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Abstract. Intelligent systems can be modeled by organizationally closed

networks of interacting agents. An interesting step in the evolution from

agents to systems of agents is to approach logic itself as a system of

autonomous elementary processes called distinctions. Distinction networks are
directed acyclic graphs in which links represent logical implication and nodes

are autonomous agents which act in response to changes in their local

environment of connectivity. Asynchronous communication of local decisions

produces global computational results without global coordination.

Biological/environmental programming uses environmental semantics, spatial
syntax, and boundary transformation to produce strongly parallel logical

deduction.

1 Definitions

Intelligent software agents are computer programs which operate with moderate
to high autonomy within software environments to perform useful,

comprehendible computation. The type of computation an agent might perform is

often described in terms of human needs, activities such as goal directed

information retrieval, strategic and tactical planning, resource coordination,

mail filtering, tool interoperability, and human friendly interface. An agent

is expected to engage and help the user [16], so agent interface and modeling

is often formulated in anthropomorphic terms. Agents are described, for

example, as running a sense-compute-act loop, simulating the perceptual-

cognitive-behavioral process of a living thing.  Sensing and acting directly

implicate an environment within which the agent is embedded.

Intelligent software is software which has some variant of the predicate
calculus at its mathematical origins. This consideration is not stringent, but

suggests both a formal basis and a pattern-matching capability underlying the

agent model.

Agent systems are ensembles of software agents which are endowed with relevant
network connectivity. In contrast to distributed computation and neural

networks, agent systems incorporate two additional constraints: no global

control of agent behavior, and semantics associated with connectivity itself.

The local decision-making constraint places an emphasis on asynchronous
multiple agent coordination. The semantic connectivity constraint requires
that the network topology be non-trivial, that the communication channels

between agents be meaningful to the interconnected agents, in effect defining

a relevant environment.

Emergent properties characterize the global activity of an ensemble without
being defined by any member of the ensemble. (The ensemble concept originated

from thermodynamic laws which are not embodied in the behavior of any single

constituent molecule.)
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The biological/environmental metaphor [4, 1] introduces several systems-
oriented modeling techniques, such as situated behavior in first-class

environments, non-determinism, organizational closure, autonomous self-

modification, and emergent properties [see 20]. Agents thus require a systems-
oriented programming model rather than object-oriented programming. Agents
communicate across a diversity of hardware, software and human resources, just

as operating systems coordinate across various file systems, memory,

processors and i/o devices, and just as animals negotiate a diverse and

unpredictable environment.

1.1 Problem

Problems are often clarified when formulated in a minimal model. What then is

a simple intelligent agent system? What toy problem captures the formal
interaction between networked autonomous agents with very simple processing

capabilities, a problem from which useful, comprehendible computational

results emerge from local biologically modeled communication situated within a

heterogeneous environment? This paper presents such a simple intelligent agent

system (distinction networks) for the purpose of exemplifying and

understanding the tools and issues introduced when constructing systems of

agents.

A distinction network (dnet) is a directed acyclic graph of distinction nodes.
Each distinction node (dnode) is organizationally identical, with a single
disposition, or motivation:  to disconnect from the dnet. Communication
between nodes is restricted solely to messages announcing or requesting a

change in the network connectivity, that is, a change in the environment. The

advantage of agents which prefer not to compute is that computational overhead

is kept to a minimum while comprehensibility is not overshadowed by

complexity.

In order to associate an interesting mathematical functionality with dnet

activity, the semantics of any Boolean function can be mapped onto network

connectivity. Each link between nodes then represents a logical implication.

Dnets evaluate their characteristic Boolean function in parallel through the

local, asynchronous disconnection of dnodes. Dnets are similar to logic

circuits composed of NOR gates, but do not contain coordination structures

such as clocks, blocking, or request/acknowledge.

