
RE-ENTERING THOUGHTS

William Bricken

February 1991

Re algebraic networks

(a (b)) is an expression. LoF implicitly treats it algebraically,

(a (b)) = ()

Dataflow evaluation lets us determine the truth of the equation only by

providing bindings to the variables. But the equation

(a (b)) = (a (b (a (b))))

can be evaluated without recourse to variable bindings. A dataflow approach

must explore the space of bindings to see if all possibilities result in the

same truth value for the equation. An algebraic approach is stronger.

Basically the algebraic technique is substitution and replacement of patterns

which belong to the same equivalence class. EXTRACT establishes the

equivalence class which permits the example equation to be reduced without

evaluation of variables.

Re inversion

Computation should be bidirectional. But the central issue is that networks

provide parallelism, so it local computation in general, of which bottom-up

(dataflow) and top-down (goal seeking) are just two types of locality.

There's also middle out, like in the above example.

I'm not sure what is meant by "Data values should flow both ways", values are

not known from the "top" of a network. There are constraints that can

propagate down. I like to think of variables as set objects. In a logical

example, the variable "a" is a set object, {t, f}. Evaluation is constrained

by the domain of the variable. Constraints then merely eliminate possible

values (conditionally).

Bidirectionally is intimately part of imaginaries. We never got to that in

the network implementation, but we did demonstrate the use of imaginaries in

parens models.

Re recursion

I'm thinking of ways to remove recursion/iteration altogether. This is more

of a wish than a solid idea. We do know that the repetition can be switched

from function to data, as in

Fac(n) = n*Fac(n-1) vs Fac(n) = (apply times (1,2,...,n))

In boundary numbers, Fac(n) is achieved by parallel switching of n pointers,

so there's no linearity in the times operation. We still have to list out

the numbers 1..n.

So here are three models.

1. Get a number, operate and accumulate, calculate next number, repeat.

2. Generate (1..n), move the operator over it while accumulating.

3. Generate (1..n), switch 2n pointers.

Re network equality

Determining equivalence of networks is NP. The simplest hard case is

((a b)(a c)) = a ((b)(c))

Different networks, hard to prove equality without transformation. Network

equality with imaginaries is harder still, cause of weak permitted

transformations.

Re algebra

In playing with Boolean minimization, I found that transformation axioms must

necessarily incorporate non-intuitive directions of expansion (the source of

NP). It's possible, for instance, to construct complex expressions for which

the wrong guess about which variable to evaluate will lead to huge

inefficiency. So my proposition is that algebraic transformation can be more

efficient than evaluation, particularly since it occurs on the structure of

the code/database. The non-evaluated problem space is transformed,

permanently changing the control structure of a network, independent of the

variables.

So although theorems are not fundamental for expressability, I think that a

well selected group is fundamental for efficiency of computation. In very

large spaces, they make the difference between termination (in our lifetime)

or not.

The situation is analogous to using search heuristics rather than brute

force, to using a well-tailored representation rather than a random one.

Re bidirectionality

I agree that computation is propagation of change. Perhaps an issue is

change where/what? As above, there is change in state and change in

structure.

I've falling into the habit of thinking about variables as constrained

domains. First, note that in numerical algebra, variables are used in

different manners:

x = 3 as a label

x = y+3 as a constraint

x+y = y+x as a pattern

Now, A+B=C can be read that A, B, C are unknown instances from a domain, or

they can be read as sets on that domain. For eg, in a binary domain:

{0,1} + {0,1} = {0,1}

Here the equation excludes both A=1 and B=1.

Dialog

> If A+B=C as a constraint, then if A changes and B is constant, C must

> change. Similarly, if C changes, A and/or B must change. Since A+B and C

> are the same quantity, there is only one of it, and it can have only one

> value.

I'm proposing a different interpretation, where C changing impacts the

choices of A and B, not their values. From this possibility calculus

approach, structure is different, although value is maintained. The equality

symbol establishes an equivalence class of values, but not of form. In

purely algebraic approaches, theorems provide mechanisms for argument about

structure independent of value.

From this angle, imaginary values come from constraint sets that eliminate

all unique choices.

> I'm led to the view that specifying a computation is nothing more or less

> than saying what depends on what. The dependencies are everything.

> Computing is then just the propagation of change in an orderly fashion.

I agree. In a Losp network, dependencies are represented by the connectivity

of the network. Change is change in network structure, not in values of

variables. Orderly fashion is asynchronous and local. So propagation is

broader that linear pulses.

In Losp, algebraic simplification occurs without variable binding, just as in

matrix techniques, you can determine overspecifications without solving the

equations.

So I think there is at least one other element (type of propagated change):

dataflow (binding propagation), lazy (possibility propagation), and

structural (algebraic propagation).

