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Abstract

Boundary algebra (BA) is a mathematical alternative to standard algebra. It

represents numbers and functions using space and boundaries, which can be

manipulated with three simple equivalence rules.  In BA, the behavior of

large constructions, such as complex numbers and transcendental functions,

can be directly deduced from the basic rules of BA, suggesting that it

represents a fundamental core of elementary algebra.

Introduction

How we communicate ideas constrains how we think about them.  We communicate

mathematical ideas with notations which bias our thoughts about mathematics

and influence our beliefs about the foundations of mathematics. Although

notation plays a seemingly transparent role in communicating mathematics, it

tends to carry many epistemological assumptions which may be inappropriate in

the long run.

In this paper, I suggest that we break some epistemological assumptions.  I

describe a radically different way of communicating some seemingly well-

understood mathematical concepts, revealing a greater simplicity to them than

is commonly known.  I present boundary algebra (BA) as an alternative

representation of numerical algebras.  BA is a radical approach to

representation because it uses spatial constructs rather than linear ones.

And BA clarifies numerical concepts because it is simple in design yet

extensive in scope.

I first introduce the notion of spatial representation.  Then I formally

define boundary algebra and map it to traditional numerical algebras, drawing

important distinctions between how the two represent mathematics. From this

comparison I conclude that boundary algebra conveys more insightful, more

fundamental aspects of numerical algebra than does the traditional notation

and that it may be time to break those epistemological assumptions.

Conventions

I must note here that the form of description you are reading is principally

linear and that in many cases I cannot avoid the linear constraints of this

medium when describing spatial forms.  Artifacts of the description should be

recognized as independent of the forms themselves.  In the cases where this

influence is particularly strong but unavoidable, I relate the source of the



problem and suggest other media which may more accurately portray the forms.

One such unavoidable problem deals with equivalence.  An equivalence relation

states that certain items lack any meaningful differentiation in the system

of discussion.  Any item can substitute for any other in the equivalence

class and be suitable in all cases.  A linearity problem arises when

describing an equivalence because forms must be identified but neither should

be given any strict preference.  A seemingly harmless "X=Y" carries an

expectation that the Y is the simpler element, an unruly rhetorical

corruption of the description.  Nevertheless, the equals sign will be used to

denote equivalence.  

Independent of symmetry criteria, the equals sign does not clearly delimit

the boundaries of the two spatial forms being equated.  The spatial extent of

each form should be recognized as perceptually bound by the typographical

context including the equals sign itself, as if it were a dividing line

separating two forms.  The more suitable form of "X|Y" would be adapted were

it not for the exceedingly dominant expectation for "X=Y".

I am also forced to adapt a standard textual description for the spatial

forms.  When items in space are listed, as "a b", they should be imagined as

free in space without linear constraint.  When boundaries are denoted

textually, as paired delimiters such as "( )", they should be imagined as

closed boundaries which connect beyond the linear typography.  I have

introduced a single exception to the paired delimiters notation in which an

empty parentheses boundary, appearing round, is written in shorthand as a

small circle "o".

DEFINITION

Space

Boundary algebra differs significantly from traditional numerical algebras

because it is uses space and topological enclosure as its principle

constructs rather than linearity and adjacency.  

Space is more compatible with mathematical semantics than linearity because

linearity imposes ordering constraints on a representation even when the

mathematical relationship lacks order.  Compare the linear form of addition,

"a+b+c", with a spatial representation of the same, shown in Figure 1.  The

spatial form leaves the items unordered--a faithful interpretation of the

combination.  The linear form must overcome its falsely imposed constraint by

introducing commutativity rules,

a+b=b+a

and associativity rules,



a+(b+c)=(a+b)+c

to counteract linear constraints.  In space, the items are inherently

unordered because ordering has not been imposed upon them.

============================================================================

      b

   a

         c

============================================================================

  FFigure 1.

Space further adheres to mathematical semantics because it comes with an

identity element built-in.  All mathematical functions characteristically

have an identity element which leaves a result unchanged when a function is

applied with it.  For instance, the identity element for addition is zero.

The relation describing the additive identity is written linearly as

X + 0 = X

but written spatially as

X = X

  The spatial representation trivializes the identity because the identity

element for spatial addition is empty space; adding nothing does not change a

spatial collection.

Making use of empty space in this manner leads to a more complicated

dependency on void substitution.  Empty space is called *the void* and when

something equivalent to the void is reduced to it or introduced from it, this

substitution is called void substitution.