In dnets, local communication between minimal autonomous agents produces

global computational results such as Boolean evaluation, program control,

tautology checking, expert system optimization, logic synthesis, and other

useful applications of propositional calculus. Dnets serve as a prototypical

example of how to structure intelligent computation as a strongly parallel
process, i.e. one in which local, asynchronous, autonomous, partial decisions
lead to valid, useful global behavior.
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1.2 Representation

Traditional mathematical and programming languages have a binary sequential

syntax.  A logical form such as modus ponens,

( (if (a and (if a then b)) then b) is-valid (forall a and b) )

uses parentheses to group operators with arguments and to sequence

computation. The two assumptions of

1) binary operations on ordered arguments and

2) ordered operator application

are embedded in the syntax, and then revoked by rules of associativity,

commutativity, and distribution.

If we were to begin with a commutative group structure, as is the case for

Boolean algebra, then a representation could inherently assume associativity

and commutativity, with rules revoking these assumptions for structures that

are non-associative or non-commutative. If we were to express propositional

logic with a single operator as its basis, then distribution rules which

control the ordering of logical operations would reduce to the assumed

associativity rules. These two design changes in representation remove the

sequential assumptions embedded in the symbolic patterns of logic. A plausible

computational model which exhibits strong logical parallelism then, might

include a single-operator logical notation which treats arguments as

unstructured sets or multi-sets [7, 8]. Venn diagrams are an example, but they

lack dynamics. Animated graphs rendered in two or three dimensions, however,

provide a representational substrate for visually parallel display of set-

based parallel activity.

The sequel calls on the known map from logic to distinctions [18] to simplify

and non-linearize logical notation. Then distinctions are mapped onto animated

graphs which display sets of autonomous proto-logical processes as graph

reduction transformations. The final configuration of the graph represents the

logical conclusion.

A distinction is a boundary which distinguishes between two sides.
Conventionally, the side that the observer (or reader) of the distinction is

on is named the outside, or context, while the other side is the inside, or
content. The dimensionality of representation for distinctions is a design
choice. On a line, a point can distinguish context from content, so long as

there is an origin which orients which side of the line is which. More

familiarly, a closed curve on the plane distinguishes inside from outside. The

orientation is deeply conventional:  the outside is associated with the

observer, since the plane of display itself (the representational space) is

almost always closed within our field of view. In three dimensions, rooms,

boxes and other containers serve as examples of spatial distinctions.

An important property of distinctions is that changing the observer's

perspective can change the origin convention and thus change our model of

content and context. This permits the distinction to be overloaded with both

an objective and an environmental interpretation without loss of rigor.
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Distinctions provide a rich vocabulary for modeling observers as perspectives,

environments as contexts, and representations as contents. The concept was

first introduced in Laws of Form [18]. Conclusions as to the utility of this
book are varied [9, 14, 15, 21]. Those who see it as "...simply another

axiomatization of Boolean algebra" [10] may have fundamentally misunderstood

the mathematics itself, in essence confusing the void with a representation of

the void (the classical General Semantics error). Those who understand it as

"... not an arbitrary new calculus, but that particular calculus which can let

us see deeper into the nature of mathematics" [22] are uniformly convinced of

its potential utility.

1.3 Void

Distinctions are constructed in an empty context, a representational space.
Drawing a closed loop on the page, for example, indicates a distinction,

apparently cleaving the page into two parts, an inside and an outside. The

page itself, however, is not torn asunder, it remains whole. Distinctions do

not interact with their substrate. The representative space has no metric, it

is devoid of characteristics and thus transparent to operations on

distinctions. The representational space pervades  all distinctions it
contains;  it is both the outside and the inside.  Pervasiveness means that a

distinction does not create a Cartesian duality; context and content are not

separated by EXCLUSIVE-OR, they are associated by INCLUSIVE-OR.

The representational space provides a unique tool which is not present in

traditional notations: it can be void (unmarked or empty). The void cannot be
accessed directly, since it is not perceptible. Distinctions provide an

indirect access: an empty distinction indicates a void content. Since the void
can be indicated, it can be used semantically, to (non)represent concepts in

the modeled domain.

Boundary mathematics is based on representations of distinctions as
containers. Its origin concept is the void. The introduction of a useful void

is analogous to the introduction of a useful zero in number systems. Just as

zero overcomes a weakness in Roman numerals by permitting efficient algorithms

for multiplication, the void overcomes a weakness in logical notation by

permitting efficient algorithms for deduction.

