
Mathematical Foundations

1

Domain Theories

A  domain is the collection of simple objects which are of (mathematical) interest.  Generally

the labels of objects in a domain refer, or point, to concrete objects in reality.  A ddomain

theory consists of a collection of objects, together with a particular set of functions and

relations which define and constrain the generic behavior of both simple and complex objects in

the domain.

Domain theories have a specific mathematical form which not only identifies how the objects in

that domain behave, but also provides all the information needed to write processing algorithms
for the domain objects.  The prototypical components of a domain theory are

•  a rrepresentation of the elementary unit or constants, the  base of the structure

(also called the carrier set)

•  rrecognizer predicates which identify the particular types of structure

•  a cconstructor function which builds compound structures from simple units

•  an aaccessor function which gets parts of a compound structure

•  a collection of ffunctions which transfer between domain objects

•  a collection of iinvariants, or equations, which define the structure's behavior

•  an iinduction principle which specifies how to verify correct manipulations

In an algebraic theory, you usually also have vvariables, names which are generic, standing in

place of an arbitrary member of the domain base.

Propositional Calculus as an Example

Propositional calculus consists of a collection of simple objects, called ppropositions, and

logical connectives which join propositions into more complex forms.  A proposition is an object

with a binary value from the set {True,False} and no internal structure.  Propositional calculus

is the domain theory for propositions.  It consists of

a collection of value labels {T,F}

a collection of object labels {a,b,c,...},

the logical connectives {and,or,not,if,...},

the rules of inference (deduction) {modus ponens,...}



Mathematical Foundations

2

Recognizer predicates differentiate these components:

isTrue[X] identifies the ground value True

proposition[X] identifies when X is a proposition

compound[X] identifies when X contains any logical connective.

Constructors tell us how to build compound objects.  These are always defined inductively.

This definition is called a ggeneration axiom.

Ground values are objects.

Propositions are objects.

If X and Y are objects, then so is (X -> Y).

There are no other valid objects.

Since all other Boolean functions can be constructed from the basis {if,F}, they do not need to

be mentioned as part of the definition of compound objects.  Rather they can be treated as

syntactic variants.  For example, define

not X = X -> F

X or Y = (not X) -> Y

X and Y = (not ((not X) or (not Y)))

X iff Y = (X -> Y) and (Y -> X)

Accessors are constructors used in reverse, to decompose compound objects.  More

importantly, accessors define how value is maintained across compound forms.  Value is

asserted by the predicate isTrue.  Accessors is expressed mathematically as a uuniqueness

axiom.  Here, “uniqueness” means that a compound form can be uniquely decomposed while

maintaining its value.  The uniqueness axiom for our only Boolean operator is:

(X -> Y) isTrue, when either X isnotTrue or Y isTrue.

We can substitute the syntactic variants to obtain the other decomposition rules.  For example,

substitute the definition of not X into  the uniqueness axiom for implication, giving:

not X = X -> F

(X -> F) isTrue when either X isnotTrue or F isTrue.

Since F is never True, this simplifies to:

(X -> F) isTrue when X isnotTrue.

(not X) isTrue when X isnotTrue.

Other semantic definitions are derived in a similar fashion:



Mathematical Foundations

3

(X or Y) isTrue when either X isTrue or Y isTrue.

(X and Y) isTrue when both X isTrue and Y isTrue.

(X iff Y) isTrue when the value of X and the value of Y are the same.

Notice that the expression of these relationships between value and structure in English appears

to sound rather obvious.  This is because the logical connectives are so deeply built into the

language that we cannot define them without using them in the definition.

In propositional calculus, there are no functions which compute properties, since

propositions have no properties other than their value (they have no internal structure).

