
1

ILOC MODULAR AND VECTOR ABSTRACTION

William Bricken

May 2003

CONTENTS

ICONIC LOGIC THEORY

ABSTRACTION FIGURES I - IV

ABSTRACTION DURING DESIGN FIGURES V - IX

Top-down Abstraction

Bottom-Up Abstraction

ABSTRACTION OF FUNCTIONAL MODULES FIGURES X - XVI

Low-level Modularization

MODULARIZATION TO ASSIST PLACEMENT AND ROUTING FIGURES XVII - XXIV

Sequential Modularization

Parallel Modularization

Output Subcircuit Modularization

PARAMETRIC GENERATION OF CIRCUITS FIGURES XXV - XXXI

VECTORIZATION FIGURES XXXII - ILIV

Vector Modularization

Matrix Abstraction

SUMMARY

Iconic logic removes redundancy, thus exposing the structural patterns in any

circuit. A structural pattern is an abstraction that condenses many circuit

components into a single component. There are several types of structural

patterns, all of which can be abstracted. Modular, generator and vector

abstraction are described herein. Hierarchical organization techniques

provide methods of simplifying the design and comprehension of complex

circuits. Abstraction provides generic design components and helps to manage

the complexity of a design.

EXECUTIVE OVERVIEW

Look at the ILOC body in Figure XXXIII. It has eight lines with similar

parens patterns. Whenever there is a similar parens pattern, it is possible

to construct an ILOC abstraction. This memo describes many types of

abstractions, the identification and effective manipulation of most of them

are unique to ILOC tools. These abstractions help to solve many difficult

design problems, such as modular composition and reuse of design elements,

identification and control of design hierarchies, technology mapping to

library cells, and placement and routing of logic into limited physical

resources. The ILOC tools can be applied to accelerate synthesis and

transformation of circuit structures, and in general to provide powerful

capabilities for the management of large, complex and difficult to understand

circuit structures.

2

PRESENTATION TECHNIQUE

This memo includes many examples using ILOC internal format and parens

notation. Although study of these forms is necessary to understand their

internal mechanisms, a brief examination of the forms will reveal the parens

patterns that guide the ILOC internal algorithms. A cursory scan of the

examples is sufficient to convey the fundamental idea the circuits

represented by Iconic Logic containers consist of easily identifiable

repetitive patterns. that can be mapped into reusable design elements and

repetitive silicon architectures with ease.

ICONIC LOGIC THEORY

ILOC data structures can expose structural patterns in circuits because of

three unique features of Iconic Logic:

-- gates and wiring are a single concept

-- structural patterns are constructed from a single component type

-- iconic forms concurrently represent many different data structures

The container is the only structural entity in ILOC. As a boundary between

spaces, a container both separates and connects. The connectivity aspect --

both spaces share a common boundary -- is interpreted as wiring. The

separation aspect -- neither space is confused with the other -- is

interpreted as logic.

Pattern-matching is simply aligning the depth and breadth of the homogeneous

containment relations. This permits both pattern-matching of identical forms

and pattern-matching of forms that are structurally the same but contain

different sub-structures, i.e. abstract features.

ABSTRACTION

Abstraction refers to a body of techniques for constructing larger basic

structures than are included in a gate level description. Abstraction comes

in many varieties, including

-- cell abstraction: a pattern is identified and constructed as an

individual gate or library cell

-- module abstraction: a pattern is identified and constructed in a

separate functional grouping while cells provide input and output binding

values for the module

3

-- input abstraction: symmetries across inputs are generalized

-- generator abstraction: functions are generalized to apply to any

bit-width

-- vector abstraction: collections of input signals being processed by

identical functions are bundled into collections of signals with bit-widths

greater than one

-- partition abstraction: logic and routing clusters are structured by

limited parametric templates that are used for mapping into constrained

physical resources.

Cell structure abstraction uses specialized cell-forms with a pre-defined

structure. Cell structure abstraction primarily addresses common lower-level

patterns such as XOR and MUX. In general, cell-form pattern abstraction is

usually used for network abbreviation to control complexity, for hierarchical

construction and decomposition of circuit functionality, for identification

of time/space trade-offs in circuit structures, and for technology mapping

into cell libraries.

In contrast, module abstraction constructs a library element as a reusable

component, abstracting structure into a separate module body and using i/o

ports to connect inputs and outputs of the module to the body of a larger

circuit.

Figure I shows the ILOC internal form of a library element, or an abstract

module. The main body of any circuit is in the exact same form, making any

circuit a potential module in an even larger context. Figure II shows the

format for linking a module into the body of a larger circuit. Figure III

shows a simple example of the ILOC modular cell capabilities, in which a 2NOR

cell has been abstracted. Modules can be nested within one another. Figure

IV shows a three-level example of nested modules.

ABSTRACTION DURING DESIGN

Abstraction is mandatory as designs grow large, since human designers find it

exceedingly difficult to extract information from logic networks containing

thousands (or more) gates. To accommodate this restriction, design itself

has embodied modular principles. Thus modular abstraction already exists as

a top-down design practice.

4

Top-down Abstraction

Nested modules provide an unlimited capacity for hierarchical abstraction and

organization of a circuit design. By defining module templates in a top-down

manner, a designer can rough-out the architecture of a design without having

to specify the details. This is common practice during the specification

phases of design. By assembling existing functional modules for specific

behavioral components such as adders, comparators, buffers, counters, and the

like, a designer can fill in certain aspects of an evolving design while

leaving other aspects for later refinement. Thus nested modules provide

valuable design tools that assist and facilitate designers during the

conceptualization and specification phases of design, they provide

organizational tools for the management of complexity of designs, and they

enable to modular composition and reuse of design elements.

Figure V shows three stages in the top-down specification of a

microprocessor. This figure serves as an example of the design process, and

is not intended to illustrate a new design. At first, a designer may draw a

very abstract functional block diagram, indicating the highest level units

and the channels of communication flow. These functional blocks may then be

articulated with some important concepts, such as bit-widths and types of

data flow. As the design elaborates, more and more information may be filled

in, some of it just placeholders, some it well understood, and perhaps some

of it experimental, awaiting more information.

Similarly, Figure VI shows that the ILOC format can begin in a quite rough

form, with details lacking and only functional modules present. Given

sufficient guidance, ILOC can generate the abstract templates automatically

and interactively, serving as a design drawing board, very much like software

coding environments provide both templates and structural management for

programming concepts. Figure VII shows more detail of the ILOC format being

filled in, corresponding to the middle diagram in Figure V. Here emphasis is

on the control cycles and steps of the FSM component, and the communication

between the components. Instructions, or functionality, is expressed in

module cells, while data paths are expressed in the input and output binding

of the modules. Figure VIII shows yet another level of top-down refinement,

specifying more details about the data flow and instructions between the

modules.

This example is not one of hardware design since it illustrates ILOC

capabilities for design prior to hardware specification. After the

functionality has been defined at the conceptual and functional levels, a

hardware engineer would then ask how to achieve this functionality in

silicon. Figure IX shows the ILOC modular format for the cell-level hardware

description of a functional microprocessor, for comparison. These WOTAN CPU

modules have been identified dynamically by ILOC. (The WOTAN design, by

Nicholas Wirth, is intentionally highly modular as well.) The WOTAN

5

microprocessor description is annotated by the number of each module type it

incorporates when expanded.

Thus ILOC can provide methods and support for the initial stages of the

design cycle, as well as logic synthesis after the gate-level design is

complete.

Bottom-Up Abstraction

The methods of abstraction applied to parens forms apply to ILOC body formats

in general. The ILOC format, however, allows more diverse types of

symmetries to be abstracted than do parens forms. In particular, structural

symmetries within parens forms must also be logical symmetries, since parens

patterns are logic patterns. In the ILOC circuit body, two cell-forms can be

symmetrical but not connected logically. Patterns across cells can identify

identical functions that can be put into ILOC module format, they can

identify vectors of signals that travel together between logical structures,

they can identify opportunities for structure sharing within the circuit, and

they can identify glue logic subcircuits with no inherent structure.

What current tools do not provide is bottom-up abstraction, the ability to

identify modular patterns in a circuit that have not necessarily been put

there during design. The primary advantage of bottom-up abstraction is that

designers can identify available trade-offs between circuit area and circuit

delay. Another advantage of bottom-up abstraction is that modular components

can be partitioned parametrically. Circuits can be sliced up in different

ways, some of which may be more desirable for a particular design context or

a particular resource constraint. Such re-partitioning is often necessary

during design placement into a silicon substrate. Not only does the

abstraction aspect of ILOC identify available modular components, it can move

across different modular groupings, customizing the level and degree of

abstraction.

Although many tools can take a hierarchical design top-down and expand it

into more fine-grain elements, the top-down design must first be defined and

provided by a designer. ILOC can take netlist descriptions and construct

bottom-up the abstract modules that form the circuit. This enhances ease of

maintenance and of redesign. As well, poorly optimized circuits can be

decomposed, reoptimized and reorganized automatically by the tools and

methods incorporated in ILOC. Further, as illustrated by the following

figures, ILOC can provide a diversity of decomposition and abstraction

perspectives that permit a designer to explore specific aspects of the

circuit structure such as logically necessary paths, wiring and routing

demands, critical paths, and other design criteria. It should be noted that

the small circuits used in these examples do not imply a limitation to the

scalability of the ILOC techniques or their capacity to be fully automated.

6

ABSTRACTION OF FUNCTIONAL MODULES

It can be useful to identify logic subgraphs for abstraction that have the

same functional behavior but have different inputs. Thus in the case of MUX

abstraction, rather than keeping each MUX within a separate cell, the

abstract MUX pattern could be created as a module, and each MUX instance

within the circuit could refer to the module. By including all parens

patterns and ignoring the various inputs within those patterns, functional

abstraction can be used for structure sharing. For example, should a large

ALU form occur four times within a given circuit, and should area be over

constrained, then the design can be configured so that the same say two ALU

forms could be used for different sets of inputs. By converting parallel

processes to sequential processes, time is swapped for area.

Figure X shows a functional abstraction of four cells, all having the same

parens structure. Using simply pattern-matching, the four common parens

structures are identified. The first, or seed, pattern could be designated

by the user interactively, or it could be selected automatically.

One important aspect of modularization is that all optimization tools within

ILOC can be applied within a module body, thus changing all instances of the

module at one time.

Low-level Modularization

Figure XI shows a 4-bit magnitude comparator after a number of rearrangement

transformations. The designer may wish to examine the smallest gate

structures that are currently present in the circuit body. By selecting low-

level abstraction, ILOC will identify parens patterns at the lowest level of

structuring that are not simple logic gates. These patterns are visually

apparent. The XOR module consists of eight structurally similar patterns,

with pairs of similar patterns sharing identical atoms. The 3NOR module

consists of four structurally similar patterns. Since the AND patterns in

cells 9 through 16 are simple gates, as are the OR patterns in cells 21 and

22, these are expanded to form the OR-AND module.

For clarity, in this example, each of the constructed modules is shown

separately in Figures XII, XIII, and XIV. Then they are composed in Figure

XV. Automated modularization would construct the three modules concurrently.

However, a designer could elect to constrain the method to construct only one

module at a time. A designer may also elect to specify specific cells to be

modularized, further constraining the scope of application of the method.