A principle case of void substitution occurs when two elements in space

cancel each other out.  For example, if "a b" equals the void then the

expression shown in Figure 1 can be reduced to just "c" by substituting  void

for "a b".  Likewise, the equivalence goes the other way so that an

additional "a b" could be introduced to the expression by substituting  for

the void somewhere in the open space.

The one constraint on void substitution is that what is taken or introduced

must conform to spatial boundaries.  Boundaries delimit space.  A void

substitution must involve a clearly delimited space: when introducing "a b"

from the void, both elements must appear on the same side of every boundary.



They can be introduced together on one side or the other but not across the

boundary.  Some legal and illegal examples of void substitution are shown in

Figure 2.

============================================================================

Legal Illegal

  ( ) = a b (  )       ( ) != a ( b )

  ( ) = (a b)          ( ) != ( a ) b

  (()) = (a b())       (()) != a(b())

  (()) = ((a b))       (()) != ((a)b)

============================================================================

  FFigure 2.  Void substitution with "a b = ".

Boundaries provide control over space.  They create perspective by framing a

space for observation, by forming the edges of objects, and by distinguishing

objects out of an environment.  Each of these uses of boundaries arises in

Figure 2.  The space of the figure itself provides a perspective, framed by

the surrounding white space.  The space of each expression is confined by

line spacing and separation between the two columns.  The space of symbolic

objects, such as "a" or "b", implicitly ends at the edge of the symbol.  The

only explicit boundaries in the entire figure are the parenthetical

boundaries, which comprise the formal distinctions of boundary algebra.

Boundaries are fundamental to representation.  They are used extensively to

parse spatial as well as linear configurations.  By utilizing them

explicitly, boundary algebra seeks to control this basic representational

mechanism.  Boundaries are identified so that this distinction carries

semantic value in addition to syntactic structure.

I have just introduced space using undefined elements "a", "b", and "c" and

an undefined boundary.  I will now define the elements which comprise

boundary arithmetic and introduce variables to make an algebra.

Elements

The boundary elements are composed entirely of the void and of three types of

boundaries.

Definition.  Let P denote the collection of all well-formed boundary

expressions using three pairs of bracket characters denoting left and right

edges of their respective boundary types: <>, (), [].  P is defined

recursively by two rules:



  1. If a1, a2, ... an (n>=0) belong to P,

     then the unordered collection a1 a2 ... an belongs to P.

  2. If b belongs to P, then <b>, (b), and [b] belong to P.

The first rule defines the principle of spatial collection: Collecting

elements of P together forms an element of P.  Spatial collections are

unordered and flat so that when two or more collections are brought together,

the resulting collection looses the individual containments of the separate

collections.  

The collection principle also defines the initial element of P: since there

are no initial elements of P, the first rule can only define the empty

collection known as the void.  The void is present in any and all spatial

collections an infinite number of times (there is empty space everywhere).

Spatial collection by itself can define only the void because it cannot

construct any other element; collections of the void are still void.

The second rule defines the principle of spatial distinction: Bounding an

element of P forms an element of P.  Spatial distinction initially creates

three elements from the void using each of the three boundaries: <>, (), and

[].  Although space is unordered, boundaries add a constraint that prevents

rearrangement across the boundaries.  Because boundaries can surround other

boundaries, they create a hierarchy of nested space.

From the void, spatial distinction creates the following elements:

  <>, (), [], <<>>, <()>, <[]>, (<>), (()), ([]), [<>], [()], [[]], ...

These elements can be spatially combined to create more elements:

  <><>, <>(), <>[], ()<>, ()(), ()[], []<>, [](), [][], ...

The results of these combinations can be further distinguished and combined

(recall that "o"="()"):

  <oo>, ([oo][ooo]), [oo], (([[<o>]] <[oo]>)), ...

And so on, and so on...

Equivalences

These forms would not be significant were they all equally unique.  The

meaning derives from equivalences of the various forms, defined as follows.



Definition.  Let R denote the set of equivalence classes of elements of P

under the equivalence relation generated by the following equivalences, valid

for all A, B, C in P:

  1. A <A> =                          IInverse Cancellation

  2. ([A]) = A = [(A)]                IInvolution

  3. (A [B]) (A [C]) = (A [B C])      DDistribution

Inverse Cancellation.  The first of these rules defines the inverse boundary,

denoted around element A as <A>.  Element A of P combined with <A>, the

identical element distinguished by the inverse boundary, equals the void.