The invariants which describe and constrain the structure and behavior of compound

propositional forms are the aaxioms of deduction.  The choice of an axiom set depends on the

goals of transformation.  One single (algebraic) axiom from which all others can be derived is:

(A -> B) and (not A -> B) = B Single axiom basis

Another set of propositional axioms is that of Boolean algebra.  These axioms use three Boolean

connectives and are therefore highly redundant:

X and (Y and Z) = (X and Y) and Z Associativity

X or (Y or Z) = (X or Y) or Z Associativity

X and Y = Y and X Commutativity

X or Y = Y or X Commutativity

X and (Y or Z) = (X and Y) or (X and Z) Distributivity

X or (Y and Z) = (X or Y) and (X or Z) Distributivity

X or F = X Zero element

X and T = X One element

X and (not X) = F Complement

X or (not X) = T Complement

Yet another set of axioms are the rules of natural deduction.  Again these are highly redundant,

the usual list includes about 35 rules.  This system is typified by the axiom of modus ponens:

(X and (X -> Y)) -> Y Modus Ponens

A fourth example of a possible axiomatic basis is the erasure axioms of boundary logic:

X or T = T Dominion

not (not X) = X Involution

(X or Y) -> X = Y -> X Pervasion



Mathematical Foundations

4

Finally, the iinduction principle for propositional calculus might be loosely stated as:

Base case:   T isTrue

Inductive case:  If an arbitrary form X is assumed to be true, X isTrue,

and if we can demonstrate that (X -> Y) isTrue,

then for any Y, Y isTrue.

This of course is just a restatement of modus ponens.  This induction principle is rather

degenerate, since the logic of induction itself is expressed using the same logical connectives

that define the operations in propositional calculus.  The well-founded ordering is not a

countable structure like the natural integers, rather it is the potential nesting of implications.

When a premise implies a conclusion, then the premise, in a very general sense, is less-than
the conclusion.  This ordering is clearly demonstrated both in the Boolean lattice and in the deep

Pervasion rule of boundary logic.

Domains with Internal Structure

To add descriptive complexity, we add internal structure to propositions.  There are two general

classes of structure:  rrelations and ffunctions.  Relations are connections, or structures,

holding together pairs of simple objects.  Functions are a restricted type of relation, one that

permits functions to stand in place of object names.  Functions are relations which name objects

in a domain by using other object names.

In computer science, we refer to complex objects as data structures, and the set of relational

constraints on these objects as abstract data types.

The important idea is that all data structures, all domains, have the same organizational

structure.  All domains and data types consist of a collection of these axiomatic principles:

Labels
Recognizers
Constructors
Accessors
Functions
Invariants  (relations)
Induction Principle

In object-oriented approaches, the abstract data type includes all algorithmic functionality.

That is, using oo-techniques, the above principles define the entirety of an object, and thus the

entirety of a program.

Three examples of domain theories follow.  These examples are schematic outlines, intended to

suggest both mathematical approach and coding technique.  Each domain has additional functions

and relations which are not included here.



Mathematical Foundations

5

The Domain Theory of Non-negative Integers

Base 0

Objects {positive integers}

Recognizer integer[n]

Constructor +1[n], inc[n]

Accessor -1[n], dec[n]

Decomposition axioms (integer[n] and not[n=0]) -> (+1[-1[n]] = n)
integer[n] -> (-1[+1[n]] = n)

Uniqueness axiom (+1[n1] = +1[n2]) iff n1=n2

Functions +: (associative, commutative, identity=0)
    n+0 = n
    n1 + +1[n2] = +1[n1+n2]
    (n1=n2) -> (n1+n3) = (n2+n3)

-:
    n-0 = n
    +1[n1] - +1[n2] = n1-n2

*: (associative, commutative, identity=1)
    n*0 = 0
    n1*(n2+1) = n1*n2 + n1

^:
    n^0 = 1
    n1^(n2+1) = (n1^n2)*n1

Some invariants integer[n] or not[integer[n]]
integer[+1[n]]
integer[0]
not[+1[n] = 0]
integer[n1+n2]
+1[0] = 1
n+1 = +1[n]
n^1 = n
if not[n=0] then 0^n = 0

Induction if (F[0] and (F[n] -> F[+1[n]])) then F[n]

Decomposition Induction if (F[0] and (F[-1[n]] -> F[n]) then F[n]

The Domain Theory of Lists

Note that nested lists are trees.



