
1

NONSYMBOLIC LOGIC    (BRIEFLY and PARTIALLY)

William Bricken

March 2002  -- Condensed, abstracted, cut-and-pasted January 2004

SOME SECTIONS CONSIST OF DEVELOPMENT NOTES.  MOST SECTIONS ARE PARTIAL AND

NOT COMPLETE.

Elementary logic addresses the ANDs, IFs, ORs and NOTs embedded in our spoken

and written language.  When formulated as an exhaustive tabulation,

elementary logic is truth tables.  When formalized in an inferential system,

it is propositional calculus.  When formalized in an equational system, it is

Boolean algebra.  And when formalized in a spatial system of containers, it

is boundary logic.

Each of these systems of logic includes a set of rules or transformations

which permit logical forms to change structure without changing meaning.

Truth tables require brute-force evaluation of every possible set of variable

bindings.  The primary operator in an inferential system is implication,

usually expressed as modus ponens.  In equational systems, the familiar

match-and-substitute permits equals to be exchanged for equals.  In boundary

logic, the primary operations are void-substitution (erasure or deletion) and

transparency (virtual erasure).

LOGIC FORMALISM

Throughout the evolution of axiomatic logic, mathematicians have attempted to

reduce and simplify the basis set of assumptions necessary to define the

semantics of logic.  Logicians cast this basis within a framework of

inference;  the central connective in a logical axiom is implication.  In

contrast, algebraists cast the basis within an equational framework;  the

central connective is equality.  The difference between the two approaches is

that logical inference is one-directional, that A implies B does not mean

that B implies A.  Logical implication is asymmetric.  As a consequence, the

processes of logical deduction and proof must accumulate inferences as a

database of facts implied by a set of premises.  In contrast, the mechanisms

of algebra, which we know from seventh grade algebra of numbers, allow the

current state of a computation to be carried along within an equation.

Algebraic deduction is bidirectional, using substitution of equals for equals

as a primary computational mechanism.

A third axiomatic approach is to use recursive function theory, to define

processes in terms of a base case and an inductive, recursive case.  Function

theory assumes an equational context.



2

The degree of representational and computational power embodied in each of

these axiomatic approaches varies, with implicational logic being the most

clumsy for computation, and recursion being the most elegant.

Independent of the axiomatic approach, the representation of logical form

also strongly effects the power and clarity of axioms.  Lakatos, in Proofs

and Refutations, shows that the evolution of a mathematical concept is

dynamic, with emphasis falling at one time on the axioms themselves, and at

another times on the definitions which identify the data structures that the

axioms refer to.



3

SYMBOLIC NOTATIONS

Formal Logic

Several sets of notation for the operations of primary logic have been

introduced by the various founders of symbolic logic.  Generally each

invented his own notation,  Thus, negation may be

Language     Peano     Hilbert  Variations  Boolean  Boundary

                              _

NOT P       ~P          P        ¬P   -P         P'        (P)

We will select a set of symbols with convenient typography herein, since

indeed, in contrast to diagrammatic notations, typographical symbols are

intended to be typographically convenient.

Connective Symbol

           NOT   ¬

           AND   &

            OR   v

       IMPLIES  ->

IF AND ONLY IF   =

Implicational Basis

          TRUE        p -> p

         FALSE        F

           NOT        p -> F

           AND       (p -> (q -> F)) -> F

            OR       (p -> F) -> q

       IMPLIES       p -> q

IF AND ONLY IF       ((p -> q) -> ((q -> p) -> F)) -> F

Sheffer Stroke

Both NAND and NOR are single connective bases for primary logic, although

technically they require one ground token, such as FALSE, in symbolic

systems.  The symbol for NAND is called stroke, |, and is named after Sheffer

although it was first formalized by Peirce.  The symbol for NOR is called

dagger, †, also accredited to Sheffer.