Put simply, a combination of something and its inverse cancels out.  Every

element has an inverse under space combination because it can be created

merely by enclosing the element within the inverse boundary.

Involution.  The second equivalence rule defines the symmetry between the

instance boundary and the abstract boundary, denoted around element A as (A)

and [A], respectively.  Involution maintains that the distinctions made by

these boundaries cancel out: instance around abstract around element A equals

A itself and abstract around instance around element A also equals A itself.

Distribution.  The third equivalence rule defines the relationship between

instance and abstract.  In the distribution form, these two boundaries allow

A to modify B and C.  Distribution states that this modification is

equivalent whether it modifies them together or separately.  Distribution can

be visualized as a cell division or cell union where the A is part of the

cell wall while B and C are inside of the wall.

Variables

The equivalence rules define how the elements of boundary arithmetic can be

transformed.  A full fledged algebra further requires variables which stand

for elements of this arithmetic.  These variables will be denoted using

alphabetic characters.

These variables should not be confused with the template variables used in

the equivalence rules, though the two appear similar.  The template variables

are capitalized to show that they represent any and all elements in the

boundary arithmetic; each equivalence holds for all possible replacements of

these variables.  Algebraic variables differ in that they represent unknowns

which may or may not exist, rather than representing everything possible.

Without algebraic variables, boundary constructions are just elements of the



arithmetic, as defined above.  With algebraic variables, boundary

constructions cover algebraic expressions in addition to the arithmetic

elements.  The term "boundary expression" refers to a configuration of

boundaries that possibly includes algebraic variables.

To use an equivalence rule, first replace each template variable with some

boundary expression.  Replace a template variable identically throughout the

rule, though different variables can be given different values.  With all

template variables replaced, the rule specifies an direct equivalence between

boundary expressions.  Then match either side of this equivalence to part of

a larger expression and substitute the other side of the equivalence rule for

matched expression.  Replace template variables so that the resulting rule

matches part of the working expression and causes a useful substitution into

a preferred form.

============================================================================

  Inverse:  A <A> =

    oooo<oo>

    oo                              A = oo

    ([ooo]          )

    ([ooo][oo]<[oo]>)               A = [oo]

    <<(x y)>>               

    <<(x y)>> <(x y)> (x y)         A = (x y)

                      (x y)         A = <(x y)>

  Involution:  ([A]) =

    ([oo])

      oo                            A = oo

    (  <([ooo]<[oo]>)>  )

    (([<([ooo]<[oo]>)>]))           A = <([ooo]<[oo]>)>

    [  (x)([(y)  (z)])]

    [  (x)  (y)  (z)  ]             A = (y)(z)

    [([(x)  (y)])(z)  ]             A = (x)(y)

============================================================================

  FFigure 3a.  Examples of applying the boundary rules.

Match and substitute is a basic transform mechanism which is easily mastered.

Some examples of match and substitute with the boundary rules are given below



in Figures 3a and 3b with their corresponding variable replacements.

Equivalent expressions have been stacked on each other and laid out so that

the application of the rule is visually apparent.  Because the rules apply

equivalently in either direction, each expression in a group is equivalent to

all others so that transformation need not progress from the top-down.

============================================================================

  Involution:  [(A)] =

    ([ooo]    )

    ([ooo][()])                     A =

    (([[(())]][ooo]))

    (([  ()  ][ooo]))               A = ()

    ((        [ooo]))               A =

    (  [x][([y]  [z])])

    (  [x]  [y]  [z]  )             A = [y][z]

    ([([x]  [y])][z]  )             A = [x][y]

  Distribution:  (A [B]) (A [C]) = (A [B C])

    ([ooo][o])([ooo][<o>])

    ([ooo][o         <o>])          A = [ooo], B = o, C = <o>

    (([[oooo]][]))

    (([[oooo]][])([[oooo]][]))      A = [[oooo]], B = , C =

    ([x][y       y])

    ([x][y])([x][y])                A = [x], B = y, C = y

    ([x       x][y])                A = [y], B = x, C = x

============================================================================

  FFigure 3b.  More examples of applying the boundary rules.

Counting

I will now build some useful mathematical constructions from the rules of

boundary algebra.  Later, when the algebra has been translated to standard

algebra, these constructions will be recognized as prevalent throughout

algebra.