1.4 Boundary Logic

This section describes the mapping between distinctions and propositional

logic. The objective is to construct a network-based parallel logic which

provides an elementary example of agent systems.

Parens notation represents configurations of distinctions as nested ( ( ) )
and concatenated ( ) ( ) parentheses. It provides two elementary syntactic

structures which can be used to represent logical operators:  distinction ( )

and void           .
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One possible minimal basis for propositional logic is the set {IF, FALSE}: all

other logical operators can be constructed from this set. Table 1 maps the

logical operator IF onto the distinction, and the logical constant FALSE onto

the void. IF A THEN B is represented as a boundary between the antecedent and

the consequent. FALSE has no representation, since the void is not (and cannot

be) represented. The basis for expressing propositional logic as boundaries is

thus a singleton set { ( ) }.

==================================================================

TRUE  ( )

FALSE

IF a THEN b  (a)  b

NOT a  (a)

a OR b   a   b

a AND b ((a) (b))

==================================================================

Table 1 presents several other logical operators in parens form. The map from

propositional logic to boundary logic is many-to-one; boundary logic is

formally morphic to Boolean logic, but it is not isomorphic. Since classes of
Boolean logic expressions map onto individual elements in boundary logic, both

representation and computation are simpler using distinctions. Conversely,

boundary configurations can be interpreted for logic in many ways. An empty

parens, for example, can be read declaratively as the constant TRUE, or as the

unary operation of negation NOT FALSE, or as the binary operation of

implication, IF FALSE THEN FALSE.  Alternatively, the distinction can be seen

as a generalized form of NOR. With no arguments, it is NOR FALSE = TRUE. With

one argument, it is negation, NOR A = NOT A; with two or more arguments it is

n-ary NOR. Forms sharing a representational space are not grouped or ordered,

since space supports no structure. From a boundary perspective, sharing space

is a set operator. The functional interpretation of space for logic is

generalized n-ary OR. That is, the void is overloaded with both the OR

operator and the constant FALSE.

Boundary logic is an axiomatic system based on distinctions interpreted for
logic. Table 2 presents a three axiom basis for propositional boundary logic.

The system emphasizes formal transformation by void-substitution, in effect

erasing irrelevant symbols. Thus any boundary structure with the pattern

(A ( )) is assured by DOMINION to be irrelevant to the outcome of the

computation in that pattern's context, or environment. The DOMINION rule gives

permission to disregard all such patterns by permitting void-substitution for

those patterns. INVOLUTION disregards a particular double boundary structure,

while PERVASION disregards duplicate reference to subexpressions. These axioms

are independent, complete and consistent. They also provide a particularly

simple computational model, since the right-hand-side of each rule

incorporates a void-substitution.

Table 1. The Map from Propositional Logic to Parens Boundary Logic
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==================================================================

Dominion (a (   )) =

To ABSORB:

Erase distinctions that contain an empty distinction,

and their contents.

Involution (  (a  )) =  a

To CLARIFY:

Erase distinctions with no intermediate structures.

Pervasion (a (a b)) = (a (b))

To EXTRACT:

Erase duplicates of the context from the content.

==================================================================

Table 2. The Axioms of Boundary Logic in Parens Notation

A sample proof of the idempotency of OR  follows:

   a   a = a IDEMPOTENCY

  a   a given

((a)) a involution

(( )) a pervasion

      a involution

This proof incorporates several characteristics of the boundary mathematics

formalism: an algebraic transformation strategy, extraction of redundant forms

from deeper nested spaces, and transformation by void-substitution rather than

by rearrangement.

2 Distinction Networks

The structure, or connectivity, of a distinction network embodies the logical

semantics of its Boolean function. Each dnode represents a distinction which

acts only on its local context as determined by its upper and lower

connectivity. When dnodes are implemented as agents with the disposition of

the generalized NOR operator, they act autonomously and in parallel to

minimize their local connectivity. The activity of the ensemble generates

logical deduction.

Figure 1 illustrates the spatial translation process from logic to parens to

distinction networks. The linear parens representation is first spread out

over a plane, associating a spatial extent with the depth of parens nesting.