4

    Connective      Stroke           Dagger

          TRUE       TRUE               FALSE†FALSE

         FALSE     TRUE|TRUE               FALSE

           NOT        p|p                   p†p

           AND    (p|q)|(p|q)           (p†p)†(q†q)

            OR    (p|p)|(q|q)           (p†q)†(p†q)

       IMPLIES        p|(q|q)       ((p†p)†q)†((p†p)†q)

Combinators

Proposed first by Schonfinkel in 1924, and refined later by others, this

system demonstrates that variables are not a necessary part of logic.

<<implications of no variables>>

Here is the SKI calculus, introduced by Curry, Feys, and Craig in 1958. It is

the same as Schonfinkel's calculus.

Ix = x

Kxy = x

Sfgx = fx(gx)

Note that I is redundant, since

I = SKK

Polish Notation

Developed by Lukasiewicz, this system requires no brackets,  Each capital

letter operator takes an exact number of arguments which follow.

  Connective Polish Symbolic Polish

           NOT      Np           ¬p

           AND      Kpq          &pq

            OR      Apq          vpq

       IMPLIES      Cpq          ->pq

IF AND ONLY IF      Epq          =pq



5

AXIOMATIC SYSTEMS

FREGE'S AXIOMS

Frege was the first to formalize logic. He presented his work in his own

diagrammatic form, Frege diagrams. It is very difficult to find mention of

his notation without consulting is original manuscripts in German.  In the

nearly universal process of transcribing Frege diagrams to symbolic logic,

the power of Frege's diagrammatic thinking has been almost completely lost.

Frege provided six axioms for simple logic. They are not independent.  The

third "axiom" is a theorem of the first two.  The fourth, fifth, and sixth

can all be reduced to a single axiom:

(¬p->¬q)->(q->p)

The first three define the stroke of implication, the next three define

negation.  Frege's notation builds in a basis of {NOT, IMPLIES} since it has

not other representational forms.

1)  a -> (b -> a)

2)  (c -> (b -> a)) -> ((c -> b) -> (c -> a))

3)  (c -> (b -> a)) -> (b -> (c -> a))

4)  (b -> a) -> (¬a -> ¬b)

5)  ¬¬a -> a

6)  a -> ¬¬a

LUKASIEWICZ' AXIOMS OF INFERENCE

Lukasiewicz produced perhaps the most elegant set of axioms of inference in

symbolic notation.

1)  (p->q)->((q->r)->(p->r))

2)  p->(¬p->q)

3)  (¬p->p)->p

1) is transitivity of implication

2) is consequentia mirabilis -- Stoics

3) is self-contradictory conjunction -- John Duns the Scot



6

NICOD'S AXIOM FOR BOOLEAN ALGEBRA

In 1917, Nicod proposed a single axiom for primary logic. It is always

possible to cast any set of axioms into one single form, simply by combining

them by conjunction.  The difficulty is then to find patterns which match the

usually complex result.  That is, one always then decomposes the single axiom

into a more convenient group of theorems.

Nicod's formalization, based on the Sheffer stroke (NAND):

[p|(q|r)]|([t|(t|t)]|{(s|q)|[(p|s)|(p|s)]})

[p|(q|r)]|           {(s|q)|[(p|s)|(p|s)]})

or

[p|(q|r)]|{(t->t)|[(s|q)->(p|s)]}

where p->q = [(p|(q|q)]

The variety of delimiters above is solely to distinguish application nesting.

HUNTINGTON'S AXIOMS FOR BOOLEAN ALGEBRA

Huntington's algebraic system was the first to unite logic with group theory.

+ (OR) * (AND)

Commutativity a+b  = b+a ab  = ba

Identity a+00  = a a11  = a

Complement a+a' = 11 aa' = 00

Distribution a+bc = (a+b)*(a+c) a*(b+c) = ab+ac

Below, the parens notation of boundary logic and the symbolic notation of

conventional inferential logic are compared to Boolean Algebra.

Parens

Commutativity implicit in unstructured space

Identity a = a                  a = a

Complement a (a) = ( )            ((a) a) =

Distribution a ((b)(c)) = ((a b)(a c))

((a)(b c)) = ((a)(b)) ((a)(c))



7

Natural Logic

+ (OR) * (AND)

Commutativity (a v b) = (b v a) (a & b) = (b & a)

Identity (a v F)  = a (a & T)  = a

Complement (a v ¬a) = T (a & ¬a) = F

Distribution (a v (b & c)) = ((a v b) & (a v c))

(a & (b v c)) = ((a & b) v (a & c))

Inferential Logic

Boolean algebra is quite awkward in pure inferential logic.  Even adding NOT

and maintaining the equality sign, the resulting expressions are unfamiliar.

