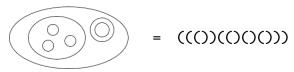


Void and Mark
We construct a particular space of representation by framing it.
In the beginning there is no structure, there is only the frame.
Void space within the frame is featureless. – void space is not filled with points, nor is it continuous A frame is singular and cannot be decomposed.
absence of decomposition means absence of the concept of intersection
A mark is a representation of the frame within itself. – marks support both an inside and an outside (just like frames)
Replication of marks constructs a language of boundary forms.
Copyright © 2006 William Bricken. All rights reserved.

Typographical Delimiters as Marks

A delimiting pair of tokens (parentheses, braces, brackets, quotations, etc.) can be used as a typographical representation of a mark.

Parentheses used as spatial boundaries are called parens.



Parens introduce these accidental properties (which must be ignored):

- fragmentation of the boundary into two tokens "left" and "right"
- linear ordering of boundaries in a string

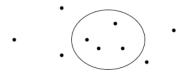
Copyright © 2006 William Bricken. All rights reserved

Two Types of Composition

A boundary form is a composition of non-intersecting closed curves.

Boundaries support two types of composition

- SHARING is composition on the outside
- BOUNDING is composition on the inside
- neither operation requires a concept of arity



Bounding

Forms are bounded (contained or enclosed) by an outer boundary.

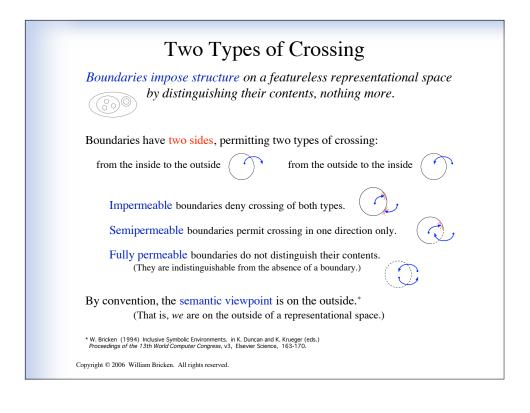
Any number of forms can be contained by the same boundary.

Sharing

Forms sharing a space are structurally independent.

Any number of forms can share a space.

Any number of forms can share a space.
Forms within a common boundary share the interior space of that boundary.



Pattern-Variables and Pattern-Equations Pattern-variables stand in place of any form (i.e. universal quantification), including an outer boundary and its contents A = (()(()()))forms sharing a space A = (()())(())- the absence of a form Pattern-templates are forms (usually with variables) that identify an equivalence class. Example: (A ((B))) matches ((()()) (())), with A=(()()) and B=<void>(((()())) ()), with A=() and B=()()but not (() (()())) Pattern-equations collapse specific equivalence classes. - transformation of patterns is based on substitution and replacement of equals - pattern-equations can be applied in parallel when matches do not overlap structurally - pattern-equations define the semantics of the boundary language Example: (A)(B) = (A B)((())(()()))((())(()())) two parallel substitutions ((() ())) one resultant sequential substitution Copyright © 2006 William Bricken. All rights reserved

First Class Void Empty containers permit the semantic use of non-representation. contains nothing on the inside Void-equivalence $(A ()) = \langle void \rangle$ forms and pattern-templates can be equated to <void>. (B (A ())) = (B)Void-based pattern transformation - substitution of <void> for a void-equivalent form is deletion of the form (B) = (A ()) (B (A () (A ()))Void-substitution void-equivalent forms can be deleted at will void-equivalent forms can be constructed anywhere throughout a form ~~~ The Principle of Void-Equivalence ~~~ Void-equivalent forms are syntactically irrelevant and semantically inert. Copyright © 2006 William Bricken. All rights reserved.

Two Interpretations

A (semantic) interpretation is a mapping of boundary forms to objects in a domain of interest, together with pattern-equations that specify the calculus of the domain.

Many interpretations of boundary mathematics have been developed, including knot theory, Boolean algebra, real numbers, and imaginary logic and numerics."

Two interpretations follow, integer arithmetic and propositional logic.

Object mapping: 0 = < void > 1 = () $FALSE = \langle void \rangle$, TRUE = ()Addition is SHARING Disjunction is SHARING Corresponding operations: Multiplication is BOUNDING Negation is BOUNDING Pattern-equations: (())=()()()=()(), (())=<void>

The syntactic varieties presented later apply to any interpretation.

- * W. Bricken (1991) A Formal Foundation for Cyberspace. Proceedings of Virtual Reality '91, The Second Annual Conference on Virtual Reality, Artificial Reality, and Cyberspace, San Francisco, Meckler, 9-37 *W. Winn and W. Bricken (1992) Designing Virtual Worlds for Use in Mathematics Education: The Example of Experiential Algebra. Educational Technology, v32(12), 12-19.

BOUNDARY INTEGERS

Copyright © 2006 William Bricken. All rights reserved.

Boundary Integer Arithmetic*, Representation

Boundary place notation

uses depth of nesting rather than location in sequence for place notation.

() is atomic and cannot 1
$$\bullet$$
 = ()
be decomposed 2 $\bullet \bullet$ = (\bullet)
3 $\bullet \bullet \bullet$ = (\bullet)
4 $\bullet \bullet \bullet \bullet$ = (\bullet)(\bullet) = ((\bullet))
stroke arithmetic \bullet merge \bullet double

Pattern-equations for standardizing forms:

Standardization constructs an equivalent form with the fewest number of boundaries.

*Kauffman, L.H. (1995) Arithmetic in the Form. *Cybernetics and Systems* 26: 1-57.

