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SUMMARY

Logic has evolved over thousands of years within language.  Mathematical
logic is young, a creation of the 20th century.  One of the most outstanding
problems for mathematical logic is determining whether or not there exist
tractable algorithms for exponential problems.  An answer may lay in one of
the simplest exponential problems, that of determining if a given logic
expression is a tautology.  Boundary logic (BL) provides a new set of
computational tools which are geometric and algebraic, most definitely not
conventional logic.  These container-based tools are simpler than those of
both mathematical and natural logic.  Can boundary logic shed light on
tautology identification?

After the nature of algorithmic complexity and BL are introduced, we explore
conventional rules of inference and deduction from a BL perspective.  Proofs
of all but the distributive law are close to trivial using BL algorithms.
Certainly none of the explicit structure of modern logic identifies
complexity.  We explore significantly difficult tautological problems which
can be constructed using the rules of logic.  None of these are complex,
although some are non-trivial.  It appears that compound logical rules do not
identify complex problems, yet logical proof systems rapidly require
exponential effort.

We then describe the central reduction algorithm of BL, called virtual
insertion, and apply it to known tractable and intractable problems.  The
low-degree polynomial virtual insertion algorithm is not complete, however
the tautologies it cannot reduce may be constrained to intractable problems.
Thus, virtual insertion is an efficient decision procedure for tractable
tautologies.  This is valuable since almost all pragmatic problems are
tractable.  Using virtual insertion recursively produces a complete decision
procedure for elementary logic, but one with the expected exponential
complexity.

The boundary logic representations and algorithms described herein have been
fully  implemented in software and applied to computationally difficult
practical problems, such as circuit design, tautology detection, and computer
program optimization..
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APPLICATIONS

The algorithms herein provide a novel and unique approach to any practical
problems that can be expressed in the formal language of conventional logic,
or Boolean algebra.  We identify five general application areas:

1.  Database querying and management  (question answering)

Facts and database entries are expressed as logical assertions.  Abstract
relations between facts are expressed as rules with variables.  To answer a
query, derive the answer from the facts and the rules.

2.  Program analysis and verification  (compiling)

Program execution is expressed as logical formulas.  To verify a program,
derive the termination conditions from the execution formula.

3.  Planning  (state transformation and finite state machines)

States and state transformations are expressed as logical formulas.  To
transform the start into the goal, derive the final state from the initial
state.

4.  Circuit design  (logic synthesis)

Circuits are expressed as logical formulas.  To execute a circuit, substitute
the Boolean input values and evaluate the formula.  To minimize a circuit,
apply transformations to the logical formula.

5.  Decision making  (decision analysis)

Decisions are expressed as Boolean choices, which are expressed as logical
formulas.  To make a complex network of decisions, evaluate the corresponding
logical forms.

The set-insertion procedure provides the capability to derive, verify,
transform, minimize, and evaluate logical problems.  Some specific
applications:

Determine the season schedule for a sports team.
Create weaving machine instructions for a particular pattern.
Reduce the logical complexity of a computer program.
Optimize the operational overhead and resource use of a schedule.
Determine the validity of a legal argument.
Transform an integrated circuit to fit a given hardware resource.
Determine a simple choice of actions for a complex decision sequence.
Validate a set of conclusions based on facts and rules.
Optimize an expert-system rulebase.
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Identify redundancies in a sequence of processes.
Monitor railroad switches for potential collisions.
Manipulate binary information in a computer.
Develop a model of how children think.
Compute a result given a declarative program.
Arrange a meeting schedule for many busy executives.
Develop a plan of action when resources are limited.

INTRODUCTION

This section sets the stage by identifying the general terms and issues of
algorithmic complexity.  The style is non-mathematical, presenting the
content in quite simple language.  The objective is to identify the simplest
problem which is too complex to be practical for computational algorithms.

Historical Context

During the 1960s, America rapidly built up its academic computational
capabilities, helped by the Sputnik crisis, and by large investments from
ARPA. In building essentially new departments of Computer Science, many
schools drew from Electrical Engineering (thus there are many current
Departments of Computer Science and Electrical Engineering), and many drew
from Mathematics (thus there are many Departments of Mathematics and Computer
Science).  The professoriat which was installed in the 60s had a heavy
theoretical bent; despite the admonitions of Dykstra and others familiar with
programming, theoretical analysis of computational efficiency became a core
subject. Since these first professors had enormous political influence, their
predispositions still effect theoretical Computer Science today, even though
computers themselves have changed radically.

Unfortunately complexity analysis suffers from two difficulties, lack of
analytic tools and irrelevance.

Algorithmic complexity, the analysis of the efficiency of algorithms, found
its basis in worst-case analysis.  Basically, how well would an algorithm
perform if an infinitely intelligent and devious mathematician made up
problem cases for it?  This problem turned out to conform to known tools, and
still today it largely defines what we know about algorithmic performance.
During the rapid build of expert systems in the early 1980s, researchers
discovered a surprising invariant:  practical problems, in particular
pragmatic expert system rule-bases, were never the worst case.  In fact,
people don't think like devious mathematicians, and practical problems do not
generate tangled and tortured data structures.  