Without algebraic equality, each equation would convert into the form

¬((X -> Y) -> ¬(Y -> X))

       + (OR)                        * (AND)

Commutativity (¬a -> b) = (¬b -> a)  ¬(a -> ¬b) = ¬(b -> ¬a)

Identity (¬a -> F) = a  ¬(a -> ¬T) = a

Complement    a -> a = T ¬(a' -> a') = F

Distribution 

    ¬a -> ¬(b -> ¬c)  = ¬((¬a -> b) -> ¬(¬a -> c))

¬(a -> ¬(¬b -> c)) = (a -> ¬b) -> ¬(a -> ¬c)



8

SPENCER-BROWN'S ARITHMETIC AND ALGEBRAIC AXIOMS

In Laws of Form (1967), Spencer-Brown made the unique contribution of

formalizing the arithmetic of logic.

    ( )( ) = ( )              CALLING

    (( ))  = CROSSING

   (a (a)) = POSITION

a ((b)(c)) = ((a b)(a c)) TRANSPOSITION

Position is AND-complement in Huntington's system, while transposition is

distribution.

KAUFFMAN'S SINGLE AXIOM

((a b)(a (b))) = a

Kauffman elegantly shows the relationships between inference, logical

tautology and logical arithmetic in the following two dimensional diagram,

for which both rows and columns are combined in space to create new

structures.

  ( a  b )   ( a (b))    =   (a)

                                             

  ((a) b )   ((a)(b))    =  ((a))

     =          =             =

  (    b )   (   (b))    =   ( )

BRICKEN'S COMPUTATIONAL RULES

(A ( )) = VOID OCCLUSION

A {B A} = A {B} PERVASION



9

The third equation that characterizes Boundary Logic is

((A)) = A INVOLUTION

which can also be derived as a theorem given the definition of equality.

X = Y =def= (X Y) ((X)(Y))

by substituting

X = ((A)) and Y = A

To express Pervasion in symbolic notations, we must use a shallow form of the

rule, and apply it repeatedly, spreading the rule over both axioms and proof.

A (B A) = A (B) SHALLOW PERVASION

Computational Rules Expressed as a Recursive Function

Propositional logic, aka formal deduction, aka rationality, can be expressed

as a single recursive function.  The base case is Void Occlusion:

({A} ()) = <void> Base case

The inferential case is Deep Pervasion:

{A} {B {A}} = {A} {B} Inductive case

The base case uses parens, ( ), as its language to express logical forms, and

establishes the class of void equivalent forms.

The inductive case uses braces called deeparens, { }, as schema that refer to

the set of all possible parens forms.  The curly braces are necessary in

order to represent a variable as having both an outside and an inside.

All Boolean forms can be constructed using this equation constructively.

Should one begin with <void>, the base case permits all False forms to be

generated.  Should one begin with a mark, ( ), a functional variety of the

base case, Dominion, permits all True forms to be generated.  

 {A} ( ) = ( ) Base case, Dominion

Forms are semantically equal simply because they are constructed from the

same base, ( ) or <void>.



10

DIAGRAMMATIC LOGIC

HISTORICAL EVOLUTION

In general, the original explorers of the concepts of logic formulated their

understandings in spatial, rather than symbolic form.  Symbolic logic is

relatively new, introduced first by Boole in 1854.  In the latter half of the

19th century, during the rigorous formalization of logic, Venn, Peirce and

Frege all developed inherently spatial representations.  Russell's symbolic

notation was adopted universally after around 1910, since the spatial forms

were considered too clumsy to work with.   

Aristotle's Square of Opposition

Aristotle wanted to create a classification of declarative language,

presumably to enhance the veracity of Greek debate.   