Copyright © 2006 William Bricken. All rights reserved.

```
Boundary Integer Arithmetic, Operations

Addition is sharing the same space:

A + B ==> A B

Multiplication is unit substitution:

A * B ==> substitute [B for • in A] = substitute [A for • in B]

Addition occurs by placing forms in the same void-space

- no ordering, grouping, or arity in void-space

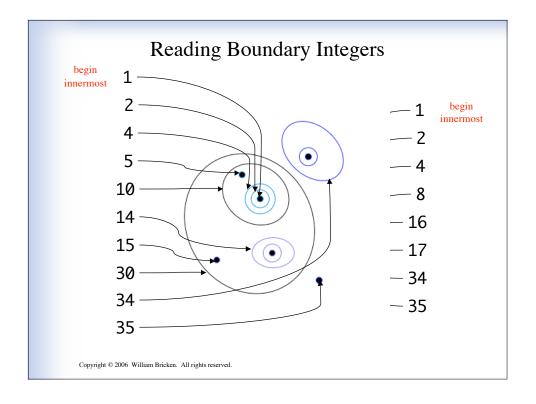
Multiplication occurs by placing replicate forms in •-space

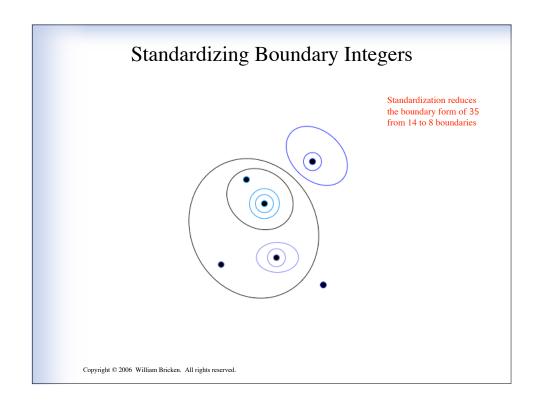
- no ordering, grouping, or arity in •-space

Neither operation requires additional computation.

- no number facts, no "carrying"

All computation is form standardization.
```





BOUNDARY LOGIC

Copyright © 2006 William Bricken. All rights reserved.

The Evolution of Boundary Logic

Originated by the *founders of formal logic*

- 1879 Gottlob Frege -- network notation based on implication
 - the German logician who invented formal mathematics
- 1896 Charles S. Peirce -- enclosure notation based on conjunction the American logician who invented semiotics

1890s C.S. Peirce entitative and existential graphs, boundary notation

1963 I. Calvino "A Sign in Space" (literature)

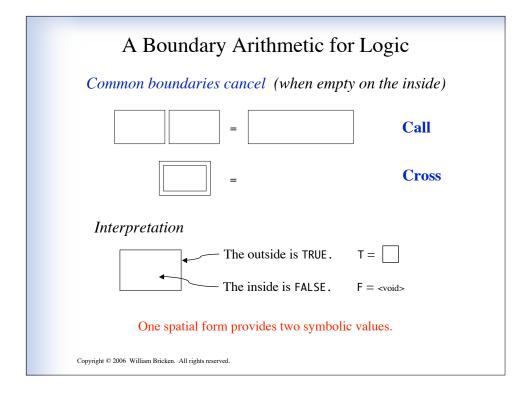
1967 G. Spencer Brown "Laws of Form" (mathematics)

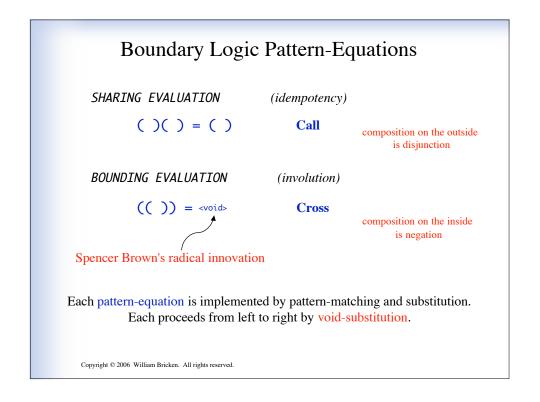
1975 F. Varela (and L. Kauffman) "A Calculus for Self-reference" (imaginaries)
 1982 W. Bricken Losp Deductive Engine (computer science)

1985 First Sign/Space Conference (cybernetics)

1992 R. Shoup "A Complex Logic for Computation with Simple Interpretations for Physics" (physics)

2001 L. Kauffman "The Mathematics of Charles Sanders Peirce" (mathematics)





Evaluation via Deletion $FALSE = 0 = \langle void \rangle$ To evaluate a FALSE variable: *delete* the variable. TRUE = 1 = ()To evaluate a TRUE variable: *delete the container* of the variable. Example: $a \text{ IFF } b \longrightarrow (a \ b) ((a)(b))$ transcribe Let a=0, b=0:)(()()) =>() call, cross Let a=0, b=1: (()) (()(())) ==> <void> cross 3 times Let a=1, b=1: (()())((())(())) ==> () call, cross 3 times Copyright © 2006 William Bricken. All rights reserved.

Transcribing Boolean and Boundary Logics BOOLEAN BOUNDARY **FALSE** <void> TRUE () NOT a (a) a b a or b (a b) NOT (a or b) (a) b IF a THEN b a and b ((a)(b))a EQUIVALENT b (a b)((a)(b))The boundary logic "constant" set: *The boundary logic "function" set:* Copyright © 2006 William Bricken. All rights reserved

One-to-Many Mapping

One boundary form represents *many* different conventional logic expressions.

A one-to-many mapping is necessary for one system to be simpler.