Figure XVI contains the circuit schematic corresponding to Figure XV, showing

abstracted function blocks in place of module component cells. By

abstracting gates into functional blocks, the structure of the circuit

becomes clearer, and circuit complexity becomes easier to handle both

visually and in the context of design.

7

The necessity for design hierarchy is a recognized problem for designers.

EDA tools tend to provide graphic support, but not automated identification

and construction of modules. ILOC addresses this problem directly. In

addition, ILOC provides multiple levels of design entry, permitting a

designer to access the design and the automated design tools conveniently at

any level of detail.

MODULARIZATION TO ASSIST PLACEMENT AND ROUTING

The modularization process can be applied to a circuit structure with the

design goal of easing placement and routing into physical resources without

degrading the gains from logic synthesis. ILOC thus contributes to the

solution of an outstanding problem in placement of logic and management of

physical routing resources.

By controlling expansion and formation of ILOC cells, both the logic

resources and the routing resources required by the cell-form can be

controlled at any grain-size. For the smallest grain-size, every cell-form

consists of a single container and a contained group of atoms. For the

largest grain-size, there is only one cell for each output and that cell

contains the entire transitive fan-in of the output. All of the techniques

of ILOC rearrangement can be applied to placement and routing. In the case

of a fixed logic resource, that resource is a pattern template to be matched.

In the case of reconfigurable but fixed resources, the pattern template may

match some criterion other than logic placement, for example, grouping into

collections of four atoms for 4LUT mapping. In all cases, a minimized parens

form that is as deeply nested as possible will require the minimum routing

resources, while a flattened two-level parens form will require the maximum

routing resources.

Herein, a more abstract notion of routing is described. ILOC identifies

necessary routing required to achieve a specific functional performance

within specific structural limits, particularly those limits defined by a

constant length critical path, independent of hardware resources. ILOC

abstraction and modularization techniques characterize the functionality of

the circuit logic in such a way that physical placement of any form of the

circuit must address at least what is dictated by the parens form. For

example, should a parens form representing a specific logical functionality

require a minimum of 12 containers, then for simple logic gates, a minimum of

12 wires will be required regardless of how the functionality is expressed

structurally. This observation gains strength when combined with

abstraction. Given that a logic element can accommodate a particular parens

configuration, then that configuration can be treated like an atom, a black

box for which the internals don't matter to the placement or routing of the

circuit. In such a case, the number of containers in the context of the

abstracted form still defines the minimum routing required for that unit of

8

functionality. ILOC incorporates a capability to configure any type of

grouping of forms hierarchically using abstraction.

Figure XVII shows the 4-bit magnitude comparator partitioned to emphasize

routing between functional modules. Figure XVIII shows the schematic for the

circuit abstracted to emphasize routing.

Sequential Modularization

Figure XIX shows a modular decomposition of the 4-bit magnitude comparator to

emphasize sequential routing requirements, particularly the critical path

through the circuit. The modularization criterion is to construct modules

with shallow bodies. Cells are expanded under the constraint of no more than

two levels of nesting. Figure XX shows the accompanying schematic. Two

sequential forms dominate the circuit structure. The chain propagating

through the XOR-3NOR blocks defines the longest sequential path delay, ending

with the EqualTo output. The tangle of wires connecting the critical path

fan-out to the OR-AND blocks provide information to the GreaterThan and

LessThan outputs. Upon closer inspection, each XOR-3NOR block provides one

signal to each of the OR-AND blocks separately, and one signal that is shared

by both blocks. One enable enters each of the OR-AND blocks; interestingly,

the EqualTo enable progresses through the critical path chain, identifying a

design flaw in this structure.

Parallel Modularization

Just as sequential structure can be identified by forming shallow modules,

parallel structure can be identified by generating the deepest possible

recurrent structures. Figure XXI shows the ILOC format of the 4-bit

magnitude comparator based on deep modules. This structure is formed by

expanding cells based on whether or not the cell-form contributes to deeper

parens patterns. The net result is to place the maximum amount of sequential

logic into module blocks, leaving only routing that propagates signals in

parallel. Figure XXII shows the accompanying schematic. The ability to

partition sequential and parallel components of a logic structure is unique

to ILOC.

Output Subcircuit Modularization

ILOC modularization can generate modules to abstract and separate structure

that is unique to each output from structure that is common to each output in

a multiple output circuit. Again, such a decomposition highlights required

routing resources, in this case those needed by each output independently.

Figure XXIII shows the 4-bit magnitude comparator abstracting each output

subcircuit This particular abstraction identifies a structural similarity

9

between the GreaterThan and the LessThan circuitry, also showing that the

EqualTo output is independent of the comparative outputs. Figure XXIV shows

the schematic that highlights independent output structures. Close

inspection reveals that signals coming from the eight two-input NOR gates all

enter the nine-input OR gate. This suggests that the EqualTo magnitude

comparison can be implemented separately from the GreaterThan and LessThan

magnitude comparisons.

PARAMETRIC GENERATION OF CIRCUITS

The specification of design constraints such as critical path length, fan-

out, and wiring complexity can be used to guide the automated generation of

candidate circuits for further evaluation and analysis. A common parameter

that guides the size and complexity of circuitry is bit-width. ILOC

incorporates abstract templates that can be used to construct specific

functions for particular bit-widths. This capability allows the design of

generic components that can be generated to fit any width of parallel binary

inputs. An N-bit adder, for example, can be instantiated in one part of a

circuit that uses only 4-bit data as a 4-bit adder, while being instantiated

as a 16-bit adder in other parts that use 16-bit data streams.

Bit-width parameters can be used to redesign functions for wider input data

structures, for specialization of function size in order to conserve

resources, for ease of behavioral specification, for customization of

functions to particular input values, and for a diversity of other design and

functional proposes.

An example of bit-width configuration combined with other specified design

parameters is a decimal-to-binary converter. In order to accommodate

decimals with 10 input varieties, a binary system needs four bits that can be

configured into 16 (2^4) varieties. However, the six of these binary

configurations that would represent the non-existent decimal numbers 10

through 15 are never used. Thus the input to a binary-to-decimal converter

is biased. The lowest bits occur probabilistically 50% as 0 and 50% as 1.

The highest bit, which covers the decimal numbers 8 through 15 when set to 1,

is most often a 0. Specifically four times out of five a decimal number will

be 0 through 7, and one time out of five it will be 8 or 9. Thus the circuit

can be optimized to take this biasing into account. Biased input is quite

common in many applications, however current design tools enforce a 50/50

expectation for input values. Current synthesis techniques address this

biasing as don't care values, attempting to optimize logic by analyzing the

possible paths through a circuit. ILOC addresses don't care minimization

directly in the parens format, not requiring specialized analytic techniques.

The magnitude comparator serves as an example of parametric specification of

functionality in ILOC format. Figure XXV presents the ILOC format for a

magnitude comparator of any bit-width, without enables. The functional

10

circuit generator described is intended for specialized bit-widths, such as a

5-bit comparator that would be wasteful if composed of two 4-bit circuits.

Also, it is possible to construct functions with slower sequential

architectures, and then manipulate their structure using ILOC optimization

techniques to construct versions of the cascaded functions that are faster.

The magnitude comparator generator expressed in ILOC format in Figure XXV

consists of two components, a base case and a generator case. The base case

initializes the generator, providing a 1-bit comparator. As such, the base

case 1-bit comparator is inefficient and would be significantly reduced by

structure sharing if only one bit was to be compared. Essentially a 1-bit

comparator is an XOR gate, but the bare XOR form provides no suggestion as to

how to generalize it to be a 2-bit comparator. The generator components in

the figure are equivalent, one is expressed as an iterated method and one as

a recursive method. The recursive component is a preferred method since it

is both more succinct and more efficient. The recursive component expands

directly by substitution, while the iterated component requires an

independent engine to conduct the iterative expansion. Figure XXVI shows an

abstract circuit schematic for the base and recursive generators described in

Figure XXV. The schematic can be expanded by direct substitution of

generated circuits that have one fewer bits.

In recursive generation of the comparator circuit, the 1-bit template circuit

serves as the starting format. The 2-bit comparator is constructed by

embedding the 1-bit comparator in the abstract block provided by the

generation template for the circuit. Then to construct a 3-bit comparator,

the 2-bit comparator is again embedded into the abstract block provided by

the generator template. An N-bit comparator is generated by N embeddings.

Figure XXVII provides examples of the ILOC format generated comparator

circuits for two, three and four bits to illustrate the expansion process.

Figure XXVIII provides the same generated comparator circuits for one, two

and three bits in schematic form, showing the substitution process. It

should be noted that the generation and substitution process construct

circuit designs that are highly inefficient. Bit-width generation is

naturally followed by ILOC optimization, which then redesigns the circuit to

be both efficient and minimal.

Similar to Figure XXVI, Figure XXIX shows the ILOC generator format for the

magnitude comparator circuit, but with the enables included. The figure is

an example of a general recursive generator with non-recursive components.

For generator functions, it is easiest to use the non-optimized functions

during the generation phase, and then to optimize the final generated

function, since the greatest diversity of design choices is maintained by the

highly regular structure of the non-optimized generated format. The

regularity maintained in non-optimized base case forms permits easier ganging

and cascading of components to form larger functional units during technology

11

mapping. Thus, the reduction benefits of optimizing a circuit generator can

be postponed by design until the context of the generated function is more

defined.

Figure XXX shows a non-optimized 8-bit adder generated by ILOC, while Figure

XXXI shows the optimized version of the same adder. The repeated structural

pattern output by the generator is apparent in Figure XXX. The repeated

pattern of structural organization of an optimized adder is apparent in

Figure XXXI. In the case of adders, optimization is not significantly

different than non-optimized generation, rather optimization is primarily an

organizing principle.

VECTORIZATION

The ILOC generator format permits replication of functionality across varying

bit-widths. The ILOC vectorization tools permit wires of varying bit-widths

to be abstracted into a N-bit wire. Combining modularization, vectorization,

and function generation creates a set of design tools with which a designer

can compose, analyze, and explore a complete circuit abstractly without

regard to specific bit-width.

One important aspect of vectorization is that ILOC transformations can be

applied to the abstract vector form, thus changing all instances of the

vector at one time. All ILOC tools are equally applicable to vectors,

permitting efficient transformation of groups of signals over a given

functionality.

Some abstractions are particular to a specific functionality or circuit, but

are replicated due to bus structures and bit-widths. In vectorization, these

are identified by matching containment structures across ILOC cells, similar

to the functional abstraction method. Vectorization is the combination of

functional abstraction and bit-width abstraction. Figure XXXII shows a

simple example.

In Figure XXXII, an ILOC body fragment has four cells that are functionally

equivalent. In functional abstraction, these four cells could be converted

into four instances of a single module that abstracts the common

functionality. For comparison, the functional abstraction is also shown in

Figure XXXII. To abstract the communality of the input-output relations in

the example, two vectors are constructed, the input vector and the output

vector. These vectors are ordered lists, each input vector item

corresponding to an output vector item with the same vector index. The

vectors are then substituted for the set of cells they abstract. In the

example, four cells that share the same functional relation are replaced by

one vectorized cell that represents all four cells in one vector abstraction.