The Square of Opposition was the first spatial display of logical concepts:

Affirm Deny

Universal A   Every _ is _.       EE   No _ is _.

Particular I   Some _ is _.        OO   Some _ is not _.

In terms of parens:

Affirm Deny

Universal  (_) _                  ((_) _)

Particular ((_)(_))                 (_)(_)

Syllogistic Figures

B is the minor term

M is the middle term

C is the major term

_ is one of the AEIO forms from the Square of Opposition. B, M and C fill in

the blanks in the particular AEIO form.



11

Figure First Second Third Fourth

Major premise M_C C_M M_C C_M

Minor premise B_M B_M M_B M_B

Conclusion B_C B_C B_C B_C

The moods of the figure are the particular choice of the AEIO form in the

figure's "shape".

Euler Diagrams

The first use of closed planar circles to represent syllogistic relations

probably occurred in the 16th century [Lull, Ars Magna]. In the eighteenth

century, Euler proposed a system which used spatial enclosure to express the

syllogistic figures.  At that time, logic was solely syllogistic reasoning.

There is no way to express XOR in this language.

A
B

           

A B

    All A is B                        No A is B

       (A) B                           ((A) B)

A B

            

A B

     Some A is B.                   Some A is not B.

       ((A)(B))                         (A)(B)

Euler was limited by following Aristotle too closely.



12

Venn Diagrams

The structural variation does show up as a cloven black-space.  The two

pieces of black are mandatory so that we can tell the difference between a

and b.  Appearance of structural variation in XOR since rotation of the

figure is a hidden assumption.  

universe

a=b

a b

Here is a comparison of Venn's fully expressible system, compared to Euler's

limited system with no composability operators.

                

    All A is B                        No A is B

       (A) B                           ((A) B)

                

     Some A is B.                   Some A is not B.

       ((A)(B))                         (A)(B)



13

Truth Tables

a

F

T

b

F T

T

T

XOR

Truth tables are a tabular layout for exhaustively determining the value of a

particular propositional expression.  

We will illustrate the cases of truth for the XOR function expressed as a

composition of other simple logical connectives.

(a XOR b) = ((a OR b) AND ((NOT a) OR (NOT b)))

a    b    not a    not b    a OR b    -a OR -b    a XOR b

0    0      1        1         0          1          0

0    1      1        0         1          1          1

1    0      0        1         1          1          1

1    1      0        0         1          0          0

Evaluation Trees

The evaluation of a propositional expression, given the values of the input

variables, takes the form of a tree:

((a OR b) AND ((NOT a) OR (NOT b)))

  T    F            T          F

FT T

T

T



14

Frege Diagrams

Frege originated much of our modern approach to formal logic.  He invented a

spatial notation to express "formal thought".

B

B

A

A

Frege diagrams are read right to left, with the inputs on the far right and

the output on the far left. The diagram is a single form composed three

elements.

Evaluation              Negation                Implication

   = ( )                  ( )                    (_) _

Evaluation is the termination condition for the diagram, the output.  The

vertical stroke is the actual end-point, the horizontal stroke is the content

stroke, the form of the expression itself.

A vertical negation bar under the content stroke inverts the value on the

right as it "flows" to the left.

A vertical bar connected below to another horizontal content bar links the

two content strokes by implication.  The lower content implies the upper

content.

Composition of logical expressions is by attaching the left-side of one

content stroke to the right-side of another.



15

The language elements have subtle interconnections.  For instance, negation

is the same as implication with an empty lower content stroke.  Negation can

be read as an implication for which the content is the upper stroke rather

than a new lower stroke.

Some common logical connectives follow:

B

A

B

A

 A AND B A OR B

B

A

A

B

A XOR B

The generic structure of IMPLIES has three locations for a negation bar

on the far left

on the top stroke

on the bottom stroke

This defines 8 of the 16 Boolean connectives. The four single value

connectives are single strokes ending on the right with either a or b, and

either having or not having a negation stroke.  What remains is the two

compound connectives XOR and IFF (shown above), and the two truth values.   

How are TRUE and FALSE indicated?  By single strokes without a terminal

label.  The evaluation stroke conveys TRUE and a negation bar on the

unlabelled stroke is FALSE.

