Boundary Number Systems -- Introduction William Bricken January 2001

History of Integers

Number systems evolve in abstraction, computability and expressability.

Sumerian tokens	IIIIII + IIIIIIIII = IIIIIIIIIIIIIII			
easy to add, easy to multiply, very hard to read				
Roman numerals	VI + XI = XVII			
easy to add, hard to multiply, moderate to read				
Arabic decimal numbers	6 + 11 = 17			
moderate to add and to multiply, easy to read				
Binary numbers	110 + 1011 = 10001			
easy to add and to multiply, moderate to read				
Boundary numbers	((*)*) + (((*))*)* = ((*)*)(((*))*)*			

very easy to add and to multiply, hard to read

Types of Numbers

Name	Property	Relation	New operation
indicative	existential	exists or not	 + attribute, member + less than + equality + divide and zero + compactness + i, other unit bases
nominal	categorical	share some property	
ordinal	ranking	put in order	
integer	discrete	equal intervals	
rational	comparative	fraction	
real	continuous	greater infinity	
imaginary	complex	impossibility	

The Numerical/Measurement Hierarchy

Name	Operation	Math
indicative nominal ordinal integer rational real	() indicative1 member-of indicative2 nominal1 less-than nominal2 ordinal - next-ordinal = constant integer1 / integer2 dense packing between rationals	boundary set order discrete quotient numerical
imaginary	(real1, real2)	complex

Integers as Sets

	Cardinality:	Ordinality:	Uniqueness:
0			
1	{ }	{ }	{ }
2	{ } { }	{ { } }	{{ }}
3	{ } { } { } { }	{ { { } } } }	{{ },{{ }}}
4	{ } { } { } { } { } { }	{ { { { } } } } } }	$\{\{ \}, \{\{ \}\}, \{\{ \}\}, \{\{ \}\}\}\}$
n	n	''n''	$\{1,, n-1\}$

Some Exotic Varieties of Numbers

Conway numbers (surreals) provide a single coherent framework for defining all types of numbers, and provide ways to manipulate infinite forms. They arise from the act of partitioning nothing.

Spencer-Brown arithmetic is a boundary representation in which each form is both a numerical object and an operator. Arrangements of a single type of boundary token express single numbers, as well as compound operations on multiple numbers.

Kauffman arithmetic uses a boundary form of place notation to provide a more efficient computational representation while maintaining operations which are both parallel and insensitive to the magnitude of a number.

Bricken graph-numbers are an interpretation of Kauffman arithmetic which is desirable for computation. The algebra is represented as graphs rather than strings using parallel graph reduction software.

The *James* Calculus uses three boundaries to shift the representation of numbers between exponential and logarithmic forms. This mechanism generalizes the concepts of cardinality and inverse operations. A *new* imaginary imparts phase structure on numbers, and permits computation without inverses. This system is discussed in depth as an example of novel mathematical thinking, and provides an astonishing link between *imaginary surreals* and *function inversion*.

Boundary Number Systems

Boundary number systems can be characterized by these features:

- semantic use of the void
- semantic use of spatial juxtaposition
- containers as tokens
- object/process confounding
- implicit commutativity and associativity
- a diversity of standard algebraic operations condensed into a few axioms
- computational effort in form standardization rather than addition or multiplication

The last feature is an historical reversion using efficient computational techniques. Place notation and algebraic operations (introduced in the sixteenth century) shift the computational effort from one-to-one correspondence to abstract transformation of structure based on rules. Boundary numbers make the traditional algebraic operations $\{+,-,*,/,\wedge,\text{root}\}$ trivial to implement; the computational effort is shifted to converting a given form into a canonical representation. However, in contrast to conventional decimal and binary numbers, boundary numbers can be read as a computational result at any time during the canonicalization process.

An advantage of the boundary notation is that it can condense a diversity of standard algebraic operations and transformations into three simple axiomatic rules.