12

Function modularization and vectorization are similar methods that achieve

similar results. Fundamentally they differ in the way abstracted forms are

stored and accessed. In modularization, the function template serves as an

abstracted component that can be referenced with particular bindings any

number of times. Thus functional abstraction is useful when a fixed library

structure is mapped during technology mapping, and when a stable modular

component has been identified. To transform functional abstractions, it is

necessary to expand them back into the ILOC body, at which time the modular

form may be lost due to transformation. Some instances of a modular

component may be expanded without abandoning the component throughout the

ILOC body. Functional modularization reifies a functional form while keeping

i/o bindings flexible

In contrast, vectorization applies to a particular set of matching patterns

and usually is not extended when other pattern instances are identified.

Thus vectorization applies to a fixed number of instances. The vectorized

functional form remains within the ILOC body as a single vector cell, so that

transformations on the vector function do not require a binding list to be

disassembled. In vector abstraction, an input/output template serves as the

abstracted component that is referenced by a given functional structure a

specific number of times. Thus vector abstraction is useful when the same

functionality is applied to a collection of inputs and results in an aligned

collection of outputs. It is useful when a stable i/o bundle can be

identified. Instances of a vector output can be referenced independently, in

effect decomposing the vector after a function is applied. Vector

abstraction reifies an i/o structure while keeping functional form flexible.

Figure XXXIII shows another ILOC vector format example in which eight three-

input MUX functions are combined to construct a vector MUX with sixteen

inputs and eight outputs, all using the same select signal. The vectorized

body consists of three vector binding cells and one functional cell. Figure

XXXIV shows the accompanying schematic view of a vectorized ILOC format. The

case of N identical functions with different inputs can be vectorized to a

single vector function with a vector input of width N. Note that the

individual components of the input vector do not become functionally

combined. The vector components are not inputs to the same single function,

rather they are separate inputs to separate instances of the same function

module. Thus there are two types of bit-width abstraction, functional bit-

abstraction and vector bit-abstraction.

Vectorization is of particular value whenever the same vector occurs in

different functional relations throughout the circuit. Figures XXXVa and

XXXVb show an example ILOC format of an 8-bit sequential multiplier. The 82

ILOC cells represent 16 registers and 169 conventional 2-input gates. Figure

XXXVI shows the ILOC vector format of the same multiplier. The vectors in

the ILOC body are annotated by their size. The vectorization clearly shows

that 16 bits are progressing as vectors through only four functional

13

transformations, labeled as vector cells V3, V4c, =V5, and =V6b in the ILOC

vector body.

Vector cell-labels follow the same conventions as do regular cell-labels, so

that the exclamation point, for example, identifies a vector of registers,

and the equal sign identifies a vector of IFF/XNOR functions. In the

example, the end conditions have not be generalized, so that several vectors

overlap in the middle, but differ in the first and last vector indices. Thus

vectorization permits exacting control over bussing and routing resources.

Figure XXXVII shows the ILOC vector body with the vector relationships

annotated. In this circuit, two vectors, V2 and V4, are initialized by

binding one vector component to a ground value. Two vectors, V4 and V6, are

shifted so that the output of a particular component is used as the input to

an adjacent component. These structures characterize a one-bit sequential

processor. The Figure also shows a container-based transformation of

vectors, expanding vectors V3 and =V5 into the cell-bodies of other vector

cells. The expansion, deletion-reduction, and rearrangement processes are

identical to those used for transformations with primary cell inputs.

Figures XXXVIII through XLIV show a large vector formatted circuit, I7 from

the MCNC benchmarks, that has 199 inputs and 67 outputs. I7 is composed of

331 conventional gates, most of them having 4 and 5 inputs, an equivalent of

just over 900 conventional two-input gates.

The ILOC body condenses to 31 vectors of size 2, 4, and 28, as shown in

Figure XXXVIII. The ILOC vector body in Figure XXXIX shows that the circuit

consists of six separable subcircuits. The first subcircuit is a one bit

combination of various enable signals, and fourth subcircuit is a two-bit

combination of enables. The other four subcircuits are quite similar,

differing primarily in bit-widths of 4 and 28 bits. Figure XL shows the

partitioning of the ILOC body with regard to bit-width processing. In two

cases, the sequence of labels is divided into two sections. This implies

nothing more than non-contiguous cells for the purpose of vector abstraction.

Figure XLI shows the vector body, expanded so that each vector output is

defined solely in terms of a single parens vector form.

Vector Modularization

One important aspect of management of circuit size and complexity is to be

able to express the circuit functionality succinctly. I7 requires over 100

pages to describe in EDIF 2 0 0 format. The ILOC vector body achieves a

factor of 100 reduction over conventional formats such as EDIF, requiring a

single page to describe the functionality of the I7 circuit. Additionally,

substantive replication of structure is still observable in Figure XLI.

14

Figure XLII shows the application of functional modularization to the ILOC

vector body for I7. A single vector module reduces the functional body to

six lines, one line for each independent output. In the vector

modularization, vectors are bound to the module input labels, and to the four

module binding cells. These vectors are all of the same size for a

particular module cell, but do not have to be of a particular size across

module cells. In the example, both 4-bit and 28-bit vectors bind to the same

module structure. Transformation can be applied to the module body, even

though different bindings may be to different vector lengths. Figure XLII

also shows the application of cell abstraction to the vector cells with the

vector module. In particular, one XNOR structure and two MUX structures are

identified and abstracted into patterns. Since these are vector patterns,

they require care in interpretation. For example =2 refers to four different

sets of XOR gates, one for each index in the vector Va. The size of the

vector Va is indeterminate when localized in the module, so that its size is

defined by the binding cells V91- through V94-, In the case of binding cell

V91-, Va is bound to Vi11. In turn, the Figure identifies Vi11 as a vector

that has 28 indices. Thus, =2 in the vector-module expansion of V91-

represents 28 separate XNOR gates, each receiving the same input ac, and one

other input from Vi11. Succinctly, =2 tests 28 inputs signals for equality

to ac. The rest of the module is also easy to read. For binding cell V91-,

cell >3 is 28 MUX gates, all using the input ac as a selector between 28

pairs of input signals. Cell >1 uses the input ad to steer to output either

the vector of equality comparisons, or the vector of selected inputs from

cell >3. Summarizing, the module selects one of two inputs, tests a

different input against the same selector, and then selects one of those

results using a second selector. This is replicated for 28 input sets of

three.

Matrix Abstraction

Since vector cells can be converted into modules, they can also be converted

into higher rank vectors, in effect constructing a matrix abstraction of the

circuit. Figure XLIII shows the matrix abstraction of I7. Each new vector

consists of other vectors. Here the vector components of a matrix cell are

not the same size, they are merely an ordered list of ordered lists.

Consistency of size is maintained by each cell in the ILOC matrix body. In

the matrix abstraction of I7 shown in Figure XLIII, the ILOC body reduces to

seven cells, each consisting of a one line parens cell-form. Six cells

provide output in the form of enable signals combined with the central

functionality of I7, while one single matrix parens form consisting of 11

containers and 5 different atoms describes the entire central functionality

of the circuit. This matrix cell can be transformed using any applicable

parens optimization, rearrangement or restructuring rules.

Similar to Figure XLII, the ILOC matrix body of Figure XLIII is further

abstracted using cell abstraction on matrix cells. The two MUX structures

15

and the one XNOR structure are again identified, this time referring to a

4x28 matrix of single MUX and XNOR gates.

These abstraction capabilities do more that make large circuits tractable for

human designers, they also specify quite exactly how placement and routing

can be optimized, since the abstractions show exactly how much fan-out and

distance there is between signal bundles, as well identifying the places that

the circuit can be most economically partitioned for resource mapping.

To illustrate the placement and routing information, Figure XLIV shows an

abstract matrix schematic of the I7 circuit. The gates in this schematic

cannot be interpreted as conventional gates since some of their inputs are

vectors and vectors of vectors. When a wide bit-width wire enters a gate in

this schematic, it is to be interpreted as the gate being replicated a number

of times to match the bit-width of the input. Within the schematic, the M4

matrix is decomposed into 4 vectors, indicating that the bit-line bundles

split at that point.

The schematic is a hybrid of conventional logic functionality and abstract

functionality, while never loosing a precise mapping to the physical circuit

it represents. ILOC vector and matrix tools provide top-down block-like

abstraction without enforcing blocks that obscure the actual logical

transformations of the particular circuit. These capabilities also apply

automated partitioning, placing and routing of logical functionality,

addressing what is considered to be one of the most difficult issues in

circuit actualization.

An important feature of matrix abstraction is that is illustrates general

ILOC capabilities for hierarchical bottom-up abstraction. Should repetitive

structure show up in the matrix format, it too could be vectorized to form a

rank three matrix. Similarly, during top-down design, each abstraction level

can be articulated as an abstract vector slice, or as a module component.

Thus ILOC includes powerful methods for the abstraction and abstract

transformation of circuit components, tools that can be applied to accelerate

synthesis and transformation of circuit structures, enhance design

capabilities, provide hierarchical top-down and bottom-up design

capabilities, and in general provide management of large, complex, and

difficult to understand circuit structures.

16

Figure I: The Abstraction Module

((circuit-name circuit-information)

 ((main main-information)

 (main-inputs)

 (main-outputs)

 (main-parens-cells

 (module-cell module-name input-binding output-binding)

 ...))

 ((module-name module-information)

 (module-inputs)

 (module-outputs)

 (module-body))

 ...

 additional-modules)

Figure II: The Module Linking Format

Module-cell in main ILOC body

(ILOC-cell-label

 module-name

 ((module-input-label ILOC-cell-label) ...)

 ((module-output-label ILOC-cell-label) ...))

Module local input and output labels

((module-label)

 ((module-input-label module-input-value) ...)