To begin with, items can be counted.  Everything has a count of one:

  Cardinality of One

      A                             Given

    ([A]    )                       Involution

    ([A][()])                       Involution

The empty instance boundary, (), serves as the abstract unit for counting

elements in a boundary expression.  In this configuration, the lone ()

denotes the singular cardinality of the A.  Greater cardinalities can be

formed using distribution by collapsing many singular cardinalities into one

modification of many such units.  For example, the cardinality of two, from

which other cardinalities can be generalized:

 Cardinality of Two

      A        A                    Given

    ([A][o]) ([A][o])               Cardinality of One (twice)

    ([A][oo])                       Distribution

These cardinality theorems apply to all instances of duplicate elements,

regardless of their form or depth of nesting.  Any spatial combination of two

identical elements can be counted this way.  For instance, the following case

counts [X] within the context of the surrounding instance boundary:

  ([x][x]) = (([[x]][oo]))

A zero count, written as ([A][ ]) reduces to the void.  One way to prove this

is to introduce a non-zero count of the A and absorb the zero count into it:

  Zero Cardinality

    (A [])                          Given

    (A []) (A [o]) <(A [o])>        Inverse

    (A [       o]) <(A [o])>        Distribution

                                    Inverse

In zero cardinality, the [] dominates the A and forces it into nothingness.

This obliteration effect can be generalized using involution:



  Dominion

      A []                          Given

    [(A [])]                        Involution

    [      ]                        Zero Cardinality

The Dominion effect forces a qualification on boundary algebra.  Because the

A is completely lost, a combination with [] cannot be reversed.  In other

words, [] has no inverse.  Therefore, the preceding definitions must be

qualified to exclude the <[]> element from the boundary arithmetic.

Phase

Before translating boundary algebra to standard algebra, I now prove some

characteristics of the inverse boundary which will prevail throughout

standard algebra.  These characteristics give boundary algebra properties of

phase space and extend its scope into complex and transcendental functions.

The following boundary construction possesses a curious property of

independence from its contents.  The combination of instance, inverse, and

abstract boundaries, [<(A)>], can "move around" by pulling expressions from

its context to the inside or by pushing its contents back to the outside. The

following theorem derives this fluidity property.

  Fluidity

    [<(A B)>]                       Given

    [<(A B)> (  [              ])]  Involution

    [<(A B)> (A [              ])]  Dominion

    [<(A B)> (A [(B)      <(B)>])]  Inverse

    [<(A B)> (A [(B)])(A [<(B)>])]  Distribution

    [<(A B)> (A   B  )(A [<(B)>])]  Involution

    [                 (A [<(B)>])]  Inverse

                       A [<(B)>]    Involution

Finishing off the cardinality proofs from the previous section, fluidity

provides a simple proof of negative cardinality.  Here, the inverse boundary

is promoted to an inverted unit in the cardinality combination. In the proof,

fluidity moves the [A] to the outside of the [<()>].



  Negative Cardinality

        <A>                         Given

      <([A])>                       Involution

    ([<([A])>])                     Involution

    ([A][<()>])                     Fluidity

A similar theorem allows the inverse to move inside and change a positive

cardinality to a negative one.  The theorem uses A instead of [A] so that it

applies more generally.

  Inverse Promotion

      <(A [B])>                     Given

    ([<(A [B])>])                   Involution

    (A [<([B])>])                   Fluidity

    (A [<  B  >])                   Involution

While fluidity is a more flexible theorem in boundary algebra, negative

cardinality and inverse promotion are more easily interpreted in standard

algebra and will provide a better basis for interpretation.

The fluidity construct without no contents represents a phase construct in

boundary algebra.  The arithmetic element [<()>] provides a form of the

inverse susceptible to cardinality, which therefore can be built into various

degrees of phase.  This phase element shall be denoted by J.

Two Js in the same space cancel to the void.

  J Cancellation

    [<()>] [<()>]                   Given

    [<( [<()>] )>]                  Fluidity

    [<   <()>   >]                  Involution

    [     ()     ]                  Inverse Cancellation

                                    Involution

Further properties of phase space and J will be discussed with the

translation to standard algebra.  It has been introduced here to show that

the construction is independent of its interpretations in standard algebra.



INTERPRETATION

Now I will map boundary algebra onto standard algebra to show that it

represents all elementary functions and complex numbers.  Because BA is so

simply defined, I conclude that the mechanisms of standard algebra are

unnecessarily complex.

The map from standard algebra to boundary algebra has two independent degrees

of freedom: the function of space and the base of the instance boundary.