Mathematical Foundations

6

Base [] nil

Objects {x,y,z,...} lists
{u,v,...} atoms

Recognizers atom[x]
list[x]
atom-or-list[x]

Constructor x•y, insert x into list y

Accessors first[x], rest[x]
first[x•y] = x
rest[x•y] = y

Decomposition axiom (not[x=nil]) -> (x = (first[x] • rest[x]))

Uniqueness axiom ((x1•x2) = (y1•y2)) -> (x1=y1 and x2=y2)

Functions append: (associative, identity=nil)
    append[nil,x] = x
    append[u•x,y] = u • append[x,y]

member:
    not[member[x,nil]]
    member[u,v•x] iff u=v or member[u,x]

flat:
    flat[nil] = []
    flat[u•y] = u • flat[y]
    flat[x•y] = append[flat[x],flat[y]]

Some invariants not[x•y] = nil
not[atom[x•y]]
(atom[x] and list[x]) -> x=nil
list[append[x,y]]
member[u,append[x,y]] iff member[u,x] or member[u,y]
flat[append[x,y]] = append[flat[x],flat[y]]

Induction if (F[nil] and (F[x] -> F[u•x])
     and ((F[y] and F[x]) -> F[y•x]))
then F[x]

This Inductive Principle has three conditions:  the base case, the atom case, and the list case.

The Induction Principle for lists can also be stated as a decomposition rule:

Decomposition Induction if (F[nil] and
   (when (not[x=nil] and atom[first[x]])
         F[rest[x]] -> F[x]) and
   (when (not[x=nil] and list[head[x]])
         (F[first[x]] and F[rest[x]]) -> F[x]))
  then F[x]



Mathematical Foundations

7

The Domain Theory of Sets

Set Base {} Phi (the empty set)

Element Base {a,b,c,...} from some domain

Objects {S1,S2,...}     Universe = PowerSet[elements]

Recognizers atom[a] set[S]

Constructor a•S, insert atom a into set S

Accessor member[a,S]
member[choice[S],S]
not[member[choice[S],rest[S]]]

Decomposition axiom (not[S=Phi]) -> (S = (choice[S] • rest[S]))

Uniqueness axiom (member[a,b•S] iff (a=b) or member[a,S]

Functions
Equality:

  S1=S2 iff (choice[S1]=choice[S2] and
    member[choice[S1]] and member[choice[S2]])

Intersection:    (associative, commutative, idempotent, identity=Universe)
  intersect[Phi,S] = Phi
  intersect[a•S1,S2] = if member[a,S2]

then (a•intersect[S1,S2]) else intersect[S1,S2]

Symmetric-difference: (associative, commutative, identity=Phi)
  sym-diff[S1,Phi] = Phi
  sym-diff[S1,S2] = if (member[a,S1] and not[member[a,S2]])

  or (member[a,S2] and not[member[a,S1]])
  then member[a,sym-diff[S1,S2]]

Cardinality, #:
  #[Phi] = 0
  if not[member[a,S]] then #[a•S] = #[S] + 1

Some invariants set[Phi]
set[a•S]
not[member[a,Phi]]
(intersect[{a},{b}] = Phi) -> (not[a=b])
intersect[S,Phi] = Phi
member[a,intersect[S1,S2]] iff
    member[a,S1] and member[a,S2]
S1 intersect (S2 sym-diff S3) =
    (S1 intersect S2) sym-diff (s1 intersect S3)

Induction      if F[Phi] and if not[member[a,S]] then (F[a] -> F[a•S])
        then F[S]