The particular logical interpretation of a given boundary form is a *free choice*.*

()

((a)(b))

1
NOT 0
1 OR 0
0 OR 1 OR 0
0 NOR 0
(NOT 0) OR 0
NOT (0 OR 0)
NOT (0 OR 0) OR (0 OR 0)

a AND b
b AND a
NOT (NOT a OR NOT b)
NOT a NOR NOT b
NOT (a NAND b)
(a AND b) OR 0
NOT (a NAND (0 OR b)) OR 0
NOT (b NOR 0) OR NOT a OR 0
...

 $\langle \text{void} \rangle = \emptyset = \emptyset \text{ OR } \emptyset = \emptyset \text{ OR } \emptyset \text{ OR } \emptyset = \dots$

*Shin, S. (2002) The Iconic Logic of Peirce's Graphs. MIT Press

Copyright © 2006 William Bricken. All rights reserved

Algebraic Pattern-Equations

Axioms

remarkably succinct

 $(A ()) = \langle void \rangle$

Occlusion

 $A \{A B\} = A \{B\}$

Pervasion

Curly braces refer to *any* deeper intervening structure. There is no analogy in conventional mathematical techniques.

Useful Theorems

((A)) = A

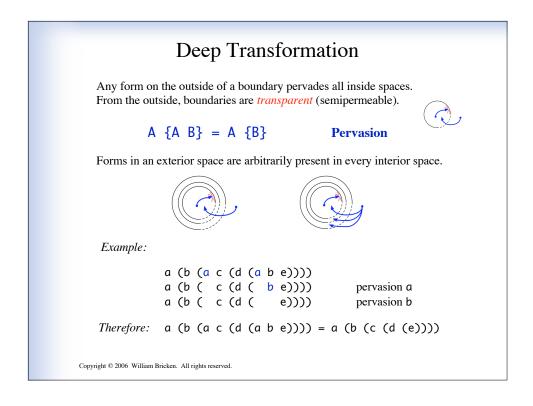
Involution

() A = ()

Dominion

Each pattern-equation is implemented by pattern-matching and substitution.

Each proceeds from left to right by void-substitution.



```
Boundary Logic Proof of Modus Ponens
                                                       \alpha, (\alpha \mid = \beta) \mid = \beta \longrightarrow (((\alpha)((\alpha)\beta)))\beta
Transcribe
      (a AND (a IMPLIES b)) IMPLIES b
                                                        modus ponens
      (a AND (a IMPLIES b)) IMPLIES b
                                                        a IMPLIES b --> (a) b
                                                        a \text{ AND } X \longrightarrow ((a)(X))
      (a AND
                   (a) b
                                 ) IMPLIES b
      ((a) ( (a) b ) ) IMPLIES b
                                                        X IMPLIES b --> (X) b
    (((a) ( (a) b ) )
Reduce
            (((a)((a) b))) b
                                                      transcription
               (a)((a) b)
                                                     involution
                                                                    ((A)) \Longrightarrow A
                                                      pervasion
                                                                    A (A B) \Longrightarrow A (B)
                                                     dominion
                                                                    A ( ) ==> ( )
Interpret
Copyright © 2006 William Bricken. All rights reserved.
```

Pathsways Through Metatheory

Void-equivalence

$$\langle (A ()) \rangle = (\langle A () \rangle) = (\langle A \rangle \langle () \rangle) = (\langle A \rangle \langle () \rangle) = \langle (A \rangle \langle ()$$

The map to logic

Metatheory is invariant under provable equivalence.

- the maps from Boolean logic and from AEG to boundary logic preserve validity*

Algebraic deduction

Entailment transcribes into Birkoff's rules of equational deduction**.

- validity is maintained by bidirectional equations
- substitution and replacement are domain independent

Algebraic structure

Completeness follows from the maximal ideal theory***.

A=B IF A \Rightarrow B A=B IF A \Rightarrow C A=B IF A \Rightarrow C OR A \Rightarrow AND B \Rightarrow C A=B IMPLIES ϕ [A] $-\phi$ [B]

Pattern rewrite system

Void-substitution assures both termination and convergence.

Induction over boundary patterns

Ground cases: () and <void>. Given (A), show A Given A B, show A , B separately

$\alpha \rightarrow \beta = (\alpha) \beta$ $\alpha \mid -\beta = (\alpha) \beta$ $\alpha \mid = \beta = (\alpha) \beta$ $\alpha \mid = \beta = (\alpha) \beta$ α , $(\alpha \mid = \beta) \mid = \beta = (((\alpha) ((\alpha) \beta))) \beta$

*Dau, F. (2005) Mathematical Logic with Diagrams. www.dr-dau.net/publications.shtml **Birkoff, G. (1935) On the Structure of Abstract Algebras. *Proceedings of the Cambridge Philosophical Society*, 31 417-429 ***Halmos, P. and Givant, S. (1998) *Logic as Algebra*. Mathematical Association of America.

Copyright © 2006 William Bricken. All rights reserved.

Alpha Existential Graphs

Peirce's five rules for Alpha Graphs* map directly to boundary logic pattern-equations:

RULE	EXISTENTIAL	ENTITATIVE	BOUNDARY
R1. Erase	((A) B) I= (() B)	((A) B) = ((A))	} (A ()) =
R2. Insert	$(A) \mid = (A \mid B)$	A I= AB	} (A ()) =
R3. Iterate	A (B) I = A (A B)	A (B) I = A (A B)	
R4. Deiterate	A (A B) I= A (B)	A (A B) I = A (B)	} * {D} - * {A D}
R5. Double cut	((A)) = A	((A)) = A	((A)) = A

Boundary logic provides a more modern algebraic transformation system, uniting pairs of asymmetrical implicative rules into symmetrical equations.

The Erase and Insert rules of AEG fail to provide a clear termination goal. Boundary logic uses a single void-equivalence rule, Occlusion, as a termination condition.