A combination in space can be interpreted as an addition or as a

multiplication.  The void and the inverse boundary both derive meaning from

this interpretation.  Both interpretations will be used in this discussion to

show how boundary algebra is independent of either of these operations.

When space is addition, the void is the additive identity and the inverse

boundary performs the additive inverse.  Similarly, when space is

multiplication the void is the multiplicative identity and the inverse

boundary performs the multiplicative inverse.  These mappings are summarized

in Table 1.  Other interpretations work similarly but are functionally more

complicated and lack direct interpretation.

============================================================================

                     Standard Form for

                Boundary     --Interpretation of Space--

                  Form        Addition    Multiplication

  Combination     A B A+B A*B

  Void              0  1

  Inverse         <A> -A 1/A

============================================================================

Table 1.  Basic boundary forms mapped to interpretations of space.

The instance boundary translates to an exponential operation whose base is

left open.  As its functional inverse, the abstract boundary translates to a

logarithmic operation to the same base.  Though it is not mandatory to

specify this base, some choices are nevertheless convenient.  Using base two

or base ten directly provides logarithms and exponents to that magnitude.

However, the natural choice of base e provides direct translation from

standard transcendental forms and so will be adapted here.

Table 2 interprets the initial arithmetic elements of boundary algebra in

base e for both interpretations of space.



============================================================================

                      Standard Form for

  Boundary      ---Interpretation of Space---

   Form        Addition        Multiplication

    <>          -0=0              1/1=1

    ()          e^0=1             e^1=e

    []          ln(0)=-inf        ln(1)=0

   <<>>         0                 0

   <()>         -1                1/e

   <[]>         -ln(0)=inf        1/0

   (<>)         1                 e

   (())         e                 e^e

   ([])         0                 1

   [<>]         ln(0)             0

   [()]         ln(1)=0           ln(e)=1

   [[]]         ln(ln(0))         ln(0)

  [<()>]        ln(-1)            ln(1/e)=-1

============================================================================

  TTable 2.  Boundary elements interpreted to base e.

In fact, most algebraic forms do not depend upon the base of these

boundaries.  The basic forms shown in Table 3 are all independent of the base

interpretation.  

Table 3 illustrates the relationship between the two space interpretations.

To convert an expression from addition space to multiplication space, wrap

the entire expression with the abstract boundary and wrap all variables with

the instance boundary.

Number Forms

Various types of numbers can be represented in boundary algebra because it

supports the functions that construct them.  Number representations are

actually constructions that use a variety of mathematical operations to build

a form with the desired properties.  These forms use functions such as

addition, multiplication, division, and exponentiation.  While the

traditional number forms conceal these operations in their notation, boundary

algebra includes no such shorthand--these constructions must be done

explicitly using boundary operations.



============================================================================

                       Boundary Form for

  Standard      ---Interpretation of Space---

    Form        Addition        Multiplication

       0                            []

       1        o                   

       2        oo                  [oo]

      -1        <o>                 [<o>]

      -2        <oo>                [<o>]

      1/2       (<[oo]>)            <[oo]>

      3/2       ([ooo]<[oo]>)       [ooo]<[oo]>

       A        A                   A

      -A        <A>                 [<(A)>] = A [<o>]

      1/A       (<[A]>)             <A>

      A+B       A B                 [(A)(B)]

      A-B       A <B>               [(A)<(B)>]

      A*B       ([A][B])            A B

      A/B       ([A]<[B]>)          A <B>

      A^B       (([[A]][B]))        ([A] B)

    logA(B)     ([[A]]<[[B]]>)      [A]<[B]>

============================================================================

Table 3.  Arithmetic and Algebraic Forms in Boundary Algebra.

Number representations use these operations to achieve various degrees of

expressiveness.  In doing so, each form has its own combinatorial

characteristics but in all cases the boundary forms still adhere to the three

boundary rules.  Table 4 gives a sampling of the common numerical forms along

with the boundary interpretation of that form with space as addition.

The boundary interpretations are particularly lengthy because all of the

operations that are implicit in the standard representation are completely

expressed in the boundary form.  From the boundary interpretation, the

manipulations of these forms can be directly deduced from the three boundary

rules.   