Each parens pair defines the boundary of a distinction node;  nesting of

parens defines directed links between nodes. Multiple references to variables

are combined so that each variable node is unique.
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==================================================================

LOGIC (if (A and (if A then B)) then B)

PARENS ( ((A) ((A) B)) ) B

EXTRUDED PARENS (               ) B

  (           )

   ( ) (     )

    A   ( ) B

         A

   DDISTINCTION TREE      DDISTINCTION NETWORK

==================================================================

Figure 1. Translating Modus Ponens from Logical Syntax to Dnets

Figure 2 illustrates the three reduction rules of boundary logic in

distinction network form. Capital letters stand for arbitrary subnetworks,

including none or several. The middle forms in each reduction rule include a

disconnect notation which illustrates how dnets are transformed during a
reduction. The axiomatic transformations constitute a graph rewrite system.

The next section illustrates logical evaluation using a single reduction rule

expressed in an agent-oriented model and a pseudo-LISP syntax. Algebraic

minimization follows, incorporating the other two axioms into the agent model.

2.1 Structure and Organization of Dnets

Dnets provide two perspectives on computation. From the standard outside

perspective, the organization of the network is that of communicating

distinctions. The structure of the network is its particular connection

topology, which represents its Boolean functionality. The orientation of the

network is from ground input to global output, with the upper bound

representing ensemble functionality and the lower bounds representing function

parameters and variables.
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==================================================================

ABSORB

CLARIFY

EXTRACT

==================================================================

Figure 2. Boundary Logic Reduction Rules in Dnet Notation

The non-standard perspective defines organization and structure from within

each individual dnode while it senses and reacts to its local environment. The

agent-oriented model of a dnode with the disposition to evaluate logic is

presented in Table 3.

The internal organization of each dnode consists of a local memory which

represents the sensed environment (UPPER, LOWERS), two reactive message

handlers (ABSORB!, REMOVE!) which result in immediate actions, and one

persistent internal process (ABSORB?) which generates an action only in the

particular environmental circumstance of no lowers. This regime implements the

boundary logic reduction rule ABSORB. ABSORB eliminates all occurrences of the

empty parens. It is a graph generalization of partial function evaluation in

the Boolean domain.

The internal structure of different dnodes differs only in the contents of

their local memory. Local memory stores a dnode's only perceptual involvement

with its environment as the names and orientations of its direct communication

partners.  Messages with a "?" suffix indicate a choice local to a single

dnode based on its memory of its current environment. Messages with a "!"

suffix are reactive, requiring no contextual or internal evaluation (in

different metaphors: no awareness of situation, no memory-based computation,
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no contemplation).

==================================================================

To ABSORB: (A ( ))  ==>

Local memory (knowledge of environment):

UPPER <the upper node linked to a dnode>

LOWERS <lower nodes linked to a dnode>

Disposition and initialization:

ABSORB?

(if (no lowers) then (send upper ABSORB!))

Response to messages:

ABSORB!

(send upper REMOVE! self)

REMOVE! <link>

(forget link)

==================================================================

Table 3. Dnode Organization for ABSORB

Many implementation details have been omitted from this organizational

description. For instance, no attempt has been made to clean up dnodes that

are left stranded; it is sufficient to note that dropped messages and stranded

nodes will not effect the validity of the global outcome. Also, no provision

has been made for the behavior of variable nodes which may be bound to a value

or left unevaluated.

When a node disconnects from (forgets) its upper, it effectively removes

itself and its subnetwork from further interaction with the active ensemble.

Lower-bound exceptions (for example, unbound variables have no lowers yet do

not ABSORB) and upper-bound exceptions (do not CLARIFY the observer node)

define the edges of a dnet for i/o purposes. Labeled upper and lower bounds

are the observable edges of the ensemble, and begin half disconnected.

Consider the dnet in Figure 3, which represents the functionality of a one-bit

equality tester (the IFF function). When an input variable is bound to TRUE,

it is replaced by a dnode. When a variable is bound to FALSE, it is erased

(equated to the void). In the example, when A is TRUE and B is FALSE, the

value of the IFF function is FALSE. Variable binding provides the first

reduction, as A and B substitute their current values.  Two ABSORBs from A=( )

are the second step. The three graph reduction steps illustrate one possible

evaluation path, which is summarized in parens form below.
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==================================================================

==================================================================

Figure 3. Dnet Evaluation of the IFF Function.