* Peirce, C.S. (1931-58) Collected Papers of Charles Sanders Peirce, Hartshorne, C. Weiss, P., Burks, A. (eds.) Harvard Univ Press Copyright © 2006 William Bricken. All rights reserved.

SYNTACTIC VARIETY: REPRESENTATION

Copyright © 2006 William Bricken. All rights reserved.

Syntactic Varieties (textual)

Each syntactic variety that follows assumes Occlusion and Pervasion, the two pattern-equations that define boundary *logic*.

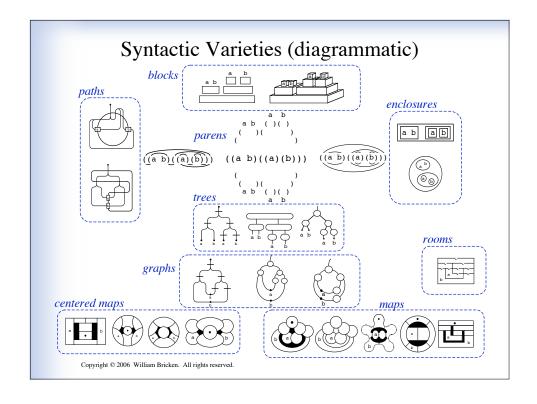
Topological varieties

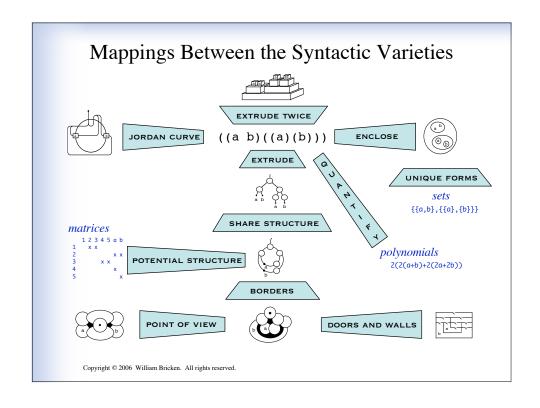
- different spatial data structures with different implementation behavior
- analogous to conventional data structures

Geometric varieties

- different metric structures with similar implementation behavior
- analogous to exchanging tokens in a string-based language

VARIETY	DIMENSION	BOUNDING	SHARING	POINT OF VIEW
parens	1	nest	space	outside
enclosures	2	enclose	space	outside
trees	2	link	branch	outside
maps	2	border	common neighbor	outside
centered maps	2	border	common neighbor	inside
rooms	2/3	door	common neighbor	inside
graphs/network	s 3	link	branch	both
paths	3	cross	fork	both
blocks	3	stack	common floor	outside





Syntactic Concepts

Dimensionality of representation

1-space fractures containment, 2-space limits structure sharing

Top and bottom

represents outermost and innermost

Point of view

read from outside (objectively) or from inside (subjectively)

Anthropomorphism

some forms are physically familiar, others are abstract

Surrounding space

map varieties incorporate the background substrate

Geometric varieties

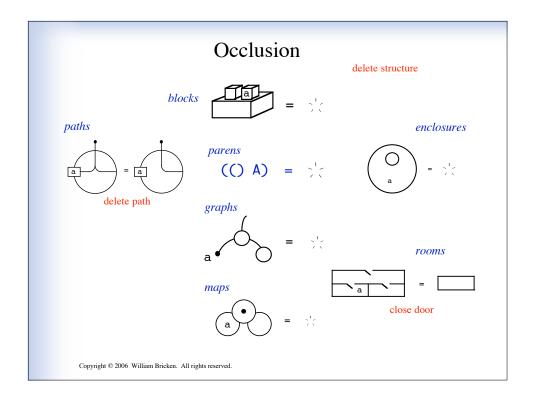
rubber sheet geometry

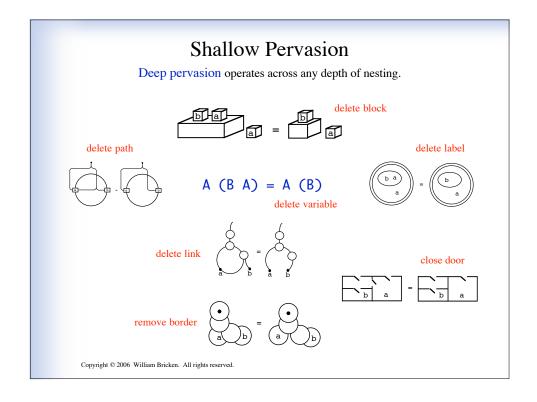
Topological varieties, generated by

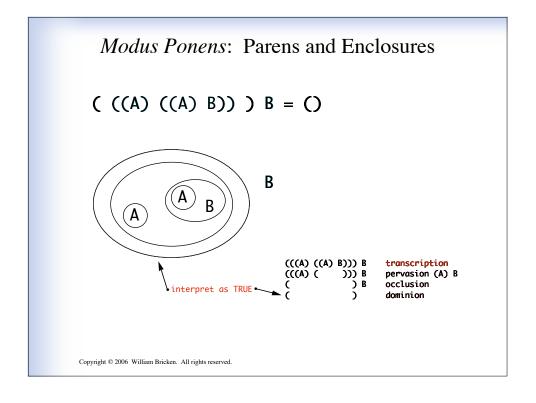
extrude and rotate in higher dimensional space structure sharing (unique objects) convert links to borders exterior or interior point of view exchange objects for processes

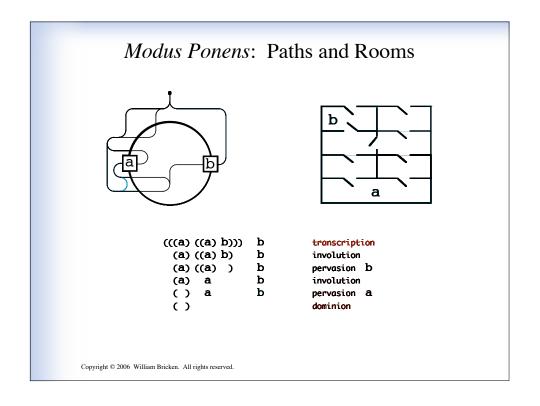
Copyright © 2006 William Bricken. All rights reserved.