When numbers of a given form are combined, the original format of the number

must be recovered.  The strategies and techniques for maintaining a format

are generally considered to be the computational rules for that form, as in

adding or multiplying fractions.  Because the standard forms abbreviate and

conceal the operations they use, they typically do not use intermediate forms

for manipulating the values back into the original format.  Boundary algebra,

on the other hand, separates the combination and recovery steps by supporting

intermediate forms and in doing so changes the nature of the computation.



============================================================================

  Number Type     Standard Form      Boundary Form with Space as Addition

  zero               0

  natural number     3               ooo

  integer            -3              <ooo>

  fraction           3/4             ([ooo] <[oooo]>)

  mixed number       2 3/4           oo ([ooo] <[oooo]>)

  prime factors      2*3^2           ([oo]([[ooo]][oo]))

  base (r)           127             (r[ (r[o]) oo]) ooooooo

  decimal            12.7            (r[o]) oo (<r>[ooooooo])

  base 2             1101            ([([([o][oo])o][oo]) ][oo])o

  scientific         5.1*r^5         ([ ooooo (<r>[o]) ] ([r][ooooo]))

  engineering        510.0*r^3       ([ (r[(r[ooooo])o]) ]([r][ooo]))

  irrationals        2^(1/2)         (([[oo]]<[oo]>))

============================================================================

  TTable 4.  Example Number Forms.

BA can approach the conciseness of standard forms by introducing macros to

shorten common elements.  A convenient macro substitutes for base

multiplication:

    {A} === ([ooooo ooooo][ A ])

With such a macro, based numbers look better:

    127 = {{o}oo}ooooooo

    1101 = {{{o}o} }o

From the basic rules of boundary algebra, rules for this particular macro can

be derived.

Macros to support other forms and relationships can likewise be defined and

manipulative rules can be built for them.  Macros can be defined for specific

functions, as the above times-10, or they can be defined for specific

quantities, such as 1,2,3,4,5,6,7,8,9, i or pi.  In each case, rules can be

generated for manipulating the macro based on the given rules of boundary

algebra.

In this manner, the entire system of numerical algebra can be rebuilt based

on a consistent, fundamental core.



Algebraic Manipulation

In this section, I derive some basic algebraic formulas to demonstrate how

these formulas are made explicit by the boundary representation.  Each

derivation is compared to the standard form, with my comments on how each

form supports the deductive activity.

When it comes to algebraic manipulation, boundary algebra differs from

traditional algebra in two respects: the syntax parses more explicitly and

the rules apply more generally.  The following distribution proof

demonstrates both of these advantages.

  Theorem:  (a+b)^2 = a^2+2ab+b^2

  Standard Algebra

    0. (a+b)^2

    1. (a+b)(a+b)

    2. a(a+b)+b(a+b)

    3. aa+ab+ba+bb

    4. aa+2ab+bb

    5. a^2+2ab+b^2

  Boundary Algebra

    0. (([[a b]] [oo]))                                Given

    1. ([a b][a b])                                    Cardinality

    2. ([a b] [a]) ([a b] [b])                         Distribution

    3. ([a][a]) ([b][a]) ([a][b]) ([b][b])             Distribution twice

    4. (([[a]][oo])) ([([a][b])][oo]) (([[b]][oo]))    Cardinality thrice

    5. (([[a]][oo])) (  [a][b]  [oo]) (([[b]][oo]))    Involution

In standard algebra, expressions must be visually parsed to discern the

precedence of one operation over another.  Beyond step 1, the proof relies on

precedence rules rather than parentheses to denote this dominance.  In

contrast, the boundary form has no precedence: the ordering of operation

becomes irrelevant within the boundary structure.

Rules apply more generally in boundary algebra.  For instance, steps 1 and 4

of the boundary proof use the same cardinality theorem,

A A = ([A][oo])

whereas corresponding steps 1, 4 and 5 of the standard proof use two

different theorems, one for addition and one for multiplication.



The last step in the boundary proof makes the expression "2ab" purely

associative, after counting "ab" separately.  This step results from a clear

distinction between counting and subsequent reduction, a distinction the

standard form does not make at all.

This next proof demonstrates another parsing problem with traditional

algebra, this time with subtraction.  The subtraction operator hides the

addition and appears to be associated with item it is up against, seen in the

following proof.

