP environments can be downloaded from one of these sources:

Listing of Free Sites

http://www.elwoodcorp.com/alu/table/systems.htm#free

Windows

Lite version of the company product (formerly Lucid CL)

http://www.harlequin.com/products/ads/freelisp/freelisp.html

Evaluation copy of the company product (Franz LISP)

http://www.franz.com/    “free stuff”

Public domain text-editor (emacs) written in LISP

http://www.cs.washington.edu/homes/voelker/ntemacs.html

MacIntosh

PowerLisp:

http://www.crl.com/~rgcorman/PowerLisp/PowerLisp.html
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ftp://ftp.crl.com/users/rg/rgcorman/PowerLisp/

XLisp:

ftp://ftp.uwtc.washington.edu/pub/Mac/Programming/Languages/

ftp://ftp.switch.ch/software/mac/src/think_c/

ftp://ftp.uni-stuttgart.de/pub/systems/mac/misc/

ftp://ftp.leo.org/pub/comp/platforms/macintosh/dev/

ftp://ftp.informatik.tu-muenchen.de/pub/comp/platforms/macintosh/dev/

Or see the instructor.

U n i x

Linux:

http://www.franz.com/ “free trial software”

A robsut LISP environment is built into the text editor EMACS, at

http://www.geek-girl.com/emacs

AI Resources

http://www.cs.reading.ac.uk/people/dwc/ai.html

http://www.robotwisdom.com/ai/index.html

http://ai.iit.nrc.ca/ai_point.html

http://tqd.advanced.org/2705/

http://www.gmd.gr.jp/AI.CogSci.Robotics/

http://www.yahoo.com/Science/Computer_Science/Artificial_Intelligence/

http://www.excite.com/xdr/Computing_and_Internet/Computer_Science/Artificial_Intelligence/

http://www.cs.cmu.edu/groups/AI/html/repository.html

AAAI Professional Society

http://www.aaai.org/
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Comments on LISP

The “artificial” in Artificial Intelligence means that the “intelligence” is implemented on a

computer.  Almost all AI implementations are in LISP;  that is, LISP and AI are synonymous.

The content of AI is defined by what you can write in the LISP language.

In this class, you will learn how to think in LISP, not how to be a LISP programmer.  (This has

made choosing a LISP primer difficult.)  We will use a small subset of LISP called Pure Lisp.

PURE LISP = ideal programming style

Pure LISP excludes all of the programming ideas which lead to bad code.  Pure LISP does not

allow:

destructive data operations

go tos

explicit pointers and dereferencing

side effects (only the direct results of the function being processed)

unbound and global variables

do loops  (use recursion instead, this rule is not firm)

block structure (functions provide grouping)

LISP is a unique language in the following ways:

•  symbolic rather than numeric computation.  This permits an algebraic approach.

•  functional/applicative style rather than procedural style.  Program structure is

defined by function composition, and by the formal system of lambda calculus.  The normal

evaluation regime is successive function evaluation, but this can be freely modified

•  indefinitely extensible.  Most programming language innovations (such as garbage

collection, streams, closures and continuations, symbol packages, first-class errors, object

orientation, provability) were pioneered in LISP.

•  interpreted/interactive rather than compiled.  LISP can be compiled when debugging

is completed.  When you enter an expression into the LISP environment, the evaluation is

immediate.  LISP programming is a dialog.

•  uniform data representation.  Programs are data, which means LISP programs can

modify themselves at run-time.

•  LISP is written in LISP.  The process of LISP is written in the same language as the

rest of LISP.  Bootstrapping means that the LISP evaluation mechanism and compiler are easily

available to the programmer for modification and customization.  In the days of LISP machines

(1980s), the entire operating system was accessible.  Emacs is a text editor written in LISP,

the entire editing environment is accessible.

• very small kernel.  The LISP primitives are:

n i l empty list, false, nothing to return

atom predicate to determine elementary data
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eq predicate to test equality of atoms

car, cdr selectors/accessors of data structure

cons constructor for data structures

cond basic logic function

eval, quote controling the difference between program and data

•  important functions

setq setting or assigning names to the results of functions

l ist constructing a list

defun defining named functions

lambda constructing an unnamed function

let defining the scope of variables

•  debugging tools include

whitespace ignored by the evaluator

trace follow the evaluation sequence

pprint print data in pretty form

read-eval-print the basic evaluation process

•  disadvantages of LISP and their solutions

hard to read syntax with lots of parentheses
redefine the syntax to look the way you want it to

one data type
build the data types you want and wrap them in an abstraction barrier

inefficiency
no longer true, LISP runs at 95% the speed of C.  It is possible to write

inefficient LISP programs, but the rules to avoid this are straight

forward and can be learned with practice.  It is easier to write inefficient

programs in other languages.

many dialects
the community has standardized on Common LISP.  Dialects built from the

same foundation are a good idea.

no first class functions
dialects for higher order programming are available (ie Scheme)

How To Think in LISP

What follows is a list of principles and ideas, not a formula for thinking.

•  All valid expressions are valid programs.  This provides arbitrary granularity.

Programming consists of building up hierarchical languages built on a solid foundation.
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•  You are always in control of what is data and what is process.  Programming is building data,

then testing processes on it, then making those processes into data, and so on.

•  Computation consists of applying functions to data.  Function composition lets you apply

functions to the results of other functions, which themselves turn data into different data.

•  All defined functions are provable, that is they are data structures you can talk about, and the

way to talk about them is to assert their correctness.

•  The programmer is always part of the computation.  The read-eval-print loop can be seen as

an interactive dialog.  Read means listen to what the person says.  Eval means do what the person

asks you.  Print means tell the person the results of the request.

•  All objects are the same.  There are base objects (atomic data) and compound objects built

from atomic objects.  Atomic objects (atoms) are the pieces of a program, the bricks.  Function

composition is the cement holding the atoms together.  Nothing else is happening.  Atoms define

your conceptualization, the pieces of the world.  Functions just define bigger pieces.  Object-

orientation is function composition turned inside out.

•  Variables are just convenient and arbitrary names for compound objects.  So a variable is

meaningful only when it is in the same context as the object it names.  This is called scoping.

•  Function names are also variables.  You can rename functions at any time, and you should

always use names that are meaningful to you.  Write languages not programs.  Think like a

human, not like a computer and write code that matches human thought.

•  Recursion means stating a base case (what is true in the simplest circumstance) and a

general case (what holds invariant across all objects being manipulated).  The latter is not easy.

Recursion makes control structure and data structure look the same, thus all cases of a

particular data domain do not need to be examined exhaustively.

•  There are always two levels when programming, the syntactic and the semantic:  what you see

and what you mean.  Representation and value.  Try to align the two by defining the look of a

program to remind you of its meaning.

•  Control is just telling the function how to look for what you what.  The state space model is the

space being searched.  You can look in three different ways:

*  depth first (follow the chosen path to its end, then go back to the beginning to try

other paths

*  breadth first (look one step down each path choice)

*  dependent  (choose a path that meets your current objectives, then go back to the next

best path to meet those objectives)

•  Formulate knowledge in terms of patterns, and look for those patterns.  Patterns can be

abstract, with many things of the same class fitting a particular spot.

•  Formulate operations as functions.  Operations can be abstract, with many functions fitting

the same operation.  Use operations that address all objects at the same time.  For example,
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rather than explicitly checking each object for a property (by writing a DO loop), just ask if

the property is true for everything (using the function EVERY).
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LISP Debugging Techniques

1.  Comments are delineated by a semi-colon on a given line.  This makes the LISP reader skip to

the next line.  Larger comments can be delineated by “hash-bar”:

#| put comments here |#

In general the hash-mark, #, is a special token to the LISP reader, telling it that the token or

object which follows is a special type.