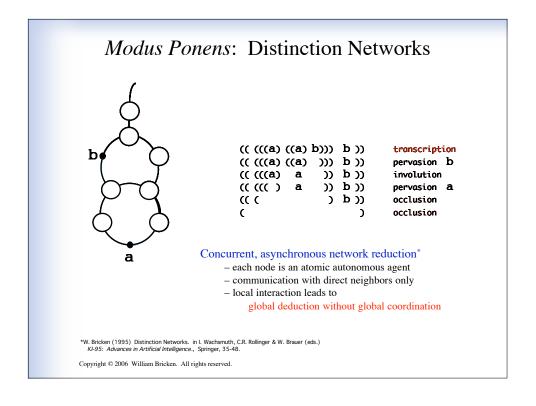
SYNTACTIC VARIETY: TRANSFORMATION

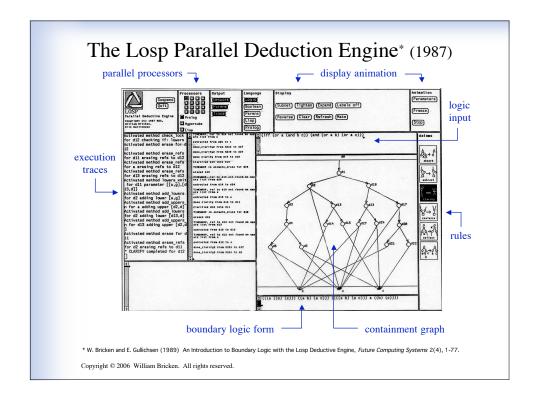


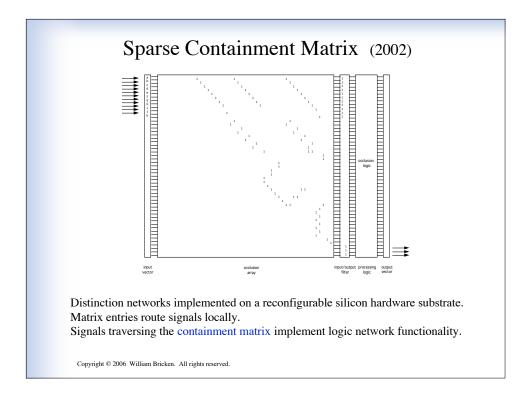












In Conclusion

Boundary logic is an efficient, scalable, robust diagrammatic logic based on pattern-substitution.

Boundary integers exchange the effort of addition and multiplication for a single standardization process.

Both are interpretations of the same simple diagrammatic language of non-intersecting spatial enclosures.

Boundary languages have unique syntactic varieties generated by topological and geometric transformation of structure.

This presentation is available at www.wbricken.com/01bm/0103notate

I'll be available throughout the conference to demonstrate an implementation of boundary logic used for minimization of commercial semiconductor circuits.

Thank you!

Comments and questions gladly accepted. bricken@halcyon.com

Copyright © 2006 William Bricken. All rights reserved.

SUMMARIES

Presentation Notes

Boundary mathematics is a fundamental innovation in mathematics (!).

The entertaining challenge:

- do not force-fit these ideas into pre-existing conceptual structures
- very easy to understand on its own ground
- somewhat difficult to understand using conventional concepts

These mathematical techniques have been extensively tested.

- implemented in literally dozens of programming languages
- applied to SAT problems, theorem proving, expert systems
- applied to industrial strength problems in semiconductor minimization

The presentation style is unorthodox.

- rapid visual exposure to relatively dense information
- seeds for contemplation rather than an immediate explanation

Some slides are included for completeness, and will not be discussed in depth.

The presentation (and lots of other material on Boundary Math) is available at www.wbricken.com/01bm/0103notate

Copyright © 2006 William Bricken. All rights reserved.

Non-Conventional Mathematics Warning

If a concept or a representation is not explicitly permitted, it is forbidden.

Void space means with no pre-assumed mathematical or structural concepts.

- the space of representation is unstructured
- drawing a mark introduces a distinction; it does not introduce a topology (no points) or a geometry (no metric)

In specific, absence of the concept of arity implies

- absence of the capability to count
- no conventional functions or relations
- associativity and commutativity are not relevant structural concepts
- the inside/outside distinction made by boundaries is not relational (boundaries are not set objects)

In general, these mathematical concepts have not been explicitly introduced:

```
- sets \{a,b\}
- points \{a,b\}
- counting and arity \{a,b\}
- functions and relations \{a,b\}
- logic \{a,b\}
- group theory \{a,b\}
- at \{a,b\}
- at \{a,b\}
- \{a
```

Boundary Mathematics

Representation

- Forms: a language of configurations of closed non-overlapping curves

is a form
If A is a form, so is (A)
If A and B are forms, so is A B

- Variables: tokens standing in place of arbitrary forms
- Patterns: forms serve as structural templates to identify members of an equivalence class
- Pattern-equations: pairs of patterns that collapse equivalence classes

Transformation

- defined solely by pattern-equations
- substitution and replacement of equivalent patterns

Strategy

- extreme minimalist
- begin on entirely new conceptual ground
- semantic use of void-space (forms can be void-equivalent)

Copyright © 2006 William Bricken. All rights reserved.