   TRUE FALSE



16

This diagrammatic formal language was never adopted by the logic community,

although it was invented by the same person who invented formal logic.  The

diagrammatic notation maps directly onto parens,

b

b

a

a

a'

((a'+b')'+(a''+b)')'

(a'+b')'+

b'

a'+

a''+

(a''+b)'

b

b

a

a

(a)

(((a)(b))(((a)) b))

((a)(b))

(b)

(a)

((a))

(((a)) b)



17

REPRESENTATIONAL DIVERSITY

DIAGRAMMATIC FORMS IN BOUNDARY LOGIC

Enclosures

Parens

Capped Parens

Boxes

Circles

Graphs

Parens with Depth

Parens Extruded Downward

Parens Trees

Distinction Trees

Distinction Networks

Cyclic Distinction Networks

Crossbound Graphs

Maps

Distinction Steps

Blobby Distinction Maps

Circular Distinction Maps

Rectangular Distinction Maps

Distinction Rooms

Perspective

Centered Distinction Steps

Centered Circular Distinction Maps

Centered Rectangular Distinction Maps

Blocks

Parens Extruded Upward

Distinction Stacks

Distinction Walls

Distinction Blocks

Paths

Bar Trees

Bar Graphs

Path Graphs

Distinction Paths



18

BOUNDARY LOGIC

ENCLOSURES

Parens

((a b)((a)(b)))

Parens notation uses presence and absence to indicate TRUE or FALSE.  There

are 8 ways to parenthesize two labels in pairs, four ways to parenthesize two

single labels, and two ways with no labels, one of which is the absence of

any mark.

splat ( )

a (a) b (b)

 a b  (a) b  (b) a  (a)(b)

(a b) ((a) b) ((b) a) ((a)(b))

What remains are the two complex forms XOR and IFF, one of which is simply

the bounded version of the other.

How can we select a pair of simple forms above so that they do not cancel

parts of each other out?  Given the laws of Boundary Algebra (later), only

two pairings are possible:

The pairs which do not cancel must necessarily be bounded with two variables.

This means they must be selected from the row:

(a b) ((a) b) ((b) a) ((a)(b))

Further the bounding of each variable must not be duplicated.  This leaves

 (a b) ((a)(b))

and

((a) b) ((b) a)

which are the two structural varieties of XOR/IF.



19

Capped Parens

Enclosing a parens form is simply connecting the top and bottom of each

parens pair to create an two-dimensional circular or rectangular enclosure.

Parens structures convert to nested, non-intersecting enclosures.

((a b)((a)(b)))

Boxes

   

aa b b

Circles

b
a

a
b



20

Extruding a parens form is extending each depth into a second dimension, to

create a graph or a stack of boundaries.

These forms assume a viewing perspective "from above". They do not support

commutativity

The main connectives (NOT, OR, AND):

a

a b

a b

GRAPHS

Parens with Depth

((a b)((a)(b)))



21

Parens Extruded Downward

(             )
 (   )(      )
  a b  ( )( )
        a  b

Parens Trees

a b

a   b

Distinction Trees

The apparent commutativity is an illusion, since inputs are not ordered.

b

ba

a



22

Distinction Networks

a

b

We have shifted the viewing perspective to assume top-to-bottom (or bottom-

to-top if you prefer). That is the meaning of the little stem on the graphs.

The difference between a textual parens form and a graph is simply a 90

degree rotation of perspective out of the page.

This notation presents the first occurrence of a planarity question, since

connective arcs can potentially cross.

Cyclic Distinction Networks

a

b



23

Flow is implicitly down in cycles, with overlaying of curves setting

ordering.

The main connectives (NOT, OR, NOT-NOT, AND):

a

a b

a b

a b



24

MAPS

Distinction Steps

b a

b a

Graphs are viewed from outside, using a external to the representation point-

of-view.  Maps can be viewed from the inside, since the location of the

point-of-view determines the meaning of the logic map.

They do not support commutativity.



