
Applied Formal Methods

1

COURSE INFORMATION

Text:

No text, many handouts (see below)

Class structure:

Each student will prepare two reports on two formal methods topics. (Topic suggestions

are below.) Each class period, a student and the instructor will jointly cover one

selected topic.

Eva luat ion :

Available grades:

non-completion: Incomplete, Withdraw, etc.

completion: A A- B+ B B- C

A: reserved for superior performance

A- or B+: expected grade for conscientious performance

B: adequate work

B - : barely adequate

C: equivalent to failing

Grading Options:

1. Performance Quality: attendance, participation, assigned exercises

2. Grading Contract: specify a set of behaviors and an associated grade.

3. Self-determined: negotiate with instructor

Discussion:

If you prefer a clearly defined agenda, if you do well with concrete task assignments, or

if you need a schedule of activities for motivation, then OOption 1 is a good idea.

If you already understand the field, if you plan to excel in a particular area, or if you

need clear performance goals for motivation, then OOption 2 is a good idea.

If you are not concerned about grades, if you intend to do what you choose anyway, or if

you are self-motivated, then OOption 3 is a good idea.

I will notify any student who is not on a trajectory for personal success.

Applied Formal Methods

2

Course content:

Formal methods is a body of mathematically-based techniques, often supported by reasoning

tools, that offers rigorous ways to model, design, and analyze systems.

We will explore a number of specific applications of formal methods. The course will focus on

implementations of tools and techniques and the use of these tools. Each class, the instructor

will give a lecture on the mathematical techniques of a particular formal method. During the

same class period, students will present their research and experiences with the

implementation of that technology.

Although the Computer Science community limits formal methods to applications of logic and

predicate calculus, this course will take a slightly broader viewpoint. Numerical and algebraic

techniques such as matrix algebra, probability theory, and integer theory will be excluded, but

exotic symbolic approaches such as fractals, cellular automata, and boundary mathematics will

be included as possible topics. Pure programming languages (Prolog, ML, Haskell, LISP,

Mathematica) are also valid topics.

Individual homework will consist of a short selected reading on each topic, personal exploration

of implementations of at least two formal tools, one or two class presentations, and whatever

exercises necessary for understanding.

A Quote from the Oxford Group

"There's a battle going on in computer science that will probably never be fully resolved,

between those who think programs are fundamentally mathematical, and those who eschew

mathy techniques as being too tedious for use with real-world programs. Despite a layperson

misperception to the contrary, most programmers avoid math just as most nonprogrammers do,

with the result that more than 99% of software is developed today as nonmath.

Formal methods is the name for the techniques of mathematically proving that programs do what

they're supposed to. The theory is that programs aren't physical objects, they are ideas; they

don't break down, and they don't wear out, the way physical objects do. A perfect program will

therefore remain perfect forever. Formal methods exist to make such perfect programs,

compared to which even the most well-crafted nonmath program is fundamentally a buggy

slapped-together sloppy mess.

It would be nice if formal methods were more widely accepted, because as programs grow larger

and larger the interspersed bugs make them more and more unreliable. But formal methods

slow the pace of program development so much, and fit so poorly into the messy but productive

real world, that they are used only rarely even in potentially life-threatening systems.

Applied Formal Methods

3

Some Formal Techniques

The list of topics which follows is organized by mathematical techniques, with application areas

following the mathematical topic (asterisks mark recommended topics).

Propositional calculus (Boolean logic)* *

circuit design, hardware verification, Boolean minimization, control theory

Predicate Calculus* *

expert systems, specification languages, theorem provers, correctness and verification

Logic Extensions

non-monotonic reasoning, temporal logic, process algebra

Mathematical Induction and Recursive Function Theory* *

proof technique, recursive programming, programming

Relational Calculus*

relational databases, constraint solving

String Rewrite Theory*

mathematical computation, process modeling, parsers and compilers

Theory of Computation*

worst-case algorithms, time and space complexity

F rac ta l s

computer graphics, compression, computer art

Binary Decision Diagrams

hardware modeling

Lambda Calculus and Combinators

 functional programming

Group Theory and Modern Algebra

 coding theory, 3D motion

Finite State Automata

 state space problem solving, string recognition, state transition systems

Cellular Automata

 chaos modeling

Boundary Mathematics

 visual languages, logic and numerical simplification, parallel processing

General Systems Theory

systems modeling, control theory

Applied Formal Methods

4

Refe rences

Genera l :