Novel Concepts

Semantic void/single constant

Void is everywhere; boundaries distinguish their contents. Nothing more.

Inside and outside of forms

Enclosure has an interpretation as a partial order.

Void-equivalence

Void-equivalent structure is semantically irrelevant and semantically inert.

Semipermeable boundaries/operational transparency

Boundaries are barriers to their contents, but can be transparent to their context.

Object/operator unification

Patterns are both objects and operators.

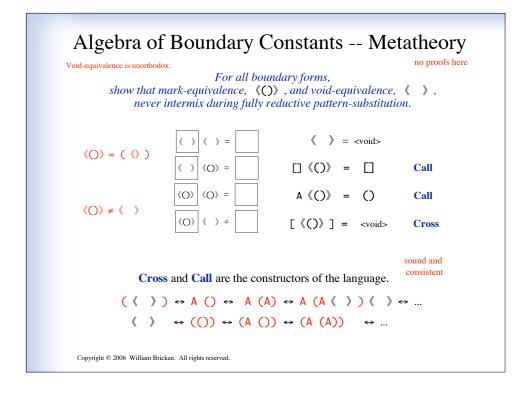
Spatial (non-linear) notation

Inherent computational parallelism.

Syntactic varieties are generated from spatial transformation of forms.

Why Isn't Boundary Logic Better Known? Avoidance of the void 0110101100 - "concepts must have symbolic representations" _11_1_11__ - non-existence cannot contribute to computation - separate concepts must have unique representations - computation occurs in discrete, unambiguous steps The politics of symbolic mathematics "diagrams cannot be computational objects" Cartesian duality (17th century) - Russell and Whitehead, Principia Mathematica (1910) The danger of eccentrics - "just another Boolean algebra" (the isomorphism critique) - "the foundations of mathematics are well understood" Many misconceptions and misinterpretations - representing <void> with a token $\langle \text{void} \rangle = \{ \} = \Phi$ - assuming a relational structure - some trade secrecy ab = aRbCopyright © 2006 William Bricken. All rights reserved.

Boundary Logic Computation An algebraic system - primary semantics is *equality* - primary process is pattern-matching and substitution - axiomatized by two simple pattern-equations A single concept system - the primary object is the *boundary* - the only structure is enclosure (inclusion) - maps one-to-many onto Boolean techniques A spatial system - ordering, grouping and arity are not concepts within the system - transformations within a space are in parallel A void-based system - deletion (void-substitution) rather than rearrangement - boundaries are transparent from the outside - forms sharing a space are independent



Different Interpretations of the Same Language

The semantics, or interpretation, of a boundary form is determined by the set of pattern-equations taken to be axiomatic.

Logic, under Occlusion and Pervasion

$$(((a)((a) b))) b \Longrightarrow ()$$

interpret () as TRUE

Integers, under Double and Merge

$$(((a)((a) b))) b \implies (((a (a) b))) b$$

interpret as $2*2*2(a+2a+b) + b = 24a + 9b$

For Contemplation

New mathematical systems, particularly for logic, question our understanding of rationality, and tend to question our understanding of reality.

Do syntactic diagrammatic varieties suggest new cognitive techniques?

Which aspects of our mathematical knowledge are purely historical, and which are fundamental? (eg why is diagrammatic logic not preferred?)

Are algebraic concepts such as commutativity and transitivity fundamental to cognition, or could they be artifacts of notation?

What is the interaction between syntax (ie data structure) and learning?

Do specific representations have affordances for errors?

What do void-equivalence and semipermeable boundaries have to do with the logic embedded in language (other than functional equivalence)?

Copyright © 2006 William Bricken. All rights reserved.

DIAGRAMMATIC REPRESENTATION

Wanted: A Theory of Representation

Variation in syntax is not addressed by mathematical morphism.

In Computer Science, data structures and algorithms that implement isomorphic structures vary profoundly, in succinctness, efficiency and understandability.

In Math Education, meaning is ignored in favor of manipulation of representations.

Semantic density (the amount of information carried by a representation) changes qualitatively with the dimension of a representation.

"house"

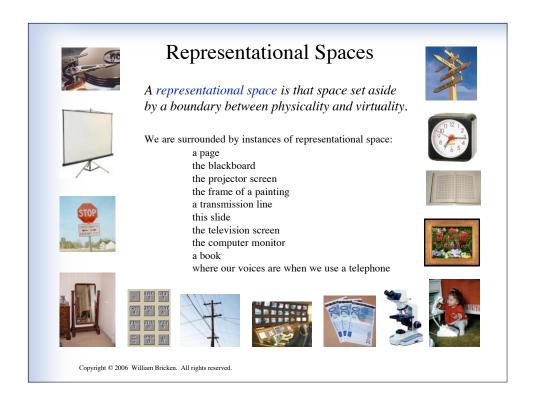
Representation alone can introduce new concepts. For example, the expression "4 - 7" is either invalid, or requires an extension of the positive integers.

Operations are not independent of representation. How a positive integer is represented determines how addition and multiplication are performed.

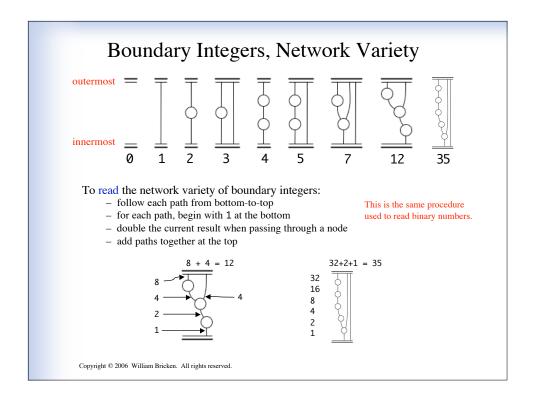
Copyright © 2006 William Bricken. All rights reserved.