25

The main connectives (NOT, OR, NOT-NOT, AND):

a

ba

ba

ba



26

Blobby Distinction Maps

a

b

Circular Distinction Maps

b

a



27

Rectangular Distinction Maps

a
b

Distinction Rooms

a
b

The main connectives (NOT, OR, AND):

a

a b

a b



28

Centered Distinction Steps

a b

The perspective-location dot is not strictly necessary, however in the

following, we abandon depth cues.

Centered Circular Distinction Maps

This notation moves from conventional perspective to none,

ba ba



29

Centered Rectangular Distinction Maps

Giving up the visual overlap cue of circular forms:

a b

BLOCKS

Parens Extruded Upward

(             )
 (   )(      )
  a b  ( )( )
        a  b

Stacked Distinctions

a b

a   b

Assumed top-to-bottom.



30

Distinction Walls

a

b

Single objects begin to remove the top-to-bottom assumption.  

Distinction Blocks

a b

ba

The main connectives (NOT, OR, AND):

a

ba

ba



31

PATHS

Bar Trees

a bb a

Bar Graphs

Do not support commutativity

b

a



32

Path Graphs

a

b

Distinction Paths

a b



33

The main connectives (NOT, OR, AND):

a

a b

a b



34

NONSYMBOLIC LOGIC  TRANSFORMATION TOOLS

Modern Tools

Natural Deduction

Resolution

Logic State Machines

Boolean Cubes

Matrices

Lattices

Computers

Logic Networks

Switching Circuits

Circuit Schematics

Transistor Networks

MODERN TOOLS

Axiomatic Systems

1847 DeMorgan

1854 Boole

1879 Frege

c1880 Peirce

1881 Venn

1894 Peano

1904 Huntington

1910 Russell

1913 Sheffer

1917 Nicod

1921 Wittgenstein

1924 Schonfinkel

1927 vonNeumann

1930 Lukasiewicz

1933 Huntington

1934 Hilbert and Bernays

1934 Carnap

1934 Gentzen

Natural Deduction

In the following spatial notation,  [P] means "suppose that P is TRUE"

The bottom of each notational grouping supports the Top, traveling down is

deduction.

Natural deduction has balanced rules for introducing and eliminating signs.



35

P   Q           P&Q             P&Q

-----           ---             ---

 P&Q             P               Q

 P             Q

---           ---

PvQ           PvQ

      [P]  [Q]

PvQ    Q    R

-------------

     R

 [P]

FALSE          P    ¬P           ¬¬P            FALSE

-----          -------           ---            -----

 ¬P             FALSE             P               P

[P]

 Q            P    P->Q

----            ---------

P->Q                Q

Proof Steps in Natural Deduction

Logical proof using natural deduction consists of creating a list of

justified steps.  Since the results from any prior step may be called upon in

a following step, the steps themselves are not a linear ordering, but rather

they are a spatial array.

Premise:      ((a OR b) AND ((NOT a) OR (NOT b)))

Conclusion:   (NOT ((IF a b) AND (IF b a)))



36

------

1.  ((IF a b) AND (IF b a))) indirect proof, assumption

2.  (IF a b) simplification 1

---

3.  a indirect proof, assumption

4.  b modus ponens 2,3

5.  (a AND b) conjunction 3,4

6.  (NOT ((NOT a) OR (NOT b))) DeMorgan 5

7.  ((NOT a) OR (NOT b)) simplification, premise

8.  (NOT ((NOT a) OR (NOT b)))

AND ((NOT a) OR (NOT b)) conjunction 6,7

9. (NOT a) contradiction 3,8

---

10. (IF b a) simplification 1

11. (IF (NOT a) (NOT b)) contraposition 10

12. (NOT b) modus ponens 9,11

13. (a OR b) simplification, premise

14. a disjunctive syllogism 12,13

15. a AND (NOT a) conjunction 9,14

16. (NOT ((IF a b) AND (IF b a))) contradiction 1,15  QED.