( (( a ) b) ( a (b)) ) iff function

( ((( ))  ) (( )( )) ) a=( ), b=<void>

( (       )          ) absorb (()), (()())

       <void>         absorb (())

Differing arrival times of messages at different dnodes lead to different, but

equifinal, evaluation paths. Two other possible paths are presented below in

parens notation:

( ((( ))  ) (( )( )) ) bind variables

( (       )          ) absorb (()),(()())

       <void>          absorb (())

( ((( ))  ) (( )( )) ) bind variables

( (       ) (( )( )) ) absorb (())

       <void>          absorb (()(()()))

2.2 Algebraic Reduction

Agent-oriented pseudo-code for the ABSORB transformation is presented in Table

3. The code for the two other reduction rules, CLARIFY and EXTRACT, is

presented in Tables 4 and 5. The only autonomous aspect of a dnode's

disposition during Boolean evaluation is the self-query ABSORB?. Otherwise the

network behavior is purely reactive, or data-driven. A more complex form of

coordinated agent behavior occurs during algebraic reduction of dnets, when

variables are not bound. In algebraic reduction, dnodes cooperate to enact all

three reduction axioms of boundary logic, generating partial function

evaluation, tautology identification, and Boolean minimization.

The CLARIFY reduction rule removes two dnodes which have no intermediate

network structure. It is a graph generalization of functional inversion. The

CLARIFY? message coordinates with the lower (deeper) node of the two. The

CLARIFY! response assures the upper node that there is no intermediate network

structure between the pair, and that the lower node has not already entered

into another CLARIFY relationship as an upper, as occurs in the structure
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( (( (A) )) ) = (A)

Rather than dynamically rearrange links, the two dnodes in this implementation

turn into communication channels, propagating information from the content of

the lower node to the context of the upper node, while rendering their own

disposition inert.

==================================================================

To CLARIFY: ((A))  ==>  A

Disposition and initialization:

CLARIFY??

(if (one lower) then (send lower CLARIFY?))

Response to messages:

CLARIFY?

(if (>1  lowers)) then

    ((send upper CLARIFY! lowers)

      and

     (become-a-link)))

CLARIFY! <links>

((send upper JOIN! links) and (become-a-link))

JOIN! <links>

(perceive-as-lower links)

==================================================================

Table 4. Dnode Organization for CLARIFY

In the EXTRACT reduction rule, each dnode with lowers propagates an

instruction downward to all nodes in its subnet to disconnect from those

lowers. This action is a graph generalization of deduction from the excluded

middle in logic, optimization of scoping in programming, and proper subset in

mathematics. EXTRACT is a deep rule, applying regardless of the depth of

nesting of a target variable. Thus,

     a (b (c (a d) ) )

==>  a (b (c (  d) ) )

In the implementation in Table 5, all dnodes with lowers independently issue

EXTRACT!, flooding the network with downward propagating messages.

Alternatively an implementation could trade space for time, and propagate only

one EXTRACT! message from the upper bound of the network while dynamically

accumulating potentially redundant lowers in each subnetwork.
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==================================================================

To EXTRACT:  (A (A B)) ==> (A (B))

Disposition and initialization:

EXTRACT?

(if (>1 lowers) then (send lowers EXTRACT! lowers))

Response to messages:

EXTRACT! <links>

((if (link = lower) then (forget lower))

  and

 (send lowers EXTRACT! links+lowers))

==================================================================

Table 5. Dnode Organization for EXTRACT

Figure 4 demonstrates an algebraic proof of modus ponens (m-p). The
translation of m-p to parens and to dnets is in Figure 1. In Figure 4, the

dnode-agents communicate while making local decisions. Two nodes CLARIFY while

one link is EXTRACTed from B. Three sequential reductions then terminate the

process with m-p = ( ). The parens proof, which ends at identity, follows:

(((a) ((a) b))) b = ( ) modus-ponens

  (a) ((a)    ) b = ( ) clarify, extract b

  (a)   a       b = ( ) clarify

  ( )   a       b = ( ) extract a

  ( )             = ( ) absorb a b. identity

2.3 Dnet Dynamics

Dnodes without lowers propagate ABSORB! upwards while dnodes with one lower

request CLARIFY? downwards and dnodes with more than one lower propagate

EXTRACT! downwards. This models, respectively, concurrent data-driven,

structure-driven, and goal-driven graph reduction strategies. The three axioms

can be implemented to integrate seamlessly into an ensemble of parallel

activity. From the perspective of any single dnode, it is acting out its own

disposition within a changing environment. From the perspective of the entire

dnet, a swarm of local activity transforms the net into a minimal graph

representation of its Boolean function. This local activity does exhibit

global patterns, beginning with all ABSORB and CLARIFY transformations, then

alternating between waves of EXTRACT and local ABSORB/CLARIFY in response. The

process terminates when all EXTRACTs fail.

Technically, more mechanism is needed to achieve complete Boolean

minimization, since dnets can settle into local, non-global minima. As well,

the concept of minimization itself is goal dependent, requiring different

mechanism for different objectives. For example, in logic synthesis for

circuitry, depth of nesting models the time delay of propagation of a signal,
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the number of links in a network models wiring costs, and the number of dnodes

models layout area. Different silicon technologies emphasize different

concepts of optimality.  Mathematically, the goal is to maintain functional

invariance across network transformations while meeting design constraints.

==================================================================

==================================================================

Figure 4.  Dnet Graph Reduction of the Modus Ponens Tautology

For simplicity, the above implementation assumes one upper connection for each

dnode, with the exception that ground variables have an arbitrary number of

uppers.  An additional structure-driven graph transformation (COALESCE:

A A ==> A) condenses the number of nodes in a dnet by converting multiple

representation of entire subnets into multiple reference to a single subnet.

This generalizes the structure of dnets to include dnodes with multiple

uppers.

3 Applications

With implementation detail and with specific performance extensions, boundary

mathematics has been tested extensively for modeling programming languages

[6], for visual user interface [3], for logical deduction in expert systems

[5], and for circuit synthesis. Systems of distinctions have been used not

only for modeling propositional logic, but also for modeling predicate

calculus and the mathematical domains of integer and transcendental arithmetic

[2, 11], knot theory [13], physical theory [17], and self-reference and

complex Boolean values [12, 19]. Naturally the primary difficulty with working

with boundary mathematics is its novelty.

4 Discussion and Summary

Distinction networks are a simple example of the evolution of software models

from intelligent agents to intelligent systems. The above description of dnets

is intended as a brief sketch of systems of agents which, in ensemble, perform

mathematical computation, and thus might be considered to act intelligently.

The important aspect of the example is that the intelligence is truly

distributed across the network, no agent is performing a traditional

mathematical operation, and no agent has a model of the objectives of the
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mathematical process. This permits each agent to act independently and without

synchronization.

In order to map mathematical semantics onto networks, the existence of

connectivity between nodes must be principled. In boundary logic, connectivity

is defined by containment relations, and containment is interpreted as

implication. The fundamental innovation in boundary mathematics is the use of

higher dimensional representations such as containers which permit a semantic

interpretation of the absence of representation (the void). Like electronic

circuits, a distinction network can define a particular logical function.

Unlike circuits, the signal traveling along enabled communication channels

represents a local exchange about the relative context of each node rather

than a logical value. Signals are thus decoupled from logical semantics and

serve purely to communicate the actions of nodes to their neighbors. Nodes can

then be viewed as enacting their dispositions autonomously in response to

changing environmental circumstances.

The biological/environmental model for programming agents is enabled by the

techniques of:

• Environmental semantics:  distributing a problem over an ensemble of
agents by mapping its structure onto local connectivity between agents,

• Spatial syntax:  representing a problem in a notation which supports
principled topological transformations, spatial display and direct

interaction, and

• Boundary transformation:  utilizing void-substitution to remove
irrelevant parts of a problem.

Boundary mathematics provides new conceptual tools, such as <void>,

representational space, distinction, observer perspective, pervasion,

ensemble, and environment, which permit modeling strongly parallel problem

solving with locally coordinated systems of simple agents.
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