
SHORT DESCRIPTION OF LOSP PROJECT

William Bricken

February 1987

The purpose of the Losp Project is to implement boundary mathematics in a

parallel inference engine. Boundary mathematics is an innovative

computational technique for manipulating tokens that represent boundaries

(such as parentheses and brackets). By placing the semantics of logic onto a

boundary notation, we have created a system that is both representationally

elegant and computationally efficient. Boundary notation is more concise,

requires less pattern-matching to perform inference, and is in general more

powerful than traditional approaches to logical deduction. Since the

boundary formalism is inherently two-dimensional, it provides a visual

language that incorporates logical parallelism by eliminating the conventions

of linear notations. The Losp decision procedure converges rapidly and is

easily implemented and understood.

We are implementing two versions of boundary mathematics applied to logical

deduction. The linear version is written in Pure LISP; it maintains the

Boolean structure of a formula in the nesting and concatenation of lists

bounded by parentheses. Deduction is accomplished by pattern matching which

results in erasure of list structure. Although benchmarking the performance

of the linear engine for propositional calculus is just beginning, we have

demonstrated a five-fold increase in deductive speed, compared to the Boyer-

Moore Theorem Prover. In addition, the algorithm is more powerful, returning

contingent expressions which can be used to construct specific

counterexamples.

The Losp parallel deductive engine currently under development treats

boundaries and terms as system-nodes in a distributed architecture.

Communication links are defined by nesting of boundaries and by function-

argument dependencies. Problems originally expressed in first-order logic

are parsed into a distributed network representation. Deduction is

accomplished by message passing which results in the erasure of nodes and

links. Each node determines whether or not to alter local network structure

based on local information. The network that remains after local parallel

reduction represents the solution. The strong parallelism of this engine

permits goal-free minimization of premises and obviates the need for forward

and backward chaining by distributing deduction opportunistically across the

network representation. We will use this system for rule-base optimization,

compilation, and partitioning.

In addition to inference, the Losp formalism has been used experimentally for

Boolean minimization and for compiling and optimizing the control structure

of functional code (Pure LISP) and declarative code (Prolog). We have

designed boundary deduction systems for database query management and for

planning.