------

In recognition of the non-linear structure of proofs, logicians use a tree

format for display which highlights the partial ordering between premises and

conclusion.  Conversion of sequential display into tree form is called

"resolution into proof threads".  The above proof

  [16]

[15][1]*

[7]

[9]

[3]* [8]

P

[4]

[3]*

[6]

[5]

[3]*

[1]*

[2]

[14]

[11]

[13]

[10]

[12]

[1]*

[9] P



37

Resolution

In 1965, John Robinson devised a computational approach to proof called

resolution.  The resolution principle uses the two possible cases of one

variable.  If the fact that a thing is True leads to one conclusion, and the

fact that it is False leads to another conclusion, then in any case either

the first or the second conclusion is True.

((if P then Q) and (if (not P) then R))  implies (Q or R)

As a deductive rule, resolution can be stated in increasing general forms:

   P  and   ¬P or False |=   False

   P  and     ¬P or Q |=     Q

P or Q  and     ¬P or Q |=     Q

P or Q  and     ¬P or R |=   Q or R

   (P and U) or Q  and..(¬P and V) or R   |=  (U or Q) or (V or R)

Resolution proof uses a clausal data structure consisting of sets of

literals in disjunction.  A pair of sets, one with a positive occurrence of a

variable and one with a negative occurrence, is resolved by forming the union

of the two sets, and deleting the resolvent variable.

{p, q} union {¬p, r}   |=  {q, r}

Facts are expressed as a singular set:

{p}

Rules are converted from implicational form to disjunctive form:     

p -> q  ==>  ¬p or q   ==>   {¬p, q}

When the resolvent atoms have  internal structure (functions and relations),

the internal variables are unified in the course of resolving the atoms.

Resolution expresses Boolean functions as sets of literals.  This is a

different way to express CNF.  The disjunctive forms in each clause form a

set with implicit disjunction.  Each clause forms a different set.

Literals: atoms and negated atoms

Clauses: sets of literals joined by OR



38

The Resolution Rule

Let S1 and S2 be sets of clauses, and U be the set Union operator:

({a,b,...} U S1) & ({¬a,b,...} U S2)  ==>  {b,...} U S1 U S2

E.g.: {x,b,¬c} & {¬x,b,d}  ==>  {b,¬c,d} resolve on x.

Termination

{a} & {¬a}  ==>  { }  ==>  False

{a,¬a}  ==>  True

Not complete

¬{¬a,¬b} & { }  ==>  no action

Logic State Machines

TRUE

FALSE

Two objects, 16 ways to connect with presence or absence of directional

arrows.

Boolean Cubes

A Boolean function can be expressed in terms of a collection of vertices of a

hypercube (this is not the same use as the lattice hypercube).  The set of

all Boolean functions of N variables is defined by all the possible

collections (the power set) of vertices (called ccubes).

Each cube is the conjunction of unique literals, one from each variable.  The

whole is formed by the disjunction of all cubes.



39

Examples:

a  ¬a

1 variable •---•

    a&b   a&¬b

2 variables       •---•

      |   |

      •---•

   ¬a&b   ¬a&¬b

Boolean Cube Operations

Cubes can be used for computation, either symbolically or physically.

function = set of cubes

not function = set of cubes not in function

f or g = overlay the cubes of f and the cubes of g

f and g = intersect the cubes of f and the cubes of g

b

a

a'

b'
a AND b

a' AND b'

Matrix Logic

10

1 0



40

By arranging the truth table of a Boolean function in a matrix form, the

rules of logic can be converted into the rules of matrix algebra.  The

general format is:

   BB

 T   F

    T   •  •

        AA

    F  ••  •

Some examples:

A & B      A v B      A = B      A->B         A          ¬A         T

 1 0        1 1        1 0        1 0        1 1        0 0        1 1

 0 0        1 0        0 1        1 1        0 0        1 1        1 1

Each Boolean matrix is an operator.  That is, in this formulation, there are

no objects.  When using binary operations, matrix addition is xor;  matrix

multiplication is and.

a + b = c a * b = c

0 + 0 = 0 0 * 0 = 0

0 + 1 = 1 0 * 1 = 0

1 + 0 = 1 1 * 0 = 0

1 + 1 = 0 1 * 1 = 1

 xor  and

Note that these relations are the same ones that apply to computational

addition.