2.  Select the important functions in each program, and use TRACE, PRINT, and BREAK to follow

the calls to that function.  If recursive programs do not trace in your system, either rename the

recursive function with an indirect function name, as in

(defun fac (n) (if (= n 1) 1 (* n (fac1 (- n 1)))))
(defun fac1 (n) (fac n))

or insert a not-in-line declaration immediately after the argument list in the function

definition:

(defun fac (n)
(declare (notinline fac))
(if (= n 1) 1 (* n (fac (- n 1)))))

3.  TRACE is a system function which traces and prints out each call to the specific traced

function(s).  Invoke it by evaluating

(trace <function-name>)

at the prompt or in the code.  Disable it with

(untrace <function-name>)

or
(untrace)

for all traced functions.  This invaluable tool lets you watch the dynamic calling patterns of

functions.

4.  Inserting a PRINT statement within the code will print a specific message when the code

execution passes the point of the print function.

(print (list <item1> .. <itemn>)

5.  Just like inserting a PRINT statement into a function to see the current bindings of local

variables, you can insert

(break “message”)
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which temporarily halts execution at the point of insertion.  The “message” portion is actually

a FORMAT form.  FORMAT is an elaborate print statement used for fine grain control of output.

All you need to know, though, is that special FORMAT directives within the quoted message

automatically bind to values of provided local variables.  The directive is written “~A”.

Experiment with these functions:

(break “hello”)
(break “the value of foo is ~A” <variable-named-foo>)
(break “values: ~A ~A ~A” <var1> <var2> <var3>)

Your system will let you continue from a BREAK with a special keystroke (my MCL-LISP uses

Apple-/).  So BREAK is a way of building custom stepping.  I’ve put some examples of this tool

in the Filters code package.  It is customary to turn debug tools on and off by putting a comment

character “;” in front of them textually and re-evaluating the function.  Of course you could use

a global debug flag if you like, like this

(defvar *debug-flag* nil)   ;put this at the top of the code package
(when *debug-flag*
(print ‘foo) (break “foo-break”))  ;put this inline

A caution:  Some of the more sophisticated code in the distribution may contain some built-in

functions that may not work on your system.  (A previous example of this was the LOOP

construct in the ITERATIVE-UNIFY algorithm.)  I’ve attempted to make sure that all code runs in

vanilla environments, so bring any obstacles to class.
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LISP Program Modification Exercises

The following exercises are in approximate order of difficulty.  Students wishing to achieve an

"A" grade should attempt most of these exercises.  These exercises constitute the bulk of

homework and test assignments for the entire course.  Most of these exercises ask you to extend

the examples.  As well as the exercises below, write your own examples.  Explore!

All students:  Load and run

1.  Eliza

2.  the recursive Unification algorithm

3.  GPS for Blocks World

4.  Parcil

5.  Streams and filters

6.  Logic Programming

7.  Object-oriented

8.  Parse

The Programs

1.  EEliza, by Joseph Weizenbaum, transcribed by Peter Norvig.

A famous interactive dialog program, in the form of a Rogerian counselor.  Contains a pattern-

matcher.  Consider how to extend the dialog manager.

2.  UUnification and Search, by Mark Kantrowitz, CMU.

Unification is an extended form of pattern-matching which is integral to inferences engines and

query languages.  Recursive and iterative versions are included for comparison.  read the code,

do not worry about the details.  The search package is pedagogical, intended to show the

similarities across all search algorithms.  Although the code is complete, the knowledge

representation is missing, so do not expect to run the entire code sample.

3.   GPS, by Newell and Simon, CMU.  Transcribed by Peter Norvig.

The first, famous General Problem Solver.  Runs blocks world, so get familiar with the code.

Don’t forget to use debug mode.

4.  PParcil, by Erann Gat, JPL.

A C syntax to LISP code recursive descent parser.  Not industrial strength.

The next four programs focus on abstraction in coding.  They are described in detail in another

handout.

5.  FFilters and Streams, by Lugar and Stubblefield, from ideas by Curtis, Waters, and

Steele.

Fundamentals of dataflow programming style.

6.  LLogic Programming, by Lugar and Stubblefield, with examples by Bricken.

Fundamentals of declarative logic programming style;  an example of meta-linguistic

abstraction.
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7.  OObject-oriented Programming, by Lugar and Stubblefield.

Fundamentals of object-oriented programming style.

8.  PParse, by students in Stanford LISP classes.

A recursive descent parser (similar to Parcil), for semi-natural English sentences.

Exe rc i ses

1.   Eliza:

Extend the Eliza program to talk about your favorite subject.

2.  UUnify:

Describe the difference between

a.  pattern matching for equality

b.  pattern matching with variables

c.  unification

3.   GPS:

Extend the blocks world example to

a.  use 4, 5, and 6 blocks

b.  have limited table space (the trick is to name blocks which must stay on the

table, and disallow moving to the table)

c.  do the Towers of Hanoi puzzle

d.  use other representations, such as an explicit Hand, an OnTable predicate,

a ClearTop predicate.

e.  Fix the Sussman anomaly.

f.  Use boundary block representations (or others of your choice).

4.  SSearch:

Write the missing generic-search functions for Optimal Paths.

5.   (harder) GPS:

Modify GPS to use smarter search strategies, such as Hill-climbing, Best-first, or

Branch-and-Bound.

6.  ((harder)  Search:
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Use the Kantrowitz generic-search functions to solve Blocks World by providing the

knowledge representation as functions for initial-state, goal-p, and children.  Evaluate which

method is best, either by using the function TIME, or by counting the calls to TRACE.

Use generic-search or GPS to search the state space of some other problem domain, such

as Missionaries-and-Cannibals, Sliding-Tiles, Tic-Tac-Toe, Cryptoarithmetic, or N-Queens.

7. ((harder) Parcil:

Test Parcil on some real but restricted C code.  Extend it to include some high-level C

constructs.

8.   Streams:

A.  Write a stream/filter program to generate the first N prime numbers.

B.  (harder) If you are fluent in another programming language, write the same function in that

language and compare the ease of writing, the maintainability/extendibility and modularity, and the

readability of each version.  Write your other language program so that it handles an arbitrary N.

C.  Change your program(s) to find the first N prime numbers with two occurrences of the digit 9.

D.  Change your program(s) to find the first N prime Fibonacci numbers.

9.  LLogic Programming:

A.   Substitute the normal FIRST/REST/CONS/EMPTYP functions for the (simulated) stream

functions in the logic code.  That is, expand the simulated stream abstraction inline to remove it.  Does this

improve readability for you?

B.  Look at the problem of people liking themselves in the liking examples.  Is there a better fix

than the one proposed?  Write some other liking rules which expose this problem.

C.  Add some other facts (not rules) to the three animal databases to exercise the rules which are

not used when asking questions about zeke, fred, and tony.  What would you do if you wanted to know about

types of animals (the animal taxonomy) but not about a particular named animal?

D.  There is a major problem with the INFER function.  What is it?  Simplify the (first, smaller)

addition database by removing commutative facts, and add the commutative rule:

(rule if ((var a) + (var b) = (var c) (var d))
then
((var b) + (var a) = (var c) (var d)))

Figure out what is happening.  (harder) Can you fix it?

E.  Ask a question about ancestors in the relatives database and figure out what is happening.

Ancestor is an example of a transitive relation.  (This is related to question D.)



Artificial Intelligence

F.  Write some other relative rules like GRANDMOTHER, GRANDPARENT, UNCLE.

G.  Fix the sibling rule so that a person is not their own sibling.

H.  Why is the fact

(1 + 0 = 0 1)

"out-of-order" in the first addition database?  Organize the order of the facts and rules for maximum

efficiency.

I.  Write an addition rule which abstracts the carry operation out of the database.  The trick is to

use a carry-flag ((var x) = 1) which unifies with the fact  (1 = 1).

J.  (harder) Design an addition rulebase which handles addition of numbers of arbitrary

magnitude.