Bavel (1982), Math Companion for Computer Science, Prentice-Hall

Gilbert (1976), Modern Algebra with Applications, Wiley

Grassmann and Tremblay (1996), Logic and Discrete Mathematics, Prentice-Hall

Gries and Schneider (1993), A Logical Approach to Discrete Math, Springer-Verlag

Grimaldi (1999), Discrete and Combinatorial Mathematics, Fourth edition, Addison-Wesley

Lucas (1985), Introduction to Abstract Mathematics, Second edition, Ardsley House

Wolfram (1996), The Mathematica Book, Third edition, Cambridge Press

Spec i f i c :

Aho, Sethi and Ullman (1986), Compilers, Addison-Wesley

Barwise and Etchemendy (1993), The Language of First-Order Logic, Third edition, CSLI Stanford

Forbus and DeKleer (1993), Building Problem Solvers, MIT Press

Genesereth and Nilsson (1987), Logical Foundations of Artificial Intelligence, Kauffman

Hopcroft and Ullman (1979), Introduction to Automata Theory, Languages, and Computation,

Addison-Wesley

Lakatos (1976), Proofs and Refutations, Cambridge U. Press

MacLennan (1990), Functional Programming, Practice and Theory, Addison-Wesley

Manna and Waldinger (1985), The Logical Basis for Computer Programming, Addison-Wesley

Plasmeijer and vanEekelen (1993), Functional Programming and Parallel Graph Rewriting,

Addison-Wesley

Wos, Overbeek, Lusk and Boyle (1992), Automated Reasoning, Second edition, McGraw-Hill

Web Pointers

Oxford University Computing Laboratory

http://www.comlab.ox.ac.uk/archive/formal-methods.html

BYU Laboratory for Applied Logic

http://lal.cs.byu.edu/

NASA Langley Research Center Formal Methods Program

http://shemesh.larc.nasa.gov/fm.html

Swedish Institute of Computer Science

http://www.sics.se/fdt/research97.html

UC Davis Programming Languages and Verification Laboratory

http://avalon.cs.ucdavis.edu/

Stanford U. Center for Formal Methods

http://www-formal.stanford.edu/jmc/math.html

Applied Formal Methods

5

Warsaw U. Applied Logic Group

http://zls.mimuw.edu.pl/english.html

UC Berkeley Design Technology Warehouse

http://www-cad.eecs.berkeley.edu/

A Computational Logic

http://www.cs.utexas.edu/users/moore/acl2/acl2-doc.html

Formal Methods in Software Engineering

http://wwwsel.iit.nrc.ca/projects/fm/fm.html

Formal methods around the world

http://lal.cs.byu.edu/other_FM.html

Software Development using Formal Methods Syllabus

http://www.mcs.salford.ac.uk/sdformal.html

Bibliography on software engineering and formal methods

http://bavi.unice.fr/Biblio/SE/Contrib.html

Seven Myths of Formal Methods

http://www.progsoc.uts.edu.au/~geldridg/frsd/ass1/7myths.htm

Formal Methods - selected historical references

http://docs.dcs.napier.ac.uk/DOCS/GET/jones92a/document.html

Books

http://www.rspa.com/spi/formal.html

Applied Formal Methods

6

Rough Syllabus

NOTE: TOPICS may change by class consensus.

Class meeting Topic

1) introduction

2) overview of formal methods

3) complexity, proof techniques

4) proof systems, boundary logic

5) Boolean minimization, bdds

6) abstract domains

7) pattern-matching and unification

8) recursive function theory

9) lambda calculus

10) combinators

11) theorem provers

12) theorem and program proving

13) Mathematica, string rewrite

14) relational algebra

15) finite state automata

16) cellular automata

17) abstract algebra and group theory

18) fractals

19) to be determined

20) review and summary