 ((module-output-label local-module-cell-label) ...)

 module-body)

17

Figure III: An Example of an ILOC Module Serving as a Library Element, the

2/3 Majority Circuit

ILOC format with no library modules

((2/3-majority)

 ((main)

 ((a unk)(b unk)(c unk))

 ((oa 0))

 ((0 (1 2 3))

 (1 (a b))

 (2 (a c))

 (3 (b c))))

ILOC format with an abstracted library module

((2/3-majority)

 ((main)

 ((a unk)(b unk)(c unk))

 ((oa 0))

 ((0 (1-0 2-0 3-0))

 (1- 2nor ((i1 a)(i2 b)) ((o0 1-0)))

 (2- 2nor ((i1 a)(i2 c)) ((o0 2-0)))

 (3- 2nor ((i1 b)(i2 c)) ((o0 3-0)))

 ((2nor)

 ((i1 unk)(i2 unk))

 ((o0 0))

 ((0 (i1 i2)))))

ILOC format with library module expanded

((2/3-majority)

 ((main)

 ((a unk)(b unk)(c unk))

 ((oa 0))

 ((0 (1-0 2-0 3-0))

 (1-0 (a b))

 (2-0 (a c))

 (3-0 (b c))))

18

Figure IV: An Example of Nested Modules

((nested-module-example)

 ((reg)

 ((@ unk)(b unk)(c unk)(d unk)(e unk))

 ((oa 1-0)(ob 2-0))

 ((1- m2 ((a1 c)(b1 3)) ((oa1 1-0)))

 (2- m2 ((a1 d)(b1 3)) ((oa1 2-0)))

 (3 ((@)(b (e))))))

 ((m2)

 ((a1 unk)(b1 unk))

 ((oa1 0))

 ((0 (1-0 (a1 (b1))))

 (1- ff-en ((a2 nil)(b2 b1)(@ @)) ((oa2 1-0)))))

 ((ff-en)

 ((a2 unk) (b2 unk) (@ unk))

 ((oa2 0))

 ((0 (1 (2 (@))))

 (1 (((a2)(b2))))

 (2 (b2 (0))))))

19

Figure V: An Example of a Top-down Design

Rough block diagram

memory

execution unit

control

processor

More details I

ALU

memory
FSM

execution unit

32

16

32data manipulation

data staging

control

More details II

ALU

memory

store

load

instruction

opcode

A B

C

program counter

instructions

accumulator

memory address

32

16

16
16

32
32

FSM

20

Figure VI: An Example of a Module Template for the Top-down Design in

Figure V, Rough Block Diagram

((design)

 ((main from-the-perspective-of-the-memory))

 ((proc-in unk)(exe-in1..32 unk)))

 ((proc-out 2)(exe-out 3))

 ((1- control

 (())

 ((proc-out <?>)(exe-out <?>)))

 (2- processor

 ((control-in <?>)(memory-in <?>))

 ((memory-out <?>)))

 (3- execution-unit

 ((control-in <?>)(memory-in <?>))

 ((memory-out <?>)))

((FSM-control)

 (())

 ((proc-out 0)(exe-out 1))

 ((0 <?>)

 (1 <?>)))

((ALU-processing)

 ((control-in unk)(memory-in <?>))

 ((memory-out 0))

 ((0 <?>))

((execution-unit)

 ((control-in unk)(memory-in <?>))

 ((memory-out 0))

 ((0 <?>))

21

Figure VII: An Example of a Module Template for the Top-down Design in

Figure V, More Details I

((design)

 ((main from-the-perspective-of-the-memory))

 ((READ-address1..16 unk)(STORE-in1..32 unk)))

 ((INSTRUCTION-out1..16 READ)(LOAD-out1..32 READ))

 ((1FSM- FSM-control

 ((RESETin unk)(new-instruction INSTRUCTION-out1..16))

 ((FETCH)(EXECUTE)))

 (2ALU- ALU-processing

 ((Ain 2ALU-cout1.32)(Bin LOAD-out1)(OPin INSTRUCTION-out1..16))

 ((Cout 2ALU-Ain1.32)(Aout STORE-in1..32)))

 (3EXU- execution-unit

 ((rin1..16 INSTRUCTION-out1..16))

 ((rout1..16 READ-address1..16))

((FSM-control)

 ((RESETin unk)(new-instruction unk))

 ((FETCH 2)(EXECUTE 7))

 ((0 RESETin)

 (1 RESET: when 0 do 2)

 (2 FETCH: read-memory)

 (3 when READ do 4)

 (4 EXECUTE: <op> -> ALU)))

((ALU-processing)

 ((Ain unk)(Bin unk)(OPin unk))

 ((Cout 0)(Aout ?))

 ((0 <A OPin B>))

((execution-unit)

 ((rin1..16 unk))

 ((rout1..16 0)(mout1..16 ?))

 ((0 rin1..16)))

22

Figure VIII: An Example of a Module Template for the Top-down Design in

Figure V, More Details II

((design)

 ((main from-the-perspective-of-the-memory))

 ((READ-address1..16 unk)(STORE-in1..32 unk)))

 ((INSTRUCTION-out1..16 READ)(LOAD-out1..32 READ))

 ((1FSM- FSM-control

 ((RESETin unk)(new-instruction INSTRUCTION-out1..16))

 ((FETCH)(EXECUTE)))

 (2ALU- ALU-processing

 ((Ain 6AC-rout1..32)(Bin LOAD-out1)(OPin INSTRUCTION-out1..16))

 ((Cout 6AC-rin1..32)))

 (3IR- 16-bit-register

 ((rin1..16 INSTRUCTION-out1..16))

 ((rout1..16 4PCrin1..16)(rout1..16 5MR-rin1..16)))

 (4PC- 16-bit-register

 ((rin1..16 3IR-rout1..16))

 ((rout1..16 5MR-rin1..16)))

 (5MR- 16-bit-register

 ((rin1..16 3IR-rout1..16)(rin1..16 4PC-rout1..16)

 ((rout1..16 READ-address1..16)))

 (6AC- 32-bit-register

 ((rin1..32 2ALU-Cout))

 ((rout1.32 2ALU-Ain)(rout1.32 STORE-in1..32)))))

((FSM-control)

 ((RESETin unk)(new-instruction unk))

 ((FETCH 2)(FETCH 3)(FETCH 5)

 (EXECUTE 7)(EXECUTE 8)(EXECUTE 10)(EXECUTE 11)

 (EXECUTE 12)(EXECUTE 13)(EXECUTE 14))

 ((0 RESETin)

 (1 RESET: when 0 do 2 then 3 then 4)

 (2 FETCH: PC -> MR)

 (3 FETCH: read-memory)

 (4 when READ do 5)

 (5 FETCH: memory -> IR)

 (6 DECODE: if 5 do 7 then 8)

 (7 EXECUTE: IR -> MR)

 (8 EXECUTE: read-memory)

 (9 when READ do 10 then 11 then 12 then 13 then 14 then 2)

 (10 EXECUTE: LOAD -> Bin)

 (11 EXECUTE: AC -> Ain)

 (12 EXECUTE: <op> -> ALU)

 (13 EXECUTE: Cout -> AC)

 (14 EXECUTE: PC + 1)))

23

((ALU-processing)

 ((Ain unk)(Bin unk)(OPin unk))

 ((Cout 0))

 ((0 <A OPin B>))

((16-bit-register)

 ((rin1..16 unk))

 ((rout1..16 0))

 ((0 rin1..16)))

((32-bit-register)

 ((rin1..32 unk))

 ((rout1..32 0))

 ((0 rin1..32)))

24

Figure IX: Hierarchical Modularization of a CPU, WOTAN

instances total

((main) -- 1

 <input/output>

 (<registers>

 (23-..46- aluslice <bindings>) -- 24

 (47-..62- pcslice <bindings>) -- 16

 (63-..64- decoder <bindings>) -- 2

 (65- encoder <bindings>) -- 1

 <main-functionality>))

 ((pcslice) -- 16

 <input/output>

 (<register>

 (21-..22- m2 <bindings>) -- 2

 <pcslice-functionality>))

 ((aluslice) -- 24

 <input/output>

 (<register>

 (3-..13- m2 <bindings>) -- 11

 (14-..20- regcell <bindings>) -- 7

 <aluslice-functionality>)))

 ((regcell) -- 168

 <input/output>

 (<register>

 (1-..2- m2 <bindings>)) -- 2

 ((m2) -- 662

 <input/output>

 (<m2-functionality>))

 ((encoder) -- 1

 <input/output>

 (<encoder-functionality>))

 ((decoder) -- 2

 <input/output>

 (<decoder-functionality>))

25

Figure X: Functional Modules in an ILOC body

ILOC body

((oa 4))

((1 (a (b c)))

 (2 (d (e f)))

 (3 (g (h i)))

 (4 (1 (2 3))))

Module abstraction

((oa 4-0))

((1- common ((i1 a)(i2 b)(i3 c)) ((o1 1-0)))

 (2- common ((i1 d)(i2 e)(i3 f)) ((o1 2-0)))

 (3- common ((i1 g)(i2 h)(i3 i)) ((o1 3-0)))

 (4- common ((i1 1-0)(i2 2-0)(i3 3-0)) ((o1 4-0)))

((common)

 ((i1 unk)(i2 unk)(i3 unk))

 ((o1 2))

 ((1 (i2 i3))

 (2 (i1 1))))

26

Figure XI: The Annotated ILOC Format for a 4-bit Magnitude Comparator

Circuit, Prior to Abstraction for Low-level Module Components

4-bit magnitude comparator circuit

((oa 22) (ob 18) (oc 21))

 ((1 (a (b))) -- XOR-module

 (2 (b (a))) -- XOR-module

 (3 (c (d))) -- XOR-module

 (4 (d (c))) -- XOR-module

 (5 (e (f))) -- XOR-module

 (6 (f (e))) -- XOR-module

 (7 (g (h))) -- XOR-module

 (8 (h (g))) -- XOR-module

 (9 ((j)(8))) -- OR-AND-module

 (10 ((j)(7))) -- OR-AND-module

 (11 ((3)(20))) -- OR-AND-module

 (12 ((4)(20))) -- OR-AND-module

 (13 ((6)(17))) -- OR-AND-module

 (14 ((5)(17))) -- OR-AND-module

 (15 ((1)(19))) -- OR-AND-module

 (16 ((2)(19))) -- OR-AND-module

 (17 (7 8 (j))) -- 3NOR-module

 (18 (1 2 (19))) -- 3NOR-module

 (19 (3 4 (20))) -- 3NOR-module

 (20 (5 6 (17))) -- 3NOR-module

 (21 ((k 9 12 13 16))) -- OR-AND-module

 (22 ((i 10 11 14 15))) -- OR-AND-module

27

Figure XII: The ILOC Module Format for the 4-bit Magnitude Comparator

Circuit, Abstracting the XORG Low-level Module Components

4-bit magnitude comparator circuit

XOR-module: two inputs, two outputs

 ((oa 22)(ob 18)(oc 21))

 ((1- xorg ((i0 a)(i1 b)) ((o0 1-0)(o1 1-1)))

 (2- xorg ((i0 c)(i1 d)) ((o0 2-0)(o1 2-1)))

 (3- xorg ((i0 e)(i1 f)) ((o0 3-0)(o1 3-1)))

 (4- xorg ((i0 g)(i1 h)) ((o0 4-0)(o1 4-1)))

 (9 ((j)(4-1)))

 (10 ((j)(4-0)))

 (11 ((2-0)(20)))

 (12 ((2-1)(20)))

 (13 ((3-1)(17)))

 (14 ((3-0)(17)))

 (15 ((1-0)(19)))

 (16 ((1-1)(19)))

 (17 (4-0 4-1 (j)))

 (18 (1-0 1-1 (19)))

 (19 (2-0 2-1 (20)))

 (20 (3-0 3-1 (17)))

 (21 ((k 9 12 13 16)))

 (22 ((i 10 11 14 15)))))

 ((xorg)

 ((i0 unk)(i1 unk))

 ((o0 0)(o1 1))

 ((0 (i0 (i1)))

 (1 (i1 (i0))))))

28

Figure XIII: The ILOC Module Format for the 4-bit Magnitude Comparator

Circuit, Abstracting the 3NOR Low-level Module Components

4-bit magnitude comparator circuit

3NOR-module: three inputs, three outputs

 ((oa 22)(ob 8-2)(oc 21))

 ((1 (a (b)))

 (2 (b (a)))

 (3 (c (d)))

 (4 (d (c)))

 (5 (e (f)))

 (6 (f (e)))

 (7 (g (h)))

 (8 (h (g)))

 (9 ((j)(8)))

 (10 ((j)(7)))

 (11 ((3)(6-2)))