K.  (harder)  Write a rulebase which solves Cryptoarithms (e.g. SEND+MORE=MONEY).  The

essence is to add rule(s) which enforce different numbers to be associated with each different letter.  Then

you might need rules to improve the efficiency of the solution process.

L.  (longer but not harder)  Write a rulebase for doing multiplication.  For doing elementary

algebra.  For doing differential calculus.

10.   Object-oriented Programming:

A.  Get other object-oriented examples (from OO textbooks perhaps) and build them in the simple

LISP system.

B.  (harder)  Figure out what you would need to do to include multiple inheritance.

11.  LLanguage Parsing:

A.  Extend the grammar to include adverbs and pronouns.  This will be (harder) if you have

difficulty following the lambda forms in the code.

B.  Incorporate PARSE-FIND into the code in place of FIND-* and FIND-?.

C.  (harder)  Write GENERIC-PARSE.

12. MMiscellaneous:

A.  Write at least five different versions of REVERSE.  (harder) Write fifteen significantly

different implementations.
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B.  (harder)  Write a semantic net traversal algorithm.  This is not hard if you use either the Logic

Programming code or the Object-oriented code as a base.

C.  Implement the simple robot-in-maze problem.  Add the suggested extensions.  When

you get to adding the Wumpus, it gets (harder).
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Artificial Intelligence:  Introduction and History

Definition of Artificial Intelligence

Nilsson:  the study of intelligent behavior (perception, reasoning, learning,

communicating, acting in complex environments) in artifacts.

Ginsberg:  the enterprise of constructing an intelligent artifact

(a "physical symbol system" that can pass the Turing test)

Disciplines:

software engineering + computer science + philosophy = cognitive science

In reality:

neat explorations into advanced (theoretical, formal) programming techniques

Neats vs Scruffies:

formal logic and proof  (the Stanford approach)

vs

experimental programming (the MIT approach)

neural nets, genetic algorithms, simulation

AI Subject Matter (logic + graphs)

Knowledge Representation

formal logic

proof theory

functional and declarative programming

the "Knowledge Level"

Search

non-polynomial algorithms (NP-complete)

state space

brute force (depth first, breadth first)

heuristics

objective functions (hill climbing, best first)

adversary search (taking turns)

History of AI

Aristotle first formal symbol system c325 BC

Copernicus Earth is not the center of the universe 1543 AD

Descartes Mind =/= Body 1641

Galileo Math is a world model 1642

Euler state space 1735

Boole formal logic 1847

Babbage analytic engine 1854
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Frege formal computation 1879

Russell & Whitehead symbolic math foundation 1910

Tarski theory of reference and meaning 1944

Turing test of computational intelligence 1950

Formal Knowledge

A cconceptual model consists of

discrete objects, presumed to exist:  the Universe of Discourse

interrelations between objects

functions:  compound names for objects and for unnamed objects

relations: truth statements about objects

No matter how the world is conceptualized, there are other conceptualizations that are just as

useful.

Information Processing Systems

Information = representation + transformation

(program = data structure + processes)

All representations are content free.  A theory of meaning must link representation to reality.

The Physical Symbol System Hypothesis

Newell and Simon, 1972: To resolve the mind-body problem of Descartes:

Minds and computers are physical systems which manipulate symbols.

The kknowledge level is an abstraction layer for Computer Science which

unites symbolic computation with world modeling

hardware

assembly, microcode, machine instructions

programming languages

algorithms and data-structures

symbol level

knowledge level

Principles of Representation

Symbol systems = patterns + process

Qualitative (symbolic) information

not numerical (although this is just a stylistic difference)
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Inference of "new" knowledge from a base of facts and rules

General principles of representation

variables, quantification, dynamic binding

Interaction and semantics

inheritance, context, theory of meaning

Meta-reasoning

knowledge about what is known or unknown

New control structures

learning from examples, explanation

Declarative Style

An  AI program consists of

a set of objects

a set of functions (names for compound objects)

a set of relations  (facts)

a set of permissible transformations

Objects and relations form a  state.

Transformations move between states.

Algorithms explore/search the state space.

Programmers control the search.

State Space

The collection of facts (the database) at one given time defines the sstate of the world.

All possible state configurations define the sstate space.

To move from one state to another, apply a permitted ttransformation rule.

The state space and the moves between states from a  graph.

Predicate Calculus

A general purpose language for describing objects, facts, and transformations for particular

domains.  Also called FFirst Order Logic.

logic {and, or, if, not, iff}  inference, proof

object domains {<unique atoms>}

quantification {all.x, exists.x}

predicates classes and properties

relations connections between objects

functions indirect names
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Knowledge Representation

Objects:  Names are intended to point ot actual concrete finite objects in the

application domain.   The choice of names is a part of interface/documentation.  The actual names

don't matter.

Variables:  The patterns of linkage between variables with the same name determines

the meaning of the variable.

Functions:  Functions are indirect names.  They name objects by telling how to get to

them.  Functions are compound names.

Knowledge Representation Labels

Constants:

names of specific objects: John, Tuesday, My-Phone-Number

names of specific functions: House-of[x], Phone-of[x], Truth-of[p]

names of specific relations: Likes[Mary, Tom], Phone-Number[Tom, x]

Var iab les:

refer to sets/classes/domains of objects

always scoped/introduced by a quantifier

Knowledge Representation Atoms

Named objects (object constants)

Indirect/compound named objects (functions)

Relations between objects (facts)

Logical connectives  (and, or, not, if, iff) connect atoms.

They cannot be used inside atoms.

yes: eyes-of[John] AND hair-of[John}

no: (eyes-of AND hair-of)[John]

no: hair-of[John AND Mary]

yes: hair-of[John] AND hair-of[Mary]

Knowledge Representation Quantification

Variables name cclasses of objects (all.x) and aarbitrary objects from a class (exists.x).

Variables are bound to specific objects by the act of iinstantiation.

Quantification provides a mechanism to refer to entire classes and to arbitrary objects.
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all.x P[x]  every x for which P[x] is True

exists.x P[x] some arbitrary x for which P[x] is True

Model Theory

Given an object domain and a collection of functions and relations on objects in that domain,

a model of the domain is defined by the facts:

all atoms (atom-names) are True

all atoms not in the domain are False

Eg:  Domain = {Mary, Tom, John} Relation: {Likes}

all possible states: all possible models:

Likes[Mary, Tom]   1 empty  (no relations true)

Likes[Mary, John]   6 one Likes relation isTrue

Likes[John, Mary] 15 two Likes relations True

Likes[Tom, Mary] 20 three True

Likes[John, Tom] 15 four True

Likes[Tom, John]   6 five True

  1  six True

64    possible models in total

Entailment  (implication) and Computability

P  |=  Q (double turnstile)

All models for which the collection of facts in P are True  imply that the collection of

facts in Q are True for every model.

P  |-  Q (single turnstile)

Using the rules of a given system, we can compute Q from P.

The central issue (1920-1970): Just because we can compute it (P |- Q), does that

mean that what we compute matches our model (P |= Q), the ways in which the world can

actually be?

Correctness

Sound: if P |- Q,  then  P |= Q

A sound computation always supports the world model.

Complete: if P |= Q,  then  P |- Q
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A complete computation always generates all possible models.

Sound and Complete: P |- Q      =      P |= Q

The model and the computation represent the same world.

Dec idab i l i t y

Un i v e r s a l : if it can be stated formally, then it can be stated in First Order Logic.

Decidable: the computational procedure will terminate with a Yes/No result.

Semi-decidable:  The computation might halt, but you don't know when.  It may never

halt if you ask the wrong knd of question.  What we can't do is ask if questions which depend on

the ffailure to prove something:

No: "Check to see if nothing is wrong"

No: "Prove that this search will fail to find X"
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Abstraction Techniques

One way to describe LISP programming (in particular) and AI (in general) is

the art of successive abstraction

That is, LISP programming is writing low level functions, then writing higher level programs

which use the lower level functions as basic building blocks, then writing languages which use

the high level programs as building blocks, etc.