As well, some matrix combinations result in matrices which are not Boolean

functions.  This then extends Boolean operations into generally unexplored

territory, imaginary Boolean operations.  Some examples of translating

between operators:



41

a + ¬a = T 1 1  +  0 0  =  1 1

0 0     1 1     1 1

a * ¬a = a 1 1  *  0 0  =  1 1

0 0     1 1     0 0

xor + and = or 0 1  +  1 0  =  1 1

1 0     0 0     1 0

nor^2 = nor 0 0  *  0 0  =  0 0

0 1     0 1     0 1

xor^2 = equal 0 1  *  0 1  =  1 0

  (square-root of equal) 1 0     1 0     0 1

and + or = ? 1 0  +  1 1  =  2 1

0 0     1 0     1 0

Lattices

A lattice is a directed graph with links representing an ordering relation.

Lattices can have a maximal and a minimal element

      ( ) maximal

       |

      ( )

       | > greater than

      ( )

       |

      ( ) minimal

A partial ordering uses the ordering relation greater-than-or-equal-

to.

      ( ) maximal

     /   \

   (1)   (2) 1 = 2

     \   /

      ( ) minimal



42

Hasse Diagrams (aka lattices)

A set and an ordering relation {S,>}, such that

•  each object is a vertex

•  if (a > b), then a is higher than b.

•  if there is no c such that (a > c > b), then a is connected to b.

   (a)    (b) no maximal element

     \   /

      (c) (a>c) & (b>c) & (c>d)

       |

      (d) minimal

Boolean Hypercube

A distributed, complemented lattice.  Two lattice combinational operations,

meet (follow any two lines down) and join (follow any two up).

For a Boolean interpretation, join = AND,  meet = OR

Tells all structural relations between different binary logic operators.

TRUE

FALSE

XOR IFF

NOR

NAND

NIF B

IF A

NIF AAND

OR IF B

NOT BNOT ABA



43

COMPUTERS

Logic Networks

b
XOR

a

Switching Circuits

a

b

a

b



44

Circuit Schematics

a

b

a

b

a

b

a

b



45

Transistor Networks

+V

a XOR b

b

a



46

DIAGRAMMATIC PROOF FAMILIES

The following are proof families of representations

Boolean Cubes

Circuit Schematics

Parens

Enclosing Circles

Distinction Networks

Distinction Steps

Distinction Rooms

Distinction Blocks

Bar Graphs

Distinction Paths

AXIOMATIC EQUIVALENCE

The various sets of axioms are all equivalent in that they all express what

we have been calling primary logic.  We have selected the parens form using

the computational axioms of boundary logic to demonstrate a common basis of

them all.  Below, the modus ponens theorem (axiom) of conventional logic is

proved using each of the spatial representations.  We assume that only their

computational axioms will be used.

AXIOMS

OCCLUSION (( ) A) = <void>

PERVASION A (A B) = A (B)

INVOLUTION ((A)) = A (actually a theorem)

PROOF OF MODUS PONENS

( ((a) ((a) b)) ) b = ( )

(a*(a'+b))'+b

NOT (a AND (NOT a OR b)) OR b

Parens

( ((a) ((a) b)) ) b transcription

   (a) ((a) b)    b inv

   (a) (     )    b per (a) b

       (     ) dom



47

Boolean Cubes

Constructive

                a

            NOT a

           (NOT a OR b)

    (a AND (NOT a OR b))

NOT (a AND (NOT a OR b))   

NOT (a AND (NOT a OR b)) OR b

a

b

¬a

¬b

a

¬(a & (¬a v b))a & (¬a v b)

¬a v b¬a

¬(a & (¬a v b)) v b



48

Enclosing Circles

b

aa
b

b

a

b

Distinction Networks

a

b

a

b b

a

b

a

b

a

b

a

Distinction Steps

a

b

a

b

a

b

a

b b



49

Distinction Rooms

a

b

a

b

a

b

a

b

a

b

Distinction Blocks

b

a

a

b

a

a

b

a

a

b

a

a b a b

Bar Graphs

b a b a b a

b a b a



50

Distinction Paths

a b a b a b

a b a b a b