 (12 ((4)(6-2)))

 (13 ((6)(5-2)))

 (14 ((5)(5-2)))

 (15 ((1)(7-2)))

 (16 ((2)(7-2)))

 (5- 3nor ((i0 7)(i1 8)(i2 j)) ((o0 5-0)(o1 5-1)(o2 5-2)))

 (6- 3nor ((i0 5)(i1 6)(i2 5-2)) ((o0 6-0)(o1 6-1)(o2 6-2)))

 (7- 3nor ((i0 3)(i1 4)(i2 6-2)) ((o0 7-0)(o1 7-1)(o2 7-2)))

 (8- 3nor ((i0 1)(i1 2)(i2 7-2)) ((o0 8-0)(o1 8-1)(o2 8-2)))

 (21 ((k 9 12 13 16)))

 (22 ((i 10 11 14 15)))))

 ((3nor)

 ((i0 unk)(i1 unk)(i2 unk))

 ((o0 i0)(o1 i1)(o2 2))

 ((2 (i0 i1 (i2))))))

29

Figure XIV: The ILOC Module Format for the 4-bit Magnitude Comparator

Circuit, Abstracting the OR-AND Low-level Module Components

4-bit magnitude comparator circuit

OR-AND-module: nine inputs, one output

 ((oa 9-0)(ob 18)(oc 10-0))

 ((1 (a (b)))

 (2 (b (a)))

 (3 (c (d)))

 (4 (d (c)))

 (5 (e (f)))

 (6 (f (e)))

 (7 (g (h)))

 (8 (h (g)))

 (17 (7 8 (j)))

 (18 (1 2 (19)))

 (19 (3 4 (20)))

 (20 (5 6 (17)))

 (9- or-and

 ((i0 i)(i1 j)(i2 7)(i3 3)(i4 20)(i5 5)(i6 17)(i7 1)(i8 19)) ((o0 9-0)))

 (10- or-and

 ((i0 k)(i1 j)(i2 8)(i3 4)(i4 20)(i5 6)(i6 17)(i7 2)(i8 19)) ((o0 10-0)))

))

 ((or-and)

 ((i0 unk)(i1 unk)(i2 unk)(i3 unk)(i4 unk)(i5 unk)(i6 unk)(i7 unk)(i8 unk))

 ((o0 0))

 ((0 ((i0 ((i1)(i2)) ((i3)(i4)) ((i5)(i6)) ((i7)(i8))))))))

30

Figure XV: The ILOC Module Format for the 4-bit Magnitude Comparator

Circuit, Abstracted Using All Available Low-level Module Components

4-bit magnitude comparator circuit

XORG, 3OR and OR-AND combined

 ((eq 8-2)(gt 9-0)(lt 10-0))

 ((1- xorg ((i0 a)(i1 b)) ((o0 1-0)(o1 1-1)))

 (2- xorg ((i0 c)(i1 d)) ((o0 2-0)(o1 2-1)))

 (3- xorg ((i0 e)(i1 f)) ((o0 3-0)(o1 3-1)))

 (4- xorg ((i0 g)(i1 h)) ((o0 4-0)(o1 4-1)))

 (5- 3nor ((i0 4-0)(i1 4-1)(i2 j)) ((o0 5-0)(o1 5-1)(o2 5-2)))

 (6- 3nor ((i0 3-0)(i1 3-1)(i2 5-2)) ((o0 6-0)(o1 6-1)(o2 6-2)))

 (7- 3nor ((i0 2-0)(i1 2-1)(i2 6-2)) ((o0 7-0)(o1 7-1)(o2 7-2)))

 (8- 3nor ((i0 1-0)(i1 1-1)(i2 7-2)) ((o0 8-0)(o1 8-1)(o2 8-2)))

 (9- or-and

 ((i0 i)(i1 j)(i2 4-0)(i3 2-0)(i4 6-2)(i5 3-0)(i6 5-2)(i7 1-0)(i8 7-2))

 ((o0 9-0)))

 (10- or-and

 ((i0 k)(i1 j)(i2 4-1)(i3 2-1)(i4 6-2)(i5 3-1)(i6 5-2)(i7 1-1)(i8 7-2))

 ((o0 10-0)))))

 ((xorg)

 ((i0 unk)(i1 unk))

 ((o0 0) (o1 1))

 ((0 (i0 (i1)))

 (1 (i1 (i0)))))

 ((3nor)

 ((i0 unk)(i1 unk)(i2 unk))

 ((o0 i0)(o1 i1)(o2 2))

 ((2 (i0 i1 (i2)))))

 ((or-and)

 ((i0 unk)(i1 unk)(i2 unk)(i3 unk)(i4 unk)(i5 unk)(i6 unk)(i7 unk)(i8 unk))

 ((o0 0))

 ((0 ((i0 ((i1)(i2)) ((i3)(i4)) ((i5)(i6)) ((i7)(i8)))))))

31

Figure XVI: The Circuit Schematic for the 4-bit Magnitude Comparator

Generated by the ILOC Module Format, Abstracted Using Low-level Module

Components

4-bit magnitude comparator circuit

Less

Gr eater
D

E

H

I

F

G

K

J

C

B

A

Equal
XOR group

XOR group

XOR group

XOR group

OR3-INV group

OR3-INV group

OR3-INV group

OR3-INV group

OR5-AND
 group

OR5-AND
 group

32

Figure XVII: The ILOC Module Format for the 4-bit Magnitude Comparator

Circuit, Abstracted to Emphasize Routing Between Components

4-bit magnitude comparator circuit

AND-INV combined with XOR-3OR

 ((eq 10)(gt 34)(lt 35))

 ((21- xor-3or

 ((i0 a) (i1 b)(i2 22-2)) ((o0 21-0)(o1 21-1)(o2 21-2)))

 (22- xor-3or

 ((i0 c) (i1 d)(i2 23-2)) ((o0 22-0)(o1 22-1)(o2 22-2)))

 (23- xor-3or

 ((i0 e) (i1 f)(i2 24-2)) ((o0 23-0)(o1 23-1)(o2 23-2)))

 (24- xor-3or

 ((i0 g) (i1 h)(i2 3)) ((o0 24-0)(o1 24-1)(o2 24-2)))

 (25- and-inv

 ((i0 21-1)(i1 21-0)(i2 22-2)) ((o0 25-0)(o1 25-1)))

 (26- and-inv

 ((i0 22-0)(i1 22-1)(i2 23-2)) ((o0 26-0)(o1 26-1)))

 (27- and-inv

 ((i0 23-0)(i1 23-1)(i2 24-2)) ((o0 27-0)(o1 27-1)))

 (28- and-inv

 ((i0 24-0)(i1 24-1)(i2 3)) ((o0 28-0)(o1 28-1)))

 (3 (j))

 (10 (21-2))

 (34 ((i 28-0 25-1 27-0 26-0)))

 (35 ((k 28-1 25-0 27-1 26-1)))))

 ((xor-3or)

 ((i0 unk)(i1 unk)(i2 unk))

 ((o0 0)(o1 1)(o2 2))

 ((0 (i0 (i1)))

 (1 (i1 (i0)))

 (2 ((i2 0 1)))))

 ((and-inv)

 ((i0 unk)(i1 unk)(i2 unk))

 ((o0 0)(o1 1))

 ((0 (i2 (i0)))

 (1 (i2 (i1)))))

33

Figure XVIII: The Circuit Schematic for the 4-bit Magnitude Comparator,

Abstracted to Emphasize Routing Between Components

4-bit magnitude comparator circuit

Less

Gr eater

Equal

A

B

C

J

K

G

F

I

H

E

D

XOR-OR3 group

XOR-OR3 group

XOR-OR3 group

XOR-OR3 group

AND-INV group

AND-INV group

AND-INV group

AND-INV group

34

Figure XIX: The ILOC Module Format for the 4-bit Magnitude Comparator

Circuit, Abstracted to Emphasize Sequential Routing Between Components

4-bit magnitude comparator circuit

XOR-3NOR combined with OR-AND

 ((eq 14-2)(gt 9-0)(lt 10-0))

 ((11- xor-3nor

 ((i0 g)(i1 h)(i2 j)) ((o0 11-0)(o1 11-1)(o2 11-2)))

 (12- xor-3nor

 ((i0 e)(i1 f)(i2 11-2)) ((o0 12-0)(o1 12-1)(o2 12-2)))

 (13- xor-3nor

 ((i0 c)(i1 d)(i2 12-2)) ((o0 13-0)(o1 13-1)(o2 13-2)))

 (14- xor-3nor

 ((i0 a)(i1 b)(i2 13-2)) ((o0 14-0)(o1 14-1)(o2 14-2)))

 (9- or-and

 ((i0 i)(i1 j)(i2 11-0)(i3 13-0)(i4 12-2)(i5 12-0)

 (i6 11-2)(i7 14-0)(i8 13-2)) ((o0 9-0)))

 (10- or-and

 ((i0 k)(i1 j)(i2 11-1)(i3 13-1)(i4 12-2)(i5 12-1)

 (i6 11-2)(i7 14-1)(i8 13-2)) ((o0 10-0)))))

 ((xor-3nor)

 ((i0 unk)(i1 unk)(i2 unk))

 ((o0 0)(o1 1)(o2 2))

 ((0 (i0 (i1)))

 (1 (i1 (i0)))

 (2 (0 1 (i2)))))

 ((or-and)

 ((i0 unk)(i1 unk)(i2 unk)(i3 unk)(i4 unk)(i5 unk)(i6 unk)(i7 unk)(i8 unk))

 ((o0 0))

 ((0 ((i0 ((i1)(i2)) ((i3)(i4)) ((i5)(i6)) ((i7)(i8)))))))

35

Figure XX: The Circuit Schematic for the 4-bit Magnitude Comparator

Generated by the ILOC Module Format, Abstracted to Emphasize Sequential

Processing Between Components

4-bit magnitude comparator circuit

D

E

H

I

F

G

K

J

C

B

A

Equal

Gr eater

Less

XOR-OR3-INV group

XOR-OR3-INV group

XOR-OR3-INV group

XOR-OR3-INV group

OR5-AND
 group

OR5-AND
 group

36

Figure XXI: The ILOC Module Format for the 4-bit Magnitude Comparator

Circuit, Abstracted to Emphasize Parallel Processing Between Components

4-bit magnitude comparator circuit

3OR-ORAND combined with XOR-group:

 ((eq 8-2)(gt 15-0)(lt 16-0))

 ((1- xorg ((i0 a)(i1 b)) ((o0 1-0)(o1 1-1)))

 (2- xorg ((i0 c)(i1 d)) ((o0 2-0)(o1 2-1)))

 (3- xorg ((i0 e)(i1 f)) ((o0 3-0)(o1 3-1)))

 (4- xorg ((i0 g)(i1 h)) ((o0 4-0)(o1 4-1)))

 (15- 3or-or5-and

 ((i0 i)(i1 j)(i2 4-0)(i3 2-0)(i4 3-1)(i5 3-0)(i6 4-1)(i7 1-0)(i8 2-1))

 ((o0 15-0)))

 (16- 3or-or5-and

 ((i0 k)(i1 j)(i2 4-1)(i3 2-1)(i4 3-0)(i5 3-1)(i6 4-0)(i7 1-1)(i8 2-0))