A primary example of abstraction is the UNIFY algorithm, which takes concrete facts (written

in a relational form of predicate calculus) and abstracts them into arbitrary patterns which

relate sets of facts.  UNIFY does this by introducing pattern variables.  The ELIZA program uses

pattern variables to turn normal English sentences into an apparently therapeutic dialog.  So,

for example, the three declarative facts

(John likes Mary)
(John likes Tom)
(John likes Sarah)

can be abstracted into a single idea of "the people John likes":

(John likes ?x)

A pattern matching engine collects the basic facts that match the pattern query, saving the user

from having to ask "Does John like Mary?", "Does John like Tom?", "Does John like Sam?", etc.

Pattern variable abstraction is entirely general, if you know the form of the facts in the

database, you can ask for any particulars, including, for example, the general query about all

facts relating three labels:

(?x ?y ?z)

Another example of abstraction is the GENERIC-SEARCH algorithm, which takes concrete state

spaces (written as sets of state descriptions in a form of predicate calculus) and concrete state

transformations (written as changes to the current set of state descriptions) and abstracts both

of them into arbitrary patterns of traversal of state space.  GENERIC-SEARCH does this by

treating traversal functions as next-state priority queues, and introducing state evaluation

functions to decide the traversal priorities.  ELIZA, PARCIL and GPS can each be easily modified

to search their respective state spaces more intelligently by using the techniques of GENERIC-

SEARCH.

Our LISP code distribution contains examples of many different tools for abstraction of

programming objectives.  The distribution emphasizes several programming techniques for

saying more with less.  The philosophy is that when the problems are very difficult, it is more

important for the program to be understandable than to be efficient.  Another deep programming

technique, however, is that code optimization itself is an automated transformation.  In

compiling code, the programmer is not expected to read and debug the resulting machine code.

Similarly, in LISP programming, the programmer can express the desired functionality at the

highest level of abstraction without paying a performance cost.  In the language of SE553, the
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programmer should focus on expressing the mathematical model of the conceptualization of the

problem, building abstraction tools rather than implementing low level optimizations.

AI emphasizes conceptual understanding by providing abstract implementation tools and

languages.  The LISP code distribution includes the following packages for applying abstraction

to programming style.

I.  FILTERS AND STREAM FUNCTIONS WITH DELAYED EVALUATION

This package illustrates the techniques of dataflow programming.  A program is conceptualized

as a stream of data which flows through filters that remove unwanted data structures.  The

“results” flow out the other end of the stream. This technique is incorporated deeply in the

Mathematica language, and is essential to the mathematical (or functional) programming style.

New programming tools include BACKQUOTE and DEFMACRO.

BACKQUOTE is just like QUOTE in that the form following the backquote is not evaluated, being

treated as literal. However inside BACKQUOTE, any forms preceded by the function COMMA are

evaluated, in the context that the backquote form is in.  This permits passing structured forms,

including functional forms, into unknown environments and having them behave appropriately.

DEFMACRO is just like DEFUN in that it defines a function.  However, the macro-function being

defined is expanded inline;  when a function which uses a macro is loaded, the macro code is

automatically written in place of the macro name. Macros permit naming and abstraction of code

components without the overhead of introducing new function calls.

To make stream objects which generate data items only when needed, BACKQUOTE and DEFMACRO

are combined.  For instance the macro-function DELAY:

(defmacro delay (exp) `(function (lambda () ,exp)))

places a function "shell" inline wherever the function DELAY is used.  The arguments of DELAY

form the body of the function shell.  Thus CONS-STREAM

(defmacro cons-stream (new stream) `(cons ,new (delay ,stream)))

provides the function body STREAM to DELAY.  (CONS-STREAM itself is a macro)  Like CONS,

CONS-STREAM adds a new element to the front of a stream, but the stream itself does not yet

exist as data, only as potentia.  When CONS-STREAM occurs in a function body, it turns into

(cons <new> (function (lambda () <stream>)))

with <new> and <stream> being provided by the function which uses CONS-STREAM.  Since

CONS-STREAM is a macro, whenever it is used, LISP builds an "anonymous" function in place of

the code (function (lambda () <stream>)), which makes the code look like

(cons <new> #<Anonymous Function #x267F5A6)

Finally the function FORCE, called by REST-STREAM, actually evaluates the anonymous function

which has been defined in the context of the constructor CONS-STREAM:
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(defun force (function-closure) (funcall function-closure))
(defun rest-stream (stream) (force (rest stream)))

Thus the set of constructor and accessor functions (CONS, FIRST, REST) turn into generators.

CONS-STREAM builds a "list" of data consisting of a first element and a function which generates

the next element.  When REST-STREAM is called in the course of a computation, the generator

function is evaluated by FUNCALL to build the next data element.  Exactly what data element it

builds is determined by the function which uses CONS-STREAM.  Notice the subtlety that the

anonymous generator function itself is not a static entity, it contains within it the code to build

the next generator function, not just the next data element.

The stream abstraction permits programs to accumulate or process collections that we do not

know how to count at compile time.  The code example, for instance, asks for the first N

Fibonacci numbers which meet an arbitrary test function, such as the first 20 odd Fibonacci

numbers, or the first 8 Fibonacci numbers containing the digit 5 at least three times.

To accumulate items from a stream, we place a filter function in the stream.  The final

abstraction is the function ACCUMULATE-FILTERED-STREAM, which takes as parameters a

stream generating function, a filter function, and a desired number of items which pass the

filter.

II.  LOGIC PROGRAMMING

This package illustrates metalinguistic abstraction, or declarative programming.  A program is

expressed in a descriptive language (in predicate calculus), and the language interpreter

applies pattern matching to provide solutions.  The abstraction is at the level of language, in that

the interpreter is not sensitive to the form or the vocabulary of the language used to represent

and describe the problem domain.

Yet another UNIFY algorithm is included in this package.  Note that variables are expressed as a

list (var x).  Of course the x can be any label, since the program takes care of providing unique

names for all variables

To use the program, type (logic-shell) to LISP.  A new top-level interpreter is called, which

recognizes logical queries.  Be sure to load an assertions database before entering the LOGIC-

SHELL.

Note:  when loading new *ASSERTIONS*, be sure to exit the logic-shell first.

Note:  The *DONE* signal alone is returned when there are no solutions.

III.  OBJECT-ORIENTED PROGRAMMING

Objects, messages, and inheritance are an alternative declarative organizational structure for

programming.  By seeing the internal mechanisms of object-oriented programming, you can

understand that object-orientation is simply a different way of organizing and accessing a

database.  The abstraction is in the programming metaphor.  Our culture is object-oriented (as
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opposed to process oriented), so we think more efficiently in terms of objects and their

interactions, than in terms of pure functionality.

The model of process as messages passing between discrete objects is at the foundations of

Shannon's theory of information, which greatly influenced the origins of Computer Science.

Object-orientation is excellent for digital systems which have been designed as discrete objects

sharing communication lines, but it is weak for process-oriented models (such as a lighthouse

sweeping a beam across the ocean and the waves breaking upon the shore) and for all biological

and human systems.

The LISP code for object-oriented programming makes extensive use of symbol databases.

Every symbol in a LISP environment has its own database.  The function

(get <object-name> '<property>)

retrieves the value of a property associated with the object-name, whether or not the object is

an instance or a class or a data-structure.  The function

(setf (get <object-name> '<property>) <value>)

assigns a value to a property of a given object-name.  Although we think of objects and classes,

the LISP system treats all "things" as symbols, that is, as names.  The function

(symbol-plist <name>)

displays an object-name's properties and their current values.

Methods are treated the same way, as properties associated with symbols.  The difference is that

the value of a method is a lambda form, that is, an abstract function waiting to have its formal

parameters bound to values.