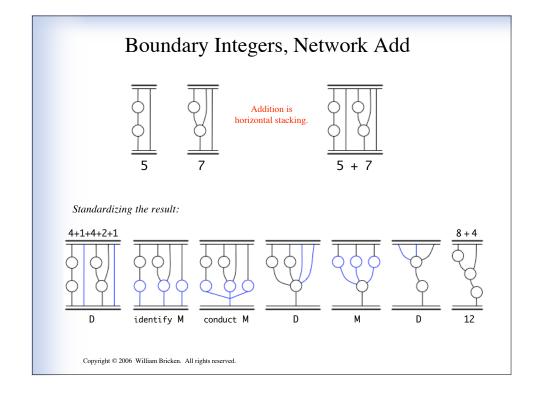
Read/Operate Tradeoff: Positive Integers

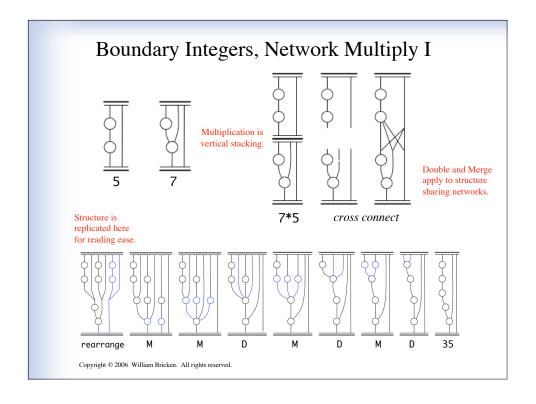
SYSTEM	EXAMPLE	READ	STANDARDIZE	ADD	MULTIPLY
stroke	 	very hard count result	trivial unique integers	trivial push together	easy substitute replicate for each stroke
Roman	XVII	moderate add groups	moderate collect, promote groups	trivial push together	very hard compound rules
decimal	17	easy place notation	easy fixed places, decimal point	hard 100 facts, carry	hard 100 facts, accumulate
binary	10001	easy place notation	trivial fixed places	moderate 4 facts, carry	moderate 4 facts, accumulate
boundary	((((•))))•	easy depth notation	moderate double, merge	trivial push together	easy substitute replicate for each •

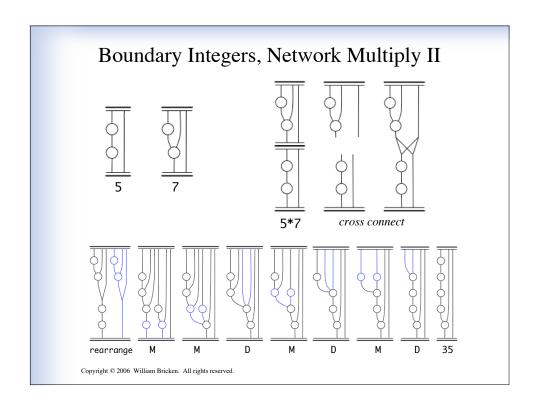


BOUNDARY INTEGERS: GRAPH VARIETY









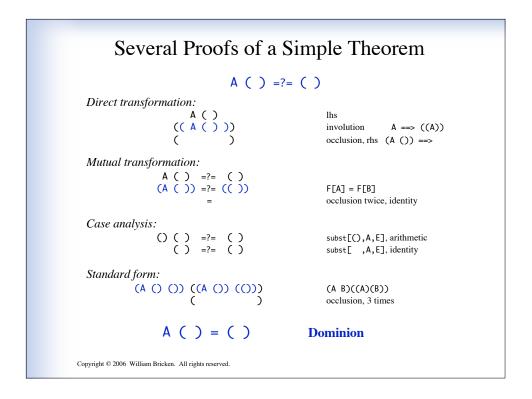
BOUNDARY LOGIC: SUPPORT MATERIAL

Copyright © 2006 William Bricken. All rights reserved.

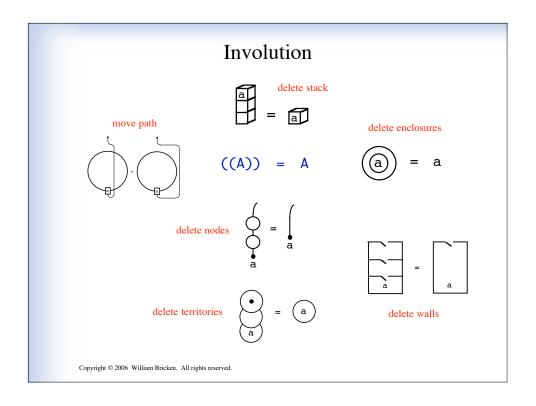
Reading Mark as Implication

In implicative logic, valid implications maintain the truth value of an expression. In algebraic logic, valid substitutions maintain the truth value of an equation. In boundary logic, void-substitutions cannot change the truth value of a form.