  Theorem:  a^2-b^2 = (a+b)(a-b)

  Standard Algebra

    0. a^2-b^2

    1. aa-bb

    2. aa+ab-ab-bb

    3. aa+ab+a(-b)+(-b)b

    4. a(a+b)+(-b)(a+b)

    5. (a-b)(a+b)

  Boundary Algebra

    0. (([[a]] [()()]))     <(([[b]] [()()]))>    Given

    1. ([a][a])                     <([b][b])>    Cardinality twice

    2. ([a][a]) ([a][b]) <([a][b])> <([b][b])>    Inverse

    3. ([a][a]) ([a][b]) ([a][<b>]) ([b][<b>])    Inverse Promotion

    4. ([a][a b])        ([a b][<b>])             Distribution twice

    5. ([a b] [a <b>])                            Distribution

The subtractions in step 2 of the standard proof, "-ab" and "-bb", actually

modify the entire product and not just the first item, though this

distinction is not clearly made.  In the boundary form, the inverse boundary

clearly surrounds the entire expression.  In step 3, the inverse is

explicitly moved to the "b" to prepare for distribution.  This restructuring

is only awkwardly supported in the standard notation because the subtraction

is usually distributed directly without using the intermediate form, despite

the clarification it provides.  These steps hide the simplicity of

distribution and inversion:

    2. aa+ab-ab-bb

    3. a(a+b)-b(a+b)

    4. (a-b)(a+b)    



Through its shorthand, the standard form has built up specialized rules for

operations like distributing over subtraction.  Similarly, boundary algebra

has macros which build into specialized rules.  The difference is that BA has

clearly established basic operations from which the macros acquire meaning,

whereas standard algebra has no consistent basis for defining these

shorthand.

Exponents

In standard algebra, exponents are notoriously complicated because they are

manipulated only by formula.  Here, I derive these formulas in boundary

algebra to show how simple they actually are.  I do not list their

corresponding proofs from standard algebra because standard algebra has no

constructs for proving them syntactically.

When reading these proofs, recall these conversions from standard algebra:

  Operation         Standard Form     Boundary Form

  Multiplication              a*b             ([a][b])

  Multiplicative inverse      1/a              (<[a]>)

  Exponentiation              a^b           (([[a]][b]))

  Natural log                ln(x)               [x]

  Log to base a             loga(x)        ([[x]] <[[a]]>)

Collecting exponents in BA requires just a simple application of distribution.

  Theorem: a^m * a^n = a^(m+n)

    ([ (([[a]] [m])) ][ (([[a]] [n])) ])    Given

    (   ([[a]] [m])      ([[a]] [n])   )    Involution

    (   ([[a]] [m                n])   )    Distribution

Likewise, collecting bases under a common exponent is also just a simple

application of distribution.

  Theorem:  (a^n)*(b^n) = (a*b)^n

    ([ (([[a]] [n])) ][ (([[b]] [n])) ])    Given

    (   ([[a]] [n])      ([[b]] [n])   )    Involution

    (   ([[a] [b]] [n])                )    Distribution

    ( ([[([a] [b])]] [n]) )                 Involution



The form a^m^n can be parsed in two ways, as (a^m)^n or as a^(m^n).  The

second is the accepted parsing because the first reduces to equally

convenient form using multiplication, as shown below.

  Theorem:  (a^m)^n = a^(m*n)

    (([[ (([[a]] [m])) ]] [n]))             Given

    ((     [[a]] [m]      [n]))             Involution

    ((     [[a]] [([m]  [n])]))             Involution

Negative exponents represent the multiplicative inverse.  This property falls

directly out of inverse manipulation in boundary algebra.

  Theorem:  a^(-n) = 1/(a^n)

    (   ([[a]] [<n>])   )                   Given

    (<  ([[a]] [ n ])  >)                   Inverse Promotion

    (<[(([[a]] [ n ]))]>)                   Involution

These properties of exponents derive directly out of the boundary algebra

rules and theorems.  They fit into a coherent whole.

Logarithms

Just as the exponential formulas cannot be syntactically proved in standard

algebra, the logarithmic formulas cannot be either.

  Theorem:  ln(x*y) = ln(x)+ln(y)

    [([x][y])]          Given

      [x][y]            Involution

  Theorem:  ln(x/y) = ln(x)-ln(y)

    [([x]<[y]>)]        Given

      [x]<[y]>          Involution

  Theorem:  ln(x^y) = y*ln(x)

    [(([[x]][y]))]      Given

      ([[x]][y])        Involution



The above theorems on logarithm manipulation are trivial because boundary

algebra is based on logarithms.  The logarithmic theorems are important

because they connect multiplicative operations with additive operations.

These theorems can be generalized to an arbitrary base by managing an

additional division.