The primary tools of abstraction in object systems are polymorphism and inheritance.

Inheritance is a search of each symbol's database, following the ISA property to the database of

classes and superclasses.  Polymorphism is having a separate name-space for different

databases of different symbols.

The function BUILD-ROOT provides some elementary methods (i.e. lambda forms organized

under property names) for the root-object ROOT  These are

ROOT

SHOW <print the ISA, VARIABLES and METHODS properties>

SHOW-PARENTS <print the ISA values>

SHOW-VALUE <evaluate the name given as the argument to show-value>

SHOW-ENV <build the environment of SELF>

SET-VALUE <given property and value arguments, set the value>

To use an object environment, build the environment, then send messages to the objects about

their properties.
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IV.  SEMI-NATURAL LANGUAGE PARSING

PARSE analyzes an English sentence in the same way that the English classes teach (or at least

taught 30 years ago) students how to diagram a sentence.  The recursive descent parser uses a

technique similar to the one PARCIL uses for the C language.  It is an example of top-down

programming, each component can be written without knowledge of what the other components

do.

English sentences are defined to follow a grammar, that is, a theory of structure.  The code

disassembles its input (i.e. sentences) by following the rules of the grammar.  This

implementation assumes that an acceptable sentence can be decomposed into compound

fragments.  The compound fragments can be composed of other compound fragments, but

eventually everything is composed of simple words.  The words are listed in a lexicon, a

dictionary which classifies words into their types.  (Obviously natural English is far more

complex.  The code sample generalizes to the construction of arbitrary grammars.)

COMPOUND FRAGMENTS

<S>   -->  <NP> <VP>
<NP>  -->  [<detr>] <adjv>* <noun> <PP>*
<VP>  -->  <vaux>* <verb> [<NP>] <PP>*
<PP>  -->  <prep> <NP>

* means the part may occur zero or more times

[...] means the part may occur zero or one time

Abstraction Part-of-grammar Function which analyzes the fragment

<S> Sentence (sentence <s>)
<NP> Noun Phrase (noun-phrase <np>)
<VP> Verb Phrase (verb-phrase <vp>)
<PP> Prepositional Phrase (prep-phrase <pp>)

SIMPLE WORDS

Abstraction Part-of-grammar Function which accesses lexicon

<noun> Noun (noun <w>)
<detr> Determiner (detr <w>)
<verb> Verb (verb <w>)
<prep> Preposition (prep <w>)
<vaux> Verb Auxiliary (vaux <w>)
<adjv> Adjective (adjv <w>)

It is tempting to put the input sentence into a global variable which is used up from left to right

by the parser.  However the parser needs to access each fragment twice, once to determine its

type and once to build the parse tree.  Since the type of the fragment is unknown when it is first

accessed, this strategy requires a host of other supporting global variables, leading to difficult
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to debug dependencies between parsing functions.  Failures in guessing the correct type lead to

backtracking, that is to unwinding previous results, a nightmare for data structure

management.  But the major problem is that compound fragments can contain other compound

fragments recursively, so that a function which assigns a value to a global variable might be

called again within the same sentence, losing the values assigned in the outer context.  For

example, our grammar permits NP to call PP which may have an NP in it.

Assignment statements (that is, SETQ) work differently each time you use them because the

calling context (the binding of local variables) is different.  This undermines modularity by

creating dependencies and interactions between program segments.  The solution is to use

LAMBDA forms which do not bind function arguments until the appropriate time (similar to the

way STREAMS work, but simpler.)  A LAMBDA has the form

(lambda (formal-parameters) <body>)

It can be conceptualized as an abstract operator, independent of its arguments, with the

operation defined by the body of the LAMBDA. A function-call is the form

((lambda (formal-parameters) <body>) <contextual-values>)

The evaluation of a functional form consists of evaluating the arguments, then substituting the

values of the arguments for their formal parameters in the body of the LAMBDA, then evaluating

the LAMBDA body itself.  For example, the function PARSE-SENTENCE has the form

((lambda (s-pair) <body-which-uses-s-pair>) (sentence s))

First the function SENTENCE processes the input sentence, then that result is substituted into

the LAMBDA body and the result is evaluated.

Similarly, the function SENTENCE has the form

((lambda (np-pair) <body>) (noun-phrase s))

This calls NOUN-PHRASE to process the beginning of the sentence.  Whatever the result (for

instance the sentence may start with a verb phrase and not with a noun phrase), it is handed in

an appropriate form to the next function to continue parsing.

The parsed results of a fragment processing function are conveyed to the next processing

function simply by CONSing them onto the sentence being processed. This is the meaning of

"s-pair", "np-pair", etc.  The FIRST of any current fragment is the results of prior processing,

the REST is the parts yet to be processed.  Thus the output functions can build the results before

all of the results are known, and all backtracking is eliminated.  And the output functions are

precisely the body of each LAMBDA form.  Finally, all fragment processors use the same

technique, thus all the functions are similar.

The only remaining complexity is to handle the grammar modifiers * and [...]. The functions

FIND-* and FIND-? are abstracted to handle any type of sentence fragment.  In the current

grammar, * applies only to the set {adjective, prepositional-phrase, verb-auxiliary}, while

[...] applies to the set {determiner, noun-phrase}.  Note that [...] is renamed ? since LISP

already has an assigned meaning for square brackets.  Changing the grammar is easy when the
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language features are abstracted away from the particular instances they are used for.  Of

course, FIND-* uses the same LAMBDA technique as the rest of the parser.  FIND-?, which

identifies zero or one occurrence, calls the type being tested.  If the parse fails, it CONSes NIL to

indicate that no occurrence was found.

In summary, here are some things to notice about the PARSE code:

1.  No assignment statements, so no variables which you have to track how they are being

used.

2.  No special treatment for any parsing categories, code uniformity = code

maintainability/readability/modifiability

3.  No backtracking or storage of temporary results, thus easy tracing and debugging.

4.  The * and [...] types are abstracted into FIND-* and FIND-? functions, making

extensibility easy.

5.  No global variables, so functions have no interaction and can be modified modularly.

Yet more abstraction is available, but not fully implemented.  Our grammar has three

occurrence types,

<...> for simple words and compound forms

<...>* for sequences of zero or more forms

[...] for zero or one occurrences of a word or form

The function PARSE-FIND removes the code dependency of each special occurrence form, by

managing the metalanguage of the grammar.  This leads to easy extensibility, not of the

grammar, but of the grammar's metalanguage.  You may, for example, wish to establish an

occurrence operator ! which calls for exactly one occurrence of a type, zero and more than one

occurrence being trapped as ungrammatical.  Sentence punctuation requires this occurrence

rule.

Finally (finally!) a function which is not difficult to write, but not included, is GENERIC-

PARSE, which takes a sentence and a grammar.  The grammar data structure may look like

(defvar current-grammar
    '((SENTENCE (NP VP))

(NP   ((? DETR) (* ADJV) NOUN (* PP)))
(VP   ((* VAUX) VERB (* PP) (? NP)))
(PP   (PREP NP))
(NOUN (member-of *nouns*))
(DETR (member-of *determiners*))
(VERB (member-of *verbs*))
(PREP (member-of *prepositions*))
(VAUX (member-of *verb-auxiliaries*))
(ADJV (member-of *adjectives*)) ))
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GENERIC-PARSE is a fully abstract tool for exploring types of parsing grammars. Here is where

AI research begins, since the metalinguistic abstractions provided by the code make it easy to

experiment with a variety of grammars and parsing metalanguages.  A researcher would build a

database of sentences, and then build grammars which parsed the database.  These parsings

would be passed to a statistics collection program which would report of the success of each

grammar.  The (happy) researcher spends all his/her time at the conceptualization and

modeling levels, and before long, a book of results is collected.