 ((o0 16-0)))

 (8-2 (1-0 1-1 2-0 2-1 3-0 3-1 4-0 4-1 (j)))))

 ((xorg)

 ((i0 unk)(i1 unk))

 ((o0 0)(o1 1))

 ((0 (i0 (i1)))

 (1 (i1 (i0)))))

 ((3or-or5-and)

 ((i0 unk)(i1 unk)(i2 unk)(i3 unk)(i4 unk)(i5 unk)(i6 unk)(i7 unk)(i8 unk))

 ((o0 0))

 ((0 ((i0 ((i1) (i2 (i6 (i5 (i4 (i3 (i8 (i7)))))))))))))

37

Figure XXII: The Circuit Schematic for the 4-bit Magnitude Comparator

Generated by the ILOC Module Format, Abstracted to Emphasize Parallel

Processing Between Components

4-bit magnitude comparator circuit

Less

Gr eater

EqualA

B

C

J

K

G

F

I

H

E

D

XOR group

XOR group

XOR group

XOR group

OR3-INV-OR5-AND
 group

OR3-INV-OR5-AND
 group

38

Figure XXIII: The ILOC Module Format for the 4-bit Magnitude Comparator

Circuit, Abstracted to Emphasize Components Involved in Output

4-bit magnitude comparator circuit

XORG-3OR-ORAND group:

 ((eq 8-2)(gt 17-0)(lt 18-0))

 ((17- xorg-3or-orand

 ((i0 i)(i1 j)(i2 g)(i3 c)(i4 f)(i5 e)(i6 h)(i7 a)(i8 d)(i9 b))

 ((o0 15-0)))

 (18- xorg-3or-orand

 ((i0 k)(i1 j)(i2 h)(i3 d)(i4 e)(i5 f)(i6 g)(i7 b)(i8 c)(i9 a))

 ((o0 16-0)))

 (8-2 ((a (b))(b (a))(c (d))(d (c))(e (f))(f (e))(g (h))(h (g))(j)))))

 ((xorg-3or-orand)

 ((i0 unk)(i1 unk)(i2 unk)(i3 unk)(i4 unk)

 (i5 unk)(i6 unk)(i7 unk)(i8 unk)(i9 unk))

 ((o0 0))

 ((0 ((i0

 ((i1)

 ((i2 (i6))

 ((i6 (i2))

 ((i5 (i4))

 ((i4 (i5))

 ((i3 (i8))

 (i7 (i9) (i8 (i3))))))))))))))

39

Figure XXIV: The Circuit Schematic for the 4-bit Magnitude Comparator,

Abstracted to Emphasize Components Involved in Output

4-bit magnitude comparator circuit

Less

Gr eater

EqualA

B

C

J

K

G

F

I

H

E

D

OUTPUT group

OUTPUT group

40

Figure XXV: The ILOC Generator Format for the 4-bit Magnitude Comparator

Circuit with Enable Inputs Removed, Abstracted to Provide Parametric

Generation of Functionality

4-bit magnitude comparator circuit

Base-case, 1-bit:

 ((eq 1)(gt 2)(lt 3))

 ((1 (((a0 (b0)) (b0 (a0))))) -- EQ1

 (2 ((a0 (b0)))) -- GT1

 (3 ((b0 (a0)))))) -- LT1

Iterated, n-bit:

 ((eq 1)(gt 2)(lt 3))

 ((1 (((a0 (b0))(b0 (a0))(a1 (b1))(b1 (a1)) ... (an (bn))(bn (an)))))

 (2 ((an (bn))

 ((bn (an))

 ...

 ((a1 (b1))

 ((b1 (a1))

 ((a0 (b0))))))))

 (3 ((bn (an))

 ((an (bn))

 ...

 ((b1 (a1))

 ((a1 (b1))

 ((b0 (a0))))))))))

Recursive generator, n-bit:

 ((eq 1)(gt 2)(lt 3))

 ((1 (((an (bn)) (bn (an)) EQn-1)))

 (2 ((an (bn)) ((bn (an)) GTn-1)))

 (3 ((bn (an)) ((an (bn)) LTn-1)))))

41

Figure XXVI: The Circuit Schematic for the 4-bit Magnitude Comparator

Generated by the ILOC Generator Format with Enable Inputs Removed, Abstracted

to Provide Parametric Generation of Functionality

N-bit magnitude comparator circuit

Gr eater

Less

Equal

B0

A0

An- 1

Bn- 1

B0

A0

Bn

An

Gr eater

Less

Equal

N-1 bit
magnitude
comparator

42

Figure XXVII: 2-bit and 3-bit Magnitude Comparators Generated by Recursive

Expansion of the ILOC Generator Format

4-bit magnitude comparator circuit

Base-case, 1-bit

 ((eq 1)(gt 2)(lt 3))

 ((1 (((a0 (b0)) (b0 (a0))))) -- EQ1

 (2 ((a0 (b0)))) -- GT1

 (3 ((b0 (a0)))))) -- LT1

Template, n-bit

 ((1 (((an (bn)) (bn (an)) EQn-1)))

 (2 ((an (bn)) ((bn (an)) GTn-1)))

 (3 ((bn (an)) ((an (bn)) LTn-1)))))

Recursively generated, 2-bit, with substitutions in italics

 ((1 (((a1 (b1)) (b1 (a1)) (a0 (b0)) (b0 (a0)))))

 (2 ((a1 (b1)) ((b1 (a1)) a0 (b0))))

 (3 ((b1 (a1)) ((a1 (b1)) b0 (a0))))))

Recursively generated, 3-bit, with substitutions in italics

 ((1 (((a2 (b2)) (b2 (a2)) (a1 (b1)) (b1 (a1)) (a0 (b0)) (b0 (a0)))))

 (2 ((a2 (b2)) ((b2 (a2)) ((a1 (b1)) ((b1 (a1)) a0 (b0))))))

 (3 ((b2 (a2)) ((a2 (b2)) ((b1 (a1)) ((a1 (b1)) b0 (a0))))))))

Recursively generated, 4-bit, with substitutions in italics

 ((1 (((a3 (b3)) (bn (a3))

 (a2 (b2)) (b2 (a2)) (a1 (b1)) (b1 (a1)) (a0 (b0)) (b0 (a0)))))

 (2 ((a3 (b3)) ((bn (a3))

 ((a2 (b2)) ((b2 (a2)) ((a1 (b1)) ((b1 (a1)) a0 (b0))))))))

 (3 ((b3 (a3)) ((an (b3))

 ((b2 (a2)) ((a2 (b2)) ((b1 (a1)) ((a1 (b1)) b0 (a0))))))))))

43

Figure XXVIII: 2-bit and 3-bit Magnitude Comparator Schematics Generated

by Recursive Expansion of the ILOC Generator Schematics

A0

B0

Equal

Less

Gr eater

1-BIT MAGNITUDE COMPARATOR

B1

A1

Equal

Less

Gr eater

A0

B0

2-BIT MAGNITUDE COMPARATOR

B1

A1

A0

B0

B2

A2

Equal

Less

Gr eater

3-BIT MAGNITUDE COMPARATOR

44

Figure XXIX: The Circuit Schematic for the Entire 4-bit Magnitude

Comparator Generated by the ILOC Generator Format, Abstracted to Provide

Parametric Generation of Functionality

N-bit magnitude comparator circuit

J

K

I

Equal

Less

Gr eater

An

Bn

A0

B0

Bn- 1

An- 1

N-1 bit
magnitude
comparator

45

Figure XXX: ILOC Format for a 8-bit Adder Generated Recursively, Before

Optimization

8-bit adder, generated

 ((s0 4)(s1 8)(s2 12)(s3 16)(s4 20)(s5 24)(s6 28)(s7 32)(s8 33))

 ((1 (nil))

 (2 (a0 b0))

 (3 ((a0)(b0)))

 (4 (((1 2 3) ((1)(2 3)))))

 (5 ((3 (2 (1)))))

 (6 (a1 b1))

 (7 ((a1)(b1)))

 (8 (((5 6 7) ((5)(6 7)))))

 (9 ((7 (6 (5)))))

 (10 (a2 b2))

 (11 ((a2)(b2)))

 (12 (((9 10 11) ((9)(10 11)))))

 (13 ((11 (10 (9)))))

 (14 (a3 b3))

 (15 ((a3)(b3)))

 (16 (((13 14 15) ((13)(14 15)))))

 (17 ((15 (14 (13)))))

 (18 (a4 b4))

 (19 ((a4)(b4)))

 (20 (((17 18 19) ((17)(18 19)))))

 (21 ((19 (18 (17)))))

 (22 (a5 b5))

 (23 ((a5)(b5)))

 (24 (((21 22 23) ((21)(22 23)))))

 (25 ((23 (22 (21)))))

 (26 (a6 b6))

 (27 ((a6)(b6)))

 (28 (((25 26 27) ((25)(26 27)))))

 (29 ((27 (26 (25)))))

 (30 (a7 b7))

 (31 ((a7)(b7)))

 (32 (((29 30 31) ((29)(30 31)))))

 (33 ((31 (30 (29))))))

46

Figure XXXI: ILOC Format for a 8-bit Adder Generated Recursively, After

Optimization

8-bit adder, generated and optimized

 ((s0 16)(s1 =31)(s2 =32)(s3 =33)(s4 =34)(s5 =35)(s6 =36)(s7 =37)(s8 23))

 ((1 (a1 b1))

 (2 (a2 b2))

 (3 (a3 b3))

 (4 (a4 b4))

 (5 (a5 b5))

 (6 (a6 b6))

 (7 (a7 b7))

 (8 ((a0)(b0)))

 (9 ((a1)(b1)))

 (10 ((a2)(b2)))

 (11 ((a3)(b3)))

 (12 ((a4)(b4)))

 (13 ((a5)(b5)))

 (14 ((a6)(b6)))

 (15 ((a7)(b7)))

 (^24 ((1 9)))

 (^25 ((2 10)))

 (^26 ((3 11)))

 (^27 ((4 12)))

 (^28 ((5 13)))

 (^29 ((6 14)))

 (^30 ((7 15)))

 (16 (8 (a0 b0)))

 (17 ((9 (1 (8)))))

 (18 ((10 (2 (17)))))

 (19 ((11 (3 (18)))))

 (20 ((12 (4 (19)))))

 (21 ((13 (5 (20)))))

 (22 ((14 (6 (21)))))

 (23 ((15 (7 (22)))))

 (=31 (((8 ^24) ((8)(^24)))))

 (=32 (((17 ^25) ((17)(^25)))))

 (=33 (((18 ^26) ((18)(^26)))))

 (=34 (((19 ^27) ((19)(^27)))))

 (=35 (((20 ^28) ((20)(^28)))))

 (=36 (((21 ^29) ((21)(^29)))))

 (=37 (((22 ^30) ((22)(^30))))))

47

Figure XXXII: A Simple Example of Vectorization Compared to Functional

Abstraction and Bit-width Abstraction

ILOC body fragment

((1 (a 6))

 (2 (a 7))

 (3 (a 8))

 (4 (a 9))

 (5 (1 2 3 6 7))

 (6 (b c))

 (7 (d e)))

Function abstraction using modularization

((1- fn ((i1 6)) ((o1 1-0)))