Transcendentals

Boundary algebra also represents transcendental functions.  The boundary

representations of these functions are all based on a single construction,

called J: [<o>].   

J possesses the curious property that it is its own space inverse.  In other

words, a pair of Js cancels to the void:

  J-Cancellation:  [<o>] [<o>] = J J =

This phenomena can be understood by interpreting J in standard algebra. J

equals ln(-1) when space is addition and J equals -1 when space is

multiplication.  The cancellation effect is obvious in the latter case, where

 (-1)*(-1) = 1.   

The effect holds in the addition case, as shown below, but generally negative

logs are not allowed in standard algebra.

  ln-1 + ln-1 = ln(-1*-1) = ln(1) = 0

J provides control over the inverse operator because any inversion can be

converted to a combination with J by the theorem of Inverse Promotion.

  Inverse Promotion:  <A> = ([A][<o>])

This theorem may be interpreted in addition space as

-a = a*(-1)

or in multiplicative space as

1/a = a^(-1)

Unlike the inverse boundary, J can be modified.  For instance, giving J

fractional cardinality makes it into a partial-inverse.  In multiplicative

space, the following half-cardinality of J is equivalent to i, the square

root of -1:

  Half-J:  ([[<o>]]<[oo]>) = ([J]<[oo]>)



A pair of these makes a complete J.  In multiplicative space, this translates

to

i*i = -1

In additive space, its just

(ln-1)/2 + (ln-1)/2 = ln-1.

Complex numbers arise immediately from the Half-J.  When space is

multiplication, the complex number a+ib appears as:

  [(a)(b ([J]<[oo]>))]

When space is addition, the Half-J is interpreted not as i but as the log of

i, which equals i Pi/2.  Thus J must be equal to i Pi.  This interpretation

coincides with Euler's formula:

  Theorem:  1 + e^(i Pi) = 0

  o ([<o>])       Given

  o   <o>         Involution

                  Inverse

From J and Half-J, a radian value of Pi can be symbolically constructed using

space as addition:

  i Pi = J = [<o>]

  i = e^(Half-J) = (([J]<[oo]>))

  Pi = (-1) * i Pi * i

     = ([<o>][J]([J]<[oo]>))

     = (J [J] ([J]<[oo]>))

This construction of pi treats it not as a real number but as a phase

construction that is irresolvable with other numbers.  Its only semantic

value comes out of the above construction, i.e. pi cannot be shown to equal

3.14159... using the semantic construct of boundary algebra.

The real values of e and pi are based on criteria independent of the algebra

(e.g. geometries) and are not essential to the behavior of transcendental

functions.  In boundary algebra, their real values are truly unknown and

therefore incommensurable with other quantities.



Thus, boundary algebra represents the basic transcendental values, summarized

in Table 5 below.  Using these values, transcendental functions can be

constructed and evaluated.

============================================================================

Value   Standard Form     Boundary Form

  J          ln-1              [<o>]

  i          sqrt(-1)          (([J]<[oo]>))

  pi         3.1415...         (J [J] ([J]<[oo]>))

  e          2.7183...         (o)

============================================================================

   Table 5.  Transcendentals.

CONCLUSIONS

The mappings from traditional algebra to boundary algebra provide insight

into standard algebra.

In boundary algebra, addition and multiplication play a secondary

interpretation role aside from the primary concepts.  Manipulations do not

rely on these interpretations; instead they use constructs that are only

vaguely present in standard algebra.  Although the fundamental concepts of BA

are found in addition and multiplication, these operations do not do justice

to the simplicity and applicability of the concepts.

BA implements a generalized cardinality independent of addition or

multiplication.  The same cardinality theorems apply throughout various

mathematical constructions because BA establishes a common basis for building

functions and values.  Counting is counting, regardless of the context.

BA implements a generalized inverse that is not bound to either addition or

multiplication.  Both functions utilize the inverse boundary to create

inverted elements.  The generalized inverse demonstrates that all inverses

that it supports share certain properties:  these properties can be derived

independent of their functional context.  

Boundary algebra reduces elementary algebra to a few concepts and a few

syntactic mechanics, suggesting that it represents a more fundamental

mathematical core than traditional forms.  This reduction shifts the

complexity away from basic mechanics into higher order structures.  The

resulting structures are larger but more insightful because the added

elements reveal the dynamics of that structure: high level behaviors can be

completely deduced from the low level mechanics and the low level mechanics

are directly revealed in the visual forms.