V.  MISCELLANEOUS

1.  Here is the recursive REVERSE which I did not do in class:

(defun reverse553 (lst)
(if (atom lst) lst
(append (reverse553 (rest lst))
(list (reverse553 (first lst))))))

2.  Here is how to build a semantic net in LISP.  You might try drawing the graph of this birds

and animals example (the spacing is for readability only.  LISP ignores whitespace.):

(setf (get 'animal  'covering) 'skin)
(setf (get 'bird    'covering) 'feathers)
(setf (get 'bird    'travel)   'flies)
(setf (get 'bird    'isa)      'animal)
(setf (get 'fish    'isa)      'animal)
(setf (get 'fish    'travel)   'swims)
(setf (get 'ostrich 'isa)      'bird)
(setf (get 'ostrich 'travel)   'walks)
(setf (get 'penguin 'isa)      'bird)
(setf (get 'penguin 'travel)   'walks)
(setf (get 'penguin 'color)    'brown)
(setf (get 'opus    'isa)      'penguin)
(setf (get 'canary  'isa)      'bird)
(setf (get 'canary  'color)    'yellow)
(setf (get 'canary  'sound)    'sings)
(setf (get 'tweety  'isa)      'canary)
(setf (get 'tweety  'color)    'white)
(setf (get 'robin  'isa)       'bird)
(setf (get 'robin  'sound)     'sings)
(setf (get 'robin  'color)     'red)

3.  Here is planning example that is not blocks world.  The idea is to find a plan that allows the

robot to get the key and take it to the exit.  You should be able to program the solution to this in

either GPS or the logic engine.

(caves c1..c18) ;a listing of all 18 caves

(tunnel c1  c7) ;the tunnels between caves
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(tunnel c1  c2)
(tunnel c2  c8)
(tunnel c3  c9)
(tunnel c4  c10)
(tunnel c6  c12)
(tunnel c8  c9)
(tunnel c8  c14)
(tunnel c9  c10)
(tunnel c9  c15)
(tunnel c11 c12)
(tunnel c10 c16)
(tunnel c11 c17)
(tunnel c12 c18)
(tunnel c13 c14)
(tunnel c15 c16)

(robot in 3 at 0) ;initial locations of robot, key and exit at time 0
(key   in 4 at 0)
(exit in 16 at 0)

(move ci cj) ;movement action

(grab  x ci) ;pick up action

(drop  x ci) ;put down action is not needed in simple game

(open ci) ;use key action

This is the framework of a planning game called WUMPUS.  To make a more interesting game,

you could extend this framework by

1.  have a ladder that is necessary for some (vertical) tunnels

2.  make the robot put down the key when holding the ladder

3.  add new tunnels (digging) at selected or random times;

delete some tunnels (cave-ins) at selected times.

4.  have another creature (the WUMPUS) moving around the tunnel maze, which the

robot can hear when in an adjacent cave. If the WUMPUS is in the same cave, it

eats the robot, or steals the key/ladder (putting it in some random place).

5.  add gold in certain caves and require the robot to collect an amount of gold before

exiting.

6.  add teleportation from a specific cave to a random cave

7.  add a second robot and have a contest to see who exits first.

8.  have an automated robot and a robot moving under user control

9.  add friendly natives in some caves which give hints;  add some natives which give

false hints.

The idea, of course, is that with a free week, class members have sufficient skills to model these

extensions and implement WUMPUS within the context of either GPS, or LOGIC ENGINE, or

OBJECTS.  By combining PARSE and ELIZA, you could even have the robot talking with the

natives in the caves.
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Issues in Knowledge Engineering

Definition of Artificial Intelligence

Ginsberg:  the enterprise of constructing an intelligent artifact

(a "physical symbol system" that can pass the Turing test)

Disciplines:

software engineering + computer science + philosophy = cognitive science

In reality:

neat explorations into advanced (theoretical, formal) programming techniques

Neats vs Scruffies:

formal logic and proof  (the Stanford approach)

vs

experimental programming (the MIT approach)

neural nets, genetic algorithms, simulation

AI Subject Matter (logic + graphs)

Knowledge Representation

formal logic

proof theory

functional and declarative programming

the "Knowledge Level"

Search

non-polynomial algorithms (NP-complete)

state space

brute force (depth first, breadth first)

heuristics

objective functions (hill climbing, best first)

adversary search (taking turns)

History of AI

Aristotle first formal symbol system c325 BC

Copernicus Earth is not the center of the universe 1543 AD

Descartes Mind =/= Body 1641

Galileo Math is a world model 1642

Euler state space 1735

Boole formal logic 1847

Babbage analytic engine 1854

Frege formal computation 1879

Russell & Whitehead symbolic math foundation 1910

Tarski theory of reference and meaning 1944

Turing test of computational intelligence 1950
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Formal Knowledge

A cconceptual model consists of

discrete objects, presumed to exist:  the Universe of Discourse

interrelations between objects

functions:  compound names for objects and for unnamed objects

relations: truth statements about objects

No matter how the world is conceptualized, other conceptualizations that are just as useful.

Information Processing Systems

Information = representation + transformation

(program = data structure + processes)

All representations are content free.  A theory of meaning must link representation to reality.

The Physical Symbol System Hypothesis

Newell and Simon, 1972: To resolve the mind-body problem of Descartes:

Minds and computers are physical systems which manipulate symbols.

The kknowledge level is an abstraction layer for Computer Science which

unites symbolic computation with world modeling

hardware

assembly, microcode, machine instructions

programming languages

algorithms and data-structures

symbol level

knowledge level

Principles of Representation

Symbol systems = patterns + process

Qualitative (symbolic) information

not numerical (although this is just a stylistic difference)

Inference of "new" knowledge from a base of facts and rules

General principles of representation

variables, quantification, dynamic binding

Interaction and semantics

inheritance, context, theory of meaning

Meta-reasoning

knowledge about what is known or unknown

New control structures

learning from examples, explanation
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Declarative Style

An  AI program consists of

a set of objects

a set of functions (names for compound objects)

a set of relations  (facts)

a set of permissible transformations

Objects and relations form a  state.

Transformations move between states.

 Algorithms explore/search the sstate space.

Programmers control the search.

State Space

The collection of facts (the database) at one given time defines the sstate of the world.

All possible state configurations define the sstate space.

To move from one state to another, apply a permitted ttransformation rule.

The state space and the moves between states from a  graph.

Predicate Calculus

A ggeneral purpose language for describing objects, facts, and transformations for particular

domains.  Also called FFirst Order Logic.

logic {and, or, if, not, iff}  inference, proof

object domains {<unique atoms>}

quantification {all.x, exists.x}

predicates classes and properties

relations connections between objects

functions indirect names

Knowledge Representation

Objects:  NNames are intended to point ot actual concrete finite objects in the

application domain.   The choice of names is a part of interface/documentation.  The actual names

don't matter.

Variables:  The ppatterns of linkage between variables with the same name determines

the meaning of the variable.

Functions:  Functions are iindirect names.  They name objects by telling how to get to

them.  Functions are compound names.
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Knowledge Representation Labels

Constants:

names of specific objects: John, Tuesday, My-Phone-Number

names of specific functions: House-of[x], Phone-of[x], Truth-of[p]

names of specific relations: Likes[Mary, Tom], Phone-Number[Tom, x]

Var iab les:

refer to sets/classes/domains of objects

always scoped/introduced by a quantifier

Knowledge Representation Atoms

Named objects (object constants)

Indirect/compound named objects (functions)

Relations between objects (facts)

Logical connectives  (and, or, not, if, iff) connect atoms.  They cannot be used inside

atoms.

yes: eyes-of[John] AND hair-of[John}

no: (eyes-of AND hair-of)[John]

no: hair-of[John AND Mary]

yes: hair-of[John] AND hair-of[Mary]

Knowledge Representation  Quantification

Variables name cclasses of objects (all.x) and aarbitrary objects from a class (exists.x).

Variables are bound to specific objects by the act of iinstantiation.