 (2- fn ((i1 7)) ((o1 2-0)))

 (3- fn ((i1 8)) ((o1 3-0)))

 (4- fn ((i1 9)) ((o1 4-0)))

 (5 (1-0 2-0 3-0 6 7))

 (6 (b c))

 (7 (d e)))

((fn)

 ((i1 unk))

 ((o1 1))

((1 (a i1))))

Vector abstractions

 explicit range

V1: <1 2 3 4> <1..4>

V2: <6 7 8 9> <6..9>

Vector abstracted ILOC body fragment

((V1- V1 <1 2 3 4>)

 (V2- V2 <6 7 8 9>)

 (V1 (a V2))

 (5 (V1-1 V1-2 V1-3 6 7))

 (6 (b c))

 (7 (d e)))

48

Figure XXXIII: A Vectorized MUX Function

ILOC body

((oa >1)(ob >2)(oc >3)(od >4)(oe >5)(of >6)(og >7)(oh >8))

((>1 ((a i)(j (i))))

 (>2 ((b i)(k (i))))

 (>3 ((c i)(l (i))))

 (>4 ((d i)(m (i))))

 (>5 ((e i)(n (i))))

 (>6 ((f i)(o (i))))

 (>7 ((g i)(p (i))))

 (>8 ((h i)(q (i)))))

Vector abstractions

 explicit range

Vo1 = <oa ob oc od oe of og oh> <oa..oh>

V1 = <>1 >2 >3 >4 >5 >6 >7 >8> <>1..>8>

V2 = <a b c d e f g h> <a..h>

V3 = <j k l m n o p q> <j..q>

ILOC vectorized body

((Vo1- Vo1 <oa..oh>)

 (Vo1 >V1))

((V1- V1 <>1..>8>)

 (V2- V2 <a..h>)

 (V3- V3 <j..q>)

 (>V1 ((V2 i)(V3 (i))))

49

Figure XXXIV: Vector Abstraction in a Schematic Form

A

B

N

out1

out2

outN

N independent functions

N N

one vector function of width N

50

Figure XXXVa: Vectorization of a 8-bit Sequential Multiplier, the Non-

vectorized ILOC Format

8-bit sequential multiplier ILOC body part 1

 ((oa 17))

 ((!1 (@ 35))

 (!2 (@ =66))

 (!3 (@ =67))

 (!4 (@ =68))
 (!5 (@ =69))

 (!6 (@ =70))

 (!7 (@ =71))

 (!8 (@ =72))

 (!9 (@ =73))

 (!10 (@ =74))

 (!11 (@ =75))

 (!12 (@ =76))

 (!13 (@ =77))

 (!14 (@ =78))

 (!15 (@ =79))

 (!16 (@ =80))
 (18 ((a)(q)))

 (19 ((b)(q)))

 (20 ((c)(q)))

 (21 ((d)(q)))

 (22 ((e)(q)))

 (23 ((f)(q)))

 (24 ((g)(q)))

 (25 ((h)(q)))

 (26 ((i)(q)))

 (27 ((j)(q)))

 (28 ((k)(q)))

 (29 ((l)(q)))

 (30 ((m)(q)))
 (31 ((n)(q)))

 (32 ((o)(q)))

 (33 ((p)(q)))

 (35 (((18)(!1)) (36 (18 !1))))

 (36 (((19)(!2)) (37 (19 !2))))

 (37 (((20)(!3)) (38 (20 !3))))

 (38 (((21)(!4)) (39 (21 !4))))

 (39 (((22)(!5)) (40 (22 !5))))

 (40 (((23)(!6)) (41 (23 !6))))

 (41 (((24)(!7)) (42 (24 !7))))

 (42 (((25)(!8)) (43 (25 !8))))

 (43 (((26)(!9)) (44 (26 !9))))

 (44 (((27)(!10)) (45 (27 !10))))
 (45 (((28)(!11)) (46 (28 !11))))

 (46 (((29)(!12)) (47 (29 !12))))

 (47 (((30)(!13)) (48 (30 !13))))

 (48 (((31)(!14)) (49 (31 !14))))

 (49 (((32)(!15)) (82 (32 !15))))

 (82 (((33)(!16)) (() (33 !16))))

51

Figure XXXVb: Vectorization of a 8-bit Sequential Multiplier, the Non-

vectorized ILOC Format Continued

8-bit sequential multiplier ILOC body part 2

<continued>

 (=50 (((18 36) ((18)(36)))))

 (=51 (((19 37) ((19)(37)))))

 (=52 (((20 38) ((20)(38)))))

 (=53 (((21 39) ((21)(39)))))

 (=54 (((22 40) ((22)(40)))))

 (=55 (((23 41) ((23)(41)))))

 (=56 (((24 42) ((24)(42)))))

 (=57 (((25 43) ((25)(43)))))

 (=58 (((26 44) ((26)(44)))))

 (=59 (((27 45) ((27)(45)))))

 (=60 (((28 46) ((28)(46)))))

 (=61 (((29 47) ((29)(47)))))

 (=62 (((30 48) ((30)(48)))))

 (=63 (((31 49) ((31)(49)))))

 (=64 (((32 82) ((32)(82)))))

 (=65 (((33 !16) ((33)(!16)))))

 (=66 (((=50 !1) ((=50)(!1)))))

 (=67 (((=51 !2) ((=51)(!2)))))

 (=68 (((=52 !3) ((=52)(!3)))))

 (=69 (((=53 !4) ((=53)(!4)))))

 (=70 (((=54 !5) ((=54)(!5)))))

 (=71 (((=55 !6) ((=55)(!6)))))

 (=72 (((=56 !7) ((=56)(!7)))))

 (=73 (((=57 !8) ((=57)(!8)))))

 (=74 (((=58 !9) ((=58)(!9)))))

 (=75 (((=59 !10) ((=59)(!10)))))

 (=76 (((=60 !11) ((=60)(!11)))))

 (=77 (((=61 !12) ((=61)(!12)))))

 (=78 (((=62 !13) ((=62)(!13)))))

 (=79 (((=63 !14) ((=63)(!14)))))

 (=80 (((=64 !15) ((=64)(!15)))))

 (=17 (((=65) ((=65)())))))))

52

Figure XXXVI: Vectorization of a 8-bit Sequential Multiplier, ILOC

Vectorized Format

Vectors

V1 = <a b c d e f g h i j k l m n o p>

V2a = <!1 !2 !3 !4 !5 !6 !7 !8 !9 !10 !11 !12 !13 !14 !15 !16>

V2b = <!1 !2 !3 !4 !5 !6 !7 !8 !9 !10 !11 !12 !13 !14 !15 LOW>

V3 = <18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33>

V4a = < 36 37 38 39 40 41 42 43 44 45 46 47 48 49 82 HIGH>

V4b = < 36 37 38 39 40 41 42 43 44 45 46 47 48 49 82 !16>

V4c = <35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 82 >

V5 = <=50 =51 =52 =53 =54 =55 =56 =57 =58 =59 =60 =61 =62 =63 =64 =65>

V6a = <35 =66 =67 =68 =69 =70 =71 =72 =73 =74 =75 =76 =77 =78 =79 =80 >

V6b = < =66 =67 =68 =69 =70 =71 =72 =73 =74 =75 =76 =77 =78 =79 =80 =17>

8-bit sequential multiplier ILOC vector body

((oa =V6b-16))

((V1- Vi1 <a..p>) -- 16

 (V2a- !V2a <!1..!16>) -- 16

 (V2b- !V2b <!1..!15 LOW>) -- 16

 (V3- V3 <18..33>) -- 16

 (V4a- V4a <36..49 82 HIGH>) -- 16

 (V4b- V4b <36..49 82 !16>) -- 16

 (V4c- V4c <35 36..49 82>) -- 16

 (V5- =V5 <=50..=65>) -- 16

 (V6a- V6a <35 =66..=80>) -- 16

 (V6b- =V6b <=66..=80 =17>) -- 16

 (!V2a (@ V6a))

 (V3 ((q)(Vi1)))

 (V4c (((V3)(!V2a)) (V4a (V3 !V2a))))

 (=V5 (((V3 V4b) ((V3)(V4b)))))

 (=V6b (((V5 !V2b) ((V5)(!V2b))))))

53

Figure XXXVII: Vector Transformation of a 8-bit Sequential Multiplier

8-bit sequential multiplier ILOC vector body

((oa =V6b-16))

((V1- Vi1 <a..p>)

 (V2a- !V2a <!1..!16>)

 (V2b- !V2b <!1..!15 LOW>) -- !V2a edge grounding

 (V3- V3 <18..33>)

 (V4a- V4a <36..49 82 HIGH>) -- V4b edge grounding

 (V4b- V4b <36..49 82 !16>)

 (V4c- V4c <35 36..49 82>) -- V4b shift down

 (V5- =V5 <=50..=65>)

 (V6a- V6a <35 =66..=80>)

 (V6b- =V6b <=66..=80 =17>) -- V6a shift up

 (!V2a (@ V6a))

 (V3 ((q)(Vi1)))

 (V4c (((V3)(!V2a)) (V4a (V3 !V2a))))

 (=V5 (((V3 V4b) ((V3)(V4b)))))

 (=V6b (((V5 !V2b) ((V5)(!V2b))))))

Expanding V3 and V5

((oa =V6b-16))

((V1- Vi1 <a..p>)

 (V2a- !V2a <!1..!16>)

 (V2b- !V2b <!1..!15 LOW>) -- !V2a edge grounding

 (V4a- V4a <36..49 82 HIGH>) -- V4b edge grounding

 (V4b- V4b <36..49 82 !16>)

 (V4c- V4c <35 36..49 82>) -- V4b shift down

 (V6a- V6a <35 =66..=80>)

 (V6b- =V6b <=66..=80 =17>) -- V6a shift up

 (!V2a (@ V6a))

 (V4c (((q)(Vi1)(!V2a)) (V4a (!V2a ((q)(Vi1))))))

 (=V6b (((!V2b (V4b ((q)(Vi1))) ((q)(Vi1)(V4b)))

 ((!V2b) ((V4b ((q)(Vi1))) ((q)(Vi1)(V4b))))))))