BOOLEAN	Boundary	
FALSE IMPLIES FALSE = TRUE	[] = ()	identity
FALSE IMPLIES TRUE = TRUE	[] () = ()	call
TRUE IMPLIES FALSE = FALSE	[()] =	cross
TRUE IMPLIES TRUE = TRUE	[()]()=()	cross



```
Deep Transformation Example
Minimize: ((NOT b) OR NOT(a OR (NOT c))) AND ((a AND b AND c) OR NOT(a OR b))
                    (\neg b \lor \neg (a \lor \neg c)) \land ((a \land b \land c) \lor \neg (a \lor b))
                       (((b)(a(c)))(((a)(b)(c))(ab)))
Transcribe:
Boundary Reduction:
                   per+
                                                                          per a
                                                                          occ
                   ( ((b)(a (c)))
( (( )(a (c)))
                                                               a b
                                                                          inv
                                                                          per b
                                          ¬(a V b)
                                                                         interpret
What if boundaries were interpreted as functions on their contents?
   1. A compound function is added as an argument to an external boundary function.
   2. An argument to the compound function is deleted, changing its arity.
   3 and 5. Functional inverses created by the deleted argument cancel, creating two new simple arguments.
   4. One of the simple arguments voids its containing function.
   6. One of the simple arguments voids the original compound function by voiding one of its arguments.
  Copyright © 2006 William Bricken. All rights reserved
```



Boundary Logic Is Unorthodox

Boundary logic is not isomorphic to Boolean logic

- one-to-many map
- absence of relational concepts
- absence of arity and countability
- first class void-equivalence
- one basis constant
- two types of composability
- operational transparency (no function/argument distinction)

Boundary logic is not group theoretic

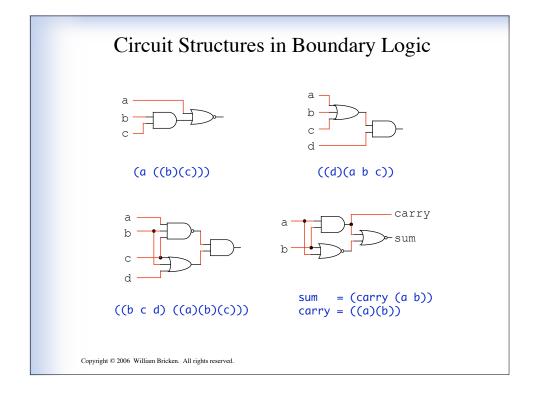
Identity for SHARING

$$a \diamond i = i \diamond a = a$$
 identity
 $a i = i \quad a = a$ $\diamond = SHARING$
 $a = a = a$ $i =$

Inverse for SHARING

That is, the identity element, i, defined by the identity equations is the inverse of the identity element, i⁻¹, defined by the inverse equations.

	BOOLEAN	BOUNDARY	DIFFERENCE
symbols	tokens	icons	linear vs spatial
constants	{0, 1}	{ () }	two vs one
unary operator	NOT	BOUNDING	delimited collection
binary operator	OR, AND	SHARING	not a function, not binary
arity	specific	any	no concept of argument
mapping	functional	structural	one-to-many
ordering	implicative	bounding	spatially explicit
computation	rearrange	delete	void-equivalence
semigroup	associative	no concept	boundary structure only
monoid	identity, i	<void></void>	existence
group	inverse	i -1	new structure needed
Abelian group	commutative	no concept	no spatial metric



Fully Nested Containment Graph

The containment graph representation is in Implicate Normal Form when there is no internal fanout (no structure sharing).

Implicate Normal Form

deepest nesting

fewest literal references no internal pins shortest wires

unique up to form distribution finesses intractability

Conjunctive Normal Form (PoS)

shallowest nesting (2 levels) most literal references most internal pins longest wires unique up to variable labeling grows exponentially large

4-bit Magnitude Comparator

Copyright © 2006 William Bricken. All rights reserved.

Abstraction and Management of Complexity

Design abstractions can be constructed bottom-up by using parens pattern templates.

Abstraction types

Functional modules, library cells

Structural modules, library macros

Dataflow modules, serial/parallel decomposition

Input symmetries

Parametric generation

Bit-width vector abstraction

Specialized technology maps (LUTs, FPGA cells)

Boundary logic transformations apply equal well to

- simple inputs (signals)
- compound boundary forms (subnets)
- modules and vectors (black-box abstractions)

Prototype Software Implementation

Software capabilities

- fully functional boundary logic reduction engines (logic, area, delay)
- functional tools for high-quality interactive netlist restructuring
- HDL language netlist parsers
- TSMC logic library mapping for delay and area models
- design exploration tools, including area/delay trade-offs

Software limitations

- prototype software implementation is proof-of-concept
- current LISP implementation is somewhat brittle
- delay modeling is based on weak physical models
- not an entire synthesis package
- not yet optimized for performance efficiency
- some functionality is designed but not yet implemented
- no user interface as yet

Conceptual limitations

- no personal HDL or layout design experience
- work has not been published, no peer review

Copyright © 2006 William Bricken. All rights reserved.

Computational Pragmatism

Constructing a novel mathematical system is easy. What differentiates good ones from bad ones is their utility.

Logic problems to calibrate computational utility:

Almost all problems found in logic textbooks are computationally trivial.

- simple tautology -- syllogistic dilemma
 - $((a\rightarrow b) \land (c\rightarrow d) \land (a\lor c)) \rightarrow (b\lor d)$
- simple minimization -- absorption

a ∧ (a∨b)

- simple challenging tautology -- distribution of if-then-else (ite)
 - ite[ite[a,b,c], d, e] = ite[a, ite[b,d,e], ite[c,d,e]]
- simple challenging minimization -- factor forms with a dozen variables Reduce from 12 to 8 variable occurrences:
 - $(\neg a \land (\neg (g \lor (b \land c)) \lor \neg (f \lor (d \land e \land g)))) \lor \neg ((b \land c) \lor (d \land e))$
- commercial tautology

c5315 -- 178 inputs, 123 outputs, 1300 logic gates 80386core -- 36 inputs, 70 outputs, 20000 logic gates

- commercial minimization
 - minimal area and delay for above circuits
- huge randomly constructed SAT problems
 10,000s of variables, millions of clauses