Quantification provides a mechanism to refer to entire classes and to arbitrary objects.

all.x P[x]  every x for which P[x] is True

exists.x P[x] some arbitrary x for which P[x] is True

Model Theory

Given an object domain and a collection of functions and relations on objects in that domain,

a mmodel of the domain is defined by the facts:

all atoms (atom-names) are True

all atoms not in the domain are False

Eg:  Domain = {Mary, Tom, John} Relation: {Likes}

all possible states: all possible models:
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Likes[Mary, Tom]   1 empty  (no relations true)

Likes[Mary, John]   6 one Likes relation isTrue

Likes[John, Mary] 15 two Likes relations True

Likes[Tom, Mary] 20 three True

Likes[John, Tom] 15 four True

Likes[Tom, John]   6 five True

  1  six True

64    possible models in total

Entailment  (implication) and Computability

P  |=  Q (double turnstile)

All models for which the collection of facts in P are True  imply that the collection of

facts in Q are True for every model.

P  |-  Q (single turnstile)

Using the rules of a given system, we can compute Q from P.

The central issue (1920-1970): Just because we can compute it (P |- Q), does that

mean that what we compute matches our model (P |= Q), the ways in which the world can

actually be?

Correctness

Sound: if P |- Q,  then  P |= Q

A sound computation always supports the world model.

Complete: if P |= Q,  then  P |- Q

A complete computation always generates all possible models.

Sound and Complete: P |- Q      =      P |= Q

The model and the computation represent the same world.

Dec idab i l i t y

Un i v e r s a l : if it can be stated formally, then it can be stated in First Order Logic.

Decidable: the computational procedure will terminate with a Yes/No result.

Semi-decidable:  The computation might halt, but you don't know when.  It may never

halt if you ask the wrong knd of question.  What we can't do is ask if questions which depend on

the ffailure to prove something:
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No: "Check to see if nothing is wrong"

No: "Prove that this search will fail to find X"

Representation =?= Reality

We have seen that

|-  =  |=

that is, that computation and formal models of reality are the same thing.

And that the LISP programming language is the flexible substrate for both representation and

computation.  When the field of AI began to grow in 1980s, the challenge was to actually express

our models of reality in code.  This turned out to be exceedingly difficult.  It is not that

computation is a particularly weak point, it is that our formal languages do not let us speak

easily of reality.

Jerome Bruner, in his book Actual Minds, Possible Worlds, shows that the

relationships between actual reality, language, and understanding are complex and not formal.

He notes that understanding is always in context, meaning is always ambiguous.  There is no

reality independent of mental activity and symbolic language.  We know the world and construct

meaning through multiple perspectives, including emotion, culture, language, and stories.

The failure of AI to be able to parse and translate natural languages underscores this problem.

What then can we model formally?  The field of AI believes that sooner or later, everything can

be modelled.  What are the technical difficulties in trying to model anything (like making simple

stacks of blocks, for example)?

Technical Difficulties in Modeling and Knowledge Representaiton

(using blocks world in LISP as an example)

1.  What is important to describe?

Build little theories of little worlds.

(Block A)      (OnTable A)      (Hand Empty)

2.  How should descriptions be partitioned?

Functions or Relations, special or general objects?

(OnTable A)      (On A Table)      (not (OnTable Table))

3.  How do we talk about groups and classes of objects?

Quantification and abstraction

(All (x) (Block x))

4.  How do we address things with no names?
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Functions as indirect, compound names.

(House-of John)

5.  How do we handle things with more than one name?

unique name hypothesis, unification

(Uncle John) = (Brother (Father John)) = Bob

6.  How do we make general rules which define the structure of relations?

quantification

(All (x) (iff (Uncle x) (Brother (Father x))))

7.  How are typing and filters on domains represented?

predicates in conjunction

(All (x) (and (Person x) (Father x y)))

8.  How do we join more than one fact?

conjunction

(and (F x) (G x))

9.  How do we compute with logic?

inference as natural deduction and as resolution

(if (and (P x) (if (P x) (Q x))) (Q x))

10.  How do we compute with quantifiers and classes of objects?

implicit universal quantification, Skolemization

(Exist (x) (P x)) ==> (P (Sk-1 x))

11.  What is the difference between a fact and a query?

query combination rules

A.  conjunction with negated query

(and (P x) (not (Q ?)))

B.  Skolemization of query variables

(Q ?) ==> (Q Sk-1)

C.  Facts imply Query

(if (P x) (Q ?))

D.  The answer predicate



Artificial Intelligence

8

(if (P x) (Answer x))

12.  What kinds of rules do we need for query answering?

A.  definitions

(iff (P x) (Q (R x)))

B.  mathematical structures (symmetry, transitivity, etc)

(if (and (if (P x) (Q x)) (if (Q x) (R x))) (R x))

C.  permissible state transformations

(Pick-up x) = (Assert (not (onTable x)))

13.  How can we control the inference/search procedure?

A.  Pre and Post conditions

B.  Compound queries

C.  Searching databases of rules and facts

14.  How do we steer the resolution process?

A.  set of support

B.  ordered resoultion

C.  static vs dynamic approaches (compiled vs run-time)

D.  lookahead, cheapest first, dependency directed search

15.  How do we express meta-level reasoning (rules about rules)

measure the savings vs brute force

16.  What is the appropriate reasoning strategy?

look-up tables

natural deduction

resolution

forward or backward chaining

simulation

boundary logic

17.  What do we do about contradictions and inconsistencies?

A.  Forbid them
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B.  Default reasoning

C.  Exception handlers

D.  Three-valued logic (True, False, Inconsistent)

E.  Multi-valued logic  (eg True, False, Contradictory, Meaningless)

F.  Contradiction maintenance
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Natural Language Processing

Language

lexicon the words and their types
syntax rules for making compound structures with words
semantics how words and structures map onto their intended meanings,

associating the words with the conceptualization
pragmatics use of words and structures in the context of communication acts

Language structures are not linear, all components interact.

Computational Linguistics (Chomsky) and Syntax

The syntax of a language can be structured using rewrite rules.  (See the PARSE program)
English language rewrite systems have about 200 rules and about 200 restrictions (special
cases, constraints).   To address verb tenses, subject number, sentence types and subject-verb
agreement, Chomsky developed the theory of deep structure.  Deep structure is what holds
constant in an utterance independent of the tense, agreements, etc.  A parser works with deep
structure, then modifies the shallow structure to make the sentence parts agree.

Examples of ambiguity:  

"I'll go when I see Sue and John leave(s)."
"The fish love(s) Mary."
"The {patient, janitor} left the operating room in good condition."
"I saw the man in the park with the telescope."
"I saw the ferry flying into Seattle."
"I ate dinner with a {fork, friend}."
"Can companies litter the environment {. ?}"
"Time flies like an arrow.  Fruit flies lika a banana."

Semantics

Most grammars determine semantics by mapping the parsed syntax onto Predicate Calculus.  Eg:
"What is John's grade in Math-101?"  ==>  (grade ?x John Math-101)  The essential question
is whether or not what we talk about can be captured in predicate logic.  The current
prespective in the 1990s is:  No, because

1.  Most knowledge is uncertain and vague  ("France is hexagonal")
2.  We know too much, and we know what we don't know.
3.  Language is contextual and culturally embedded.
4.  Language inherently incorporates multiple perspectives.
5.  Meaning is unique, interpretative, normative, interactive, conversational,

evolutionary and wholistic.

The referents of pronouns are contextually determined.  Examples:
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"My name is Tom.  I am hungry. I want to eat now."
"John can open Bill's safe.  He knows the combination.  He's going to change it."

I ndex i ca l s

Many words change meaning, or referent, every time they are utterred.  Pronouns and words
identifying relative time and place provide examples:

“I am hungry.” The ‘I’ is whomever utters the sentence.
“Give it to me.” The ‘me’ is whomever utters the sentence.
“Do it now.” The ‘now’ changes it temporal referent every time it is used.
“It is over there.” The ‘there’ can be a different place each time it is used.
“I am here; you are there.” ‘Here’ and ‘there’ are defined by the context of usage.

Pragmat ics

Contextual usage is very non-logical and elliptic.  Eg:

"Use the racket-wrench.  What's that?  It's in the drawer."

The dialog aboves implies a model of the situation, something like:  to fix an appliance, use a
racket-wrench, so find one, recognize it, and ask how to use it when you can see it.  More egs:

"Fred went into the market.  He found the milk.  He gave the clerk some money and left."
"Fred went to the market.  He found the shelf with the milk. He paid for it and left."
"Sally needed some money.

{She bought a gun.  She phoned her mother.  She wrote a proposal for the NSF.}"
"He paid the ten dollars.  He wouldn't let her give him five.  So she bought the popcorn."
"Can you open the door?  I'm cold."
"I want a hamburger.  {Yes sir!  No, not today.  Me too.}"

Dialog Phenomena

anaphora: pronouns and words that refer to something prior in the dialog.

definite noun phrases:  compound names with embedded semantics
(eg: outdated math books)

ellipsis: fragments of sentences, missing words in a terse dialog.

extragrammatical utterances:  interjections, false starts, etc.

metalinguistic utterances:  words about the conversations (eg:  "I should have said...")
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Taxonomy of Speech Processing

Generation (voice response)
Transmission  (digital)
Language recognition
Speaker recognition (verify and identify)
Speaker analysis (speech pathologies, psychological state)
Speech recognition

isolated word recognition
word finding
continuous speech recognition

Transformations to spoken words

microphone or channel characteristics
ambient noise in the environment
articulation
phonemic level
prosodic level  (tempo, intonation)
lexicon
syntax level
discourse rules
sematics level
psychological state

Speech Acts

Some sentences are not descriptive or declarative, but are themselves actions.  Eg:  "I bet you
$10 they win."

locutionary acts making sounds  (sighing, grunting, exclaming, etc.)

illocutionary acts the intent of the sentence (asking, commanding, apologizing, etc.)

perlocutionary acts the desired result of saying something (forgive me, do it, etc.)

indirect acts not really questions
(can you pass the salt? will you open the jar?)

Dimensions of difficulty in speech processing

Form of speech single word ... continuous ... conversational
Attitude cooperative hostile
Population one several many
Vocabulary size 10 10^3 10^4
Environmental noise 40 db 90 db
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Channel characteristics high quality radio
Syntactic constraint simple task grammar dictation
Semantic constraint small world model real world

Levels of Understanding and Utterance

signal
segment or event (waveform is always ambiguous for the levels which follow)
phoneme (transitions between phonemes are difficult to determine)
demi-syllable
syllable
word
phrase
utterence (sentence)
discourse

Experiences of HEARSAY

Large project at CMU in the 1980s with major funding.  The hierarchical model
signal parameters (waveforms)
normalization
feature extraction
lexical constraints
syntactic constraints
semantic constraints

did not work, since errors at each level compounded.  So the model had to include feedback in a
graph network.  Evolved into the blackboard model:  each level of analysis posted its partial
results to a global dataspace, and demons representing each level triggered on posting, returning
their own partial analyses.  The HEARSAY processing model:

knowledge sources, each independent and autonomous
blackboard for communication across knowledge sources
knowledge sources insert own hypotheses and tests asynchronously
each knowledge source responds to blackboard postings regarding its own interests
alternative or competing hypotheses were integrated on the blackboard and could be
stated in multiple representational forms (for the different knowledge sources)
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AI Exotics

Conventional AI Topics in 1999

knowledge representation and articulation

commonsense and uncertain reasoning, belief structures

inference and deduction, expert systems

search (heuristics, strategies, competitive)

blackboard systems

learning and adaptation

deliberation, planning, and acting

situated modeling

speech and language processing

image understanding and synthesis

manipulation and locomotion  (robotics)

autonomous agents and robots

multiagent systems

cognitive modeling

mathematical foundations

Probable Directions of Research over the next few years

representing the environment as messy, changing, and hostile

huge knowledge bases, data mining

interaction with human collaborators

system self-understanding

self-motivated learning and agents

more agents and multiagent systems  (the next big thing)

Exotic Topics in AI

neural networks (1985 old, has own technical societies)

multiagent systems (becoming mainstream)

autonomous agents, artificial life

data mining, particularly in dynamic web environmnets

fuzzy logics  (1990 old)

constraint reasoning (1980 old)

chaotic systems, cellular automata  (1980 old)

genetic algorithms (1990 old)

machine evolution (1996)

reactive machines (1990 old)

robot perception (1980 old but little progress)

diagrammatic systems (1990)

web intelligence
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Neural Networks

Densely connected networks with input, middle, and output layers

Inherently parallel architecture

Good for pattern-recognition after training

Sub-symbolic  (no map between representation and meaning)

Knowledge (and programming) is in the strength of connections between network units

Each middle unit "averages" inputs, eg:  outK@t = Sum(weightJ * inJ@t) + biasK

Weighted summation is a discrete model of differential calculus

Logistic summation:    out@t = 1/(1 + e^(sum(weightJ*inJ)))

simulates perceptual threshhold model

Training is accomplished by modifying weights to meet a performance objective

Programming is reflexive,

ie the system reprograms its own weights through error feedback

Open issues:

How to learn to solve a problem without training in the exact problem?

Are there other useful architectures (compared to three layer approach)?

Can training be less extensive fro hard problems;  does training scale up?

How can a network generalize to a class of problem when trained in a subset?

How can you know the state of the system's knowledge?  (validation issue)

Experience cautions:

The training examples must sufficiently constrain the problem.

Selection of appropriate input data is a design problem.

Known symmetries must be included in the training set.

The task needs a probabilistic model.

Don't train with binary vectors (errors are fatal)

Course coding (information blurring) is good for pre-training

Cellular Automata

"discrete dynamical systems whose behavior is completely specified in terms of a

local relation, much as is the case for a large class of continuous dynamical systems

defined by partial differential equations"  Tommaso & Toffoli

Simple example is domino runs.

Highly parallel recursive technique

Complex behavior (or is it?) from simple rules

Primary example of self-generating infinite systems

Most simple automata are Turing equivalent

Outcome is not "predictable", since running the automata is the only computational model

Main result:  Complexity occurs at phase transitions between simple and random

Agents

Software agents are programs with "attitude", or disposition

Agents act autonomously in support of a user's requirement

Programming techniques for agents include
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reactivity  (selective activity depending on context)

autonomony (goal directed and self-initializing activity)

collaboration (attunement to work with other agents)

knowledge-based (use rules for communication protocols)

inferential (deduce consequences from inputs)

temporal (persistence of state and identity)

personality (believable interface with emotional simulations)

adaptivity (self-changing over time)

mobility (migrate to different environments, usually in search)

Purposes of agent approaches

simplify distributed computing

automated interoperability

resource management

improve user interface

simulate more human activity

relieve burden of direct interface

indirect management  (vague specification)

system architecture

Genetic and Evolutionary Algorithms

Genetic algorithms are designed using "natural selection" and random permutation.

Code fragments or bit-strings are modified by

selection (those meeting a criteria are strengthened)

crossover  (two fragments swap pieces at a cut point)

mutation (parts of a fragment are changed, usually randomly)

Millions of cycles are required for algorithm growth or evolution

Art is a good application.

Artif icial Life

Self-replicating programs (viruses)

True autonomy  ("Sorry, Dave, I can't let you do that.")

Graphics for Hollywood

Animal construction kits

Cellular autonoma, chaos, and fractal mathematics

Issues:

physical grounding hypothesis (representation is not needed)

What is autonomy?  What is emergent behavior?

What is the relationship between behavior and environment?
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