54

Figure XXXVIII: MCNC Benchmark Circuit I7, a Large XOR/MUX Circuit in ILOC

Vector Format, Vector Components

 (Vo2- Vout2 <pn..qo>) -- 28

 (Vo3- Vout3 <oh..pi>) -- 28

 (Vo4- Vout4 <ob oc>) -- 2

 (Vo5- Vout5 <od..og>) -- 4

 (Vo6- Vout6 <pj..pm>) -- 4

 (V2- Vtop2 <1..28>) -- 28

 (V32- >V32 <>214..>241>) -- 28

 (V33- =V33 <=113.. =140>) -- 28

 (V34- >V34 <>173..>200>) -- 28

 (V41- Vi41 <gp..hq>) -- 28

 (V42- Vi42 <fj..gk>) -- 28

 (V11- Vi11 <dz..ec>) -- 28

 (V3- >Vtop3 <>33..>41 >46..>64>) -- 28

 (V31- >V31 <>201..>209 >246..>264>) -- 28

 (V19- =V19 <=81..=108>) -- 28

 (V23- >V23 <>141..>168>) -- 28

 (V10- Vi10 <al..bm>) -- 28

 (V12- Vi12 <cx..dy>) -- 28

 (V13- Vi13 <br..c2>) -- 28

 (V4- Vtop4 <65 66>) -- 2

 (V17- =V17 <=75 =76>) -- 2

 (V29- Vi29 <af ag>) -- 2

 (V5- Vtop5 <67..70>) -- 4

 (V30- >V30 <>242..>245>) -- 4

 (V16- ^V16 <^71..^74>) -- 4

 (V18- =V18 <=77..=80>) -- 4

 (V7- Vi7 <ct..cw>) -- 4

 (V8- Vi8 <bn..bq>) -- 4

 (V9- Vi9 <ah..ak>) -- 4

 (V6- >Vtop6 <>42..>45>) -- 4

 (V28- >V28 <>210..>213>) -- 4

 (V35 =V35 <=109..=112>) -- 4

 (V25- >V25 <>169..>172>) -- 4

 (V39- Vi39 <gl..go>) -- 4

 (V40- Vi40 <ff..fi>) -- 4

 (V43- Vi43 <ed..fe>) -- 4

55

Figure XXXIX: MCNC Benchmark Circuit I7, a Large XOR/MUX Circuit in ILOC

Vector Format, ILOC Vector Body

ILOC vector body for the I7 benchmark circuit

 ((oa 31)(Vout2 >Vtop2)(Vout3 >Vtop3)

 (Vout4 Vtop4)(Vout5 Vtop5)(Vout6 >Vtop6))

 ((31 (ad (ab)(ae))) -- 1

 (Vtop2 (>V32)) -- 28

 (>V32 ((ad =V33) ((ad)(>V34))))

 (>V34 ((ac Vi41) (Vi42 (ac))))

 (=V33 (((ac Vi11) ((ac)(Vi11)))))

 (>Vtop3 (((aa (ac)) (>V31 (aa))))) -- 28

 (>V31 ((ad =V19) ((ad)(>V23))))

 (=V19 (((ac Vi10) ((ac)(Vi10)))))

 (>V23 ((ac Vi12) (Vi13 (ac))))

 (Vtop4 ((ac)(ad (ab)(=V17)))) -- 2

 (=V17 (((ac Vi29) ((ac)(Vi29)))))

 (Vtop5 (((>V30 (ab)) ((ac)((ab) ((Vi8)(ad))))))) -- 4

 (>V30 ((ad =V18) (^V16 (ad))))

 (=V18 (((ac Vi9) ((ac)(Vi9)))))

 (^V16 ((ac (Vi7))))

 (>Vtop6 (((aa (ac)) (>V28 (aa))))) -- 4

 (>V28 ((ad =V35) ((ad) (>V25))))

 (>V25 ((ac Vi39) (Vi40 (ac))))

 (=V35 (((ac Vi43) ((ac)(Vi43))))))

56

Figure XL: MCNC Benchmark Circuit I7, I/O and Internal Vector Partitions

Output

<oa> -- 1

<ob oc> -- 2

<od..og> -- 4

<oh..pi> -- 28

<pj..pm> -- 4

<pn..qo> -- 28

Body

<1..28> -- 28

<>33..>41> -- 9 --|

<>42..>45> -- 4 |

<>46..>64> -- 19 --|

<65 66> -- 2

<67..70> -- 4

<^71..^74> -- 4

<=75 =76> -- 2

<=77..=80> -- 4

<=81..=108> -- 28

<=109..=112> -- 4

<=113..=140> -- 28

<>141..>168> -- 28

<>169..>172> -- 4

<>173..>200> -- 28

<>201..>209> -- 9--|

<>210..>213> -- 4 |

<>214..>241> -- 28 |

<>242..>245> -- 4 |

<>246..>264> -- 19--|

Input

<aa><ab><ac><ad><ae> -- 1

<af ag> -- 2

<ah..ak> -- 4

<al..bm> -- 28

<bn..bq> -- 4

<br..cs> -- 28

<ct..cw> -- 4

<cx..dy> -- 28

<dz..ec> -- 28

<ed..fe> -- 4

<ff..fi> -- 4

<fj..gk> -- 28

<gl..go> -- 4

<gp..hq> -- 28

57

Figure XLI: MCNC Benchmark Circuit I7, Vector Expansion

ILOC vector body for the I7 benchmark circuit, expanded with

vectors

 ((oa 31)(Vout2 Vtop2)(Vout3 Vtop3)(Vout4 Vtop4)(Vout5 Vtop5)(Vout6 Vtop6))

 ((31 (ad (ab)(ae))) -- 1

 (Vtop2 -- 28

 (((ad (ac Vi11) ((ac)(Vi11)))

 ((ad) (ac Vi41) ((ac) Vi42)))))

 (Vtop3 -- 28

 (((aa (ac))

 ((aa) ((ad (ac Vi10) ((ac)(Vi10)))

 ((ad) (ac Vi12) ((ac) Vi13)))))))

 (Vtop4 ((ac)(ad (ab)(Vi29)))) -- 2

 (Vtop5 -- 4

 (((ab) (ad (ac Vi9) ((ac)(Vi9)))

 ((ad) (ac Vi7) ((ac) Vi8)))))

 (Vtop6 -- 4

 (((aa) (ad (ac Vi43) ((ac)(Vi43)))

 ((ad) (ac Vi39) ((ac) Vi40))))))

58

Figure XLII: MCNC Benchmark Circuit I7, Vector Modularization

Preparation

((oa 31)(Vout2 Vtop2)(Vout3 Vtop3)

 (Vout4 Vtop4)(Vout5 Vtop5)(Vout6 Vtop6))

((31 (ad (ab)(ae))) -- 1

 (Vtop4 ((ac)(ad (ab)(Vi29)))) -- 2

 (Vtop2 (V91)) -- 28

 (Vtop3 (((aa (ac)) ((aa) V92)))) -- 28

 (Vtop5 (((ab)(V93)))) -- 4

 (Vtop6 (((aa)(V94)))) -- 4

 (V91 ((ad (ac Vi11) ((ac)(Vi11))) ((ad) (ac Vi41) ((ac) Vi42))))

 (V92 ((ad (ac Vi10) ((ac)(Vi10))) ((ad) (ac Vi12) ((ac) Vi13))))

 (V93 ((ad (ac Vi9) ((ac)(Vi9))) ((ad) (ac Vi7) ((ac) Vi8))))

 (V94 ((ad (ac Vi43) ((ac)(Vi43))) ((ad) (ac Vi39) ((ac) Vi40)))))

Modularization

 ((oa 31)(Vout2 Vtop2)(Vout3 Vtop3)

 (Vout4 Vtop4)(Vout5 Vtop5)(Vout6 Vtop6))

 ((31 (ad (ab)(ae))) -- 1

 (Vtop2 (V91-0)) -- 28

 (Vtop3 (((aa (ac)) ((aa) V92-0)))) -- 28

 (Vtop4 ((ac)(ad (ab)(Vi29)))) -- 2

 (Vtop5 (((ab)(V93-0)))) -- 4

 (Vtop6 (((aa)(V94-0)))) -- 4

 (V91- vector-module ((Va Vi11)(Vb Vi41)(Vc Vi42)) ((Vo V91-0)))

 (V92- vector-module ((Va Vi10)(Vb Vi12)(Vc Vi13)) ((Vo V92-0)))

 (V93- vector-module ((Va Vi9) (Vb Vi7) (Vc Vi8)) ((Vo V93-0)))

 (V94- vector-module ((Va Vi43)(Vb Vi39)(Vc Vi40)) ((Vo V94-0))))

 ((vector-module)

 ((Va unk)(Vb unk)(Vc unk))

 ((Vo 1))

 ((1 ((ad (ac Va) ((ac)(Va))) ((ad) (ac Vb) ((ac) Vc))))))

Cell abstraction of the vector module body

 ((1 ((ad (ac Va) ((ac)(Va))) ((ad) (ac Vb) ((ac) Vc)))))

 ==> ((>1 ((ad =2) ((ad)(>3))))

 (=2 (((ac Va) ((ac)(Va)))))

 (>3 ((ac Vb) ((ac) Vc))))

59

Figure XLIII: MCNC Benchmark Circuit I7, Matrix Abstraction

Preparation

((oa 31)(Vout2 Vtop2)(Vout3 Vtop3)(Vout4 Vtop4)(Vout5 Vtop5)(Vout6 Vtop6))

((31 (ad (ab)(ae))) -- 1

 (Vtop4 ((ac)(ad (ab)(Vi29)))) -- 2

 (Vtop2 (V91)) -- 28

 (Vtop3 (((aa (ac)) ((aa) V92)))) -- 28

 (Vtop5 (((ab)(V93)))) -- 4

 (Vtop6 (((aa)(V94)))) -- 4

 (V91 ((ad (ac Vi11) ((ac)(Vi11))) ((ad) (ac Vi41) ((ac) Vi42))))

 (V92 ((ad (ac Vi10) ((ac)(Vi10))) ((ad) (ac Vi12) ((ac) Vi13))))

 (V93 ((ad (ac Vi9) ((ac)(Vi9))) ((ad) (ac Vi7) ((ac) Vi8))))

 (V94 ((ad (ac Vi43) ((ac)(Vi43))) ((ad) (ac Vi39) ((ac) Vi40)))))

Matrix abstraction

((M1- M1 <Vi11 Vi10 Vi9 Vi43>) -- 28

 (M2- M2 <Vi41 Vi12 Vi7 Vi39>) -- 28

 (M3- M3 <Vi42 Vi13 Vi8 Vi40>) -- 28

 (M4- M4 <V91 V92 V93 V94>) -- 28

((31 (ad (ab)(ae))) -- 1

 (Vtop4 ((ac)(ad (ab)(Vi29)))) -- 2

 (Vtop2 (M4-1)) -- 28

 (Vtop3 (((aa (ac)) ((aa) M4-2)))) -- 28

 (Vtop5 (((ab)(M4-3)))) -- 4

 (Vtop6 (((aa)(M4-4)))) -- 4

 (M4 ((ad (ac M1) ((ac)(M1))) ((ad) (ac M2) ((ac) M3))))) -- 4x28

Cell abstraction of the ERC matrix body

((31 (ad (ab)(ae))) -- 1

 (Vtop4 ((ac)(ad (ab)(Vi29)))) -- 2

 (Vtop2 (M4-1)) -- 28

 (Vtop5 (((ab)(M4-3)))) -- 4

 (Vtop6 (((aa)(M4-4)))) -- 4

 (>Vtop3 (((aa (ac)) ((aa) M4-2)))) -- 28

 (>M4 ((ad =M5) ((ad)(>M6))) -- 4x28

 (=M5 (((ac M1) ((ac)(M1))))) -- 4x28

 (>M6 ((ac M2) ((ac) M3))))) -- 4x28

60

Figure XLIV: MCNC Benchmark Circuit I7, Matrix Abstraction Schematic

Matrix schematic for the I7 benchmark circuit

b

e

a

c

d

Vi29

M1

M2

M3

<2>

<28,28,4,4>

31

>Vtop3

Vtop4

Vtop2

Vtop5

>Vtop6

1

2

3

4

M4

<28>

<4>

<4>

<28>

<2>

28

28

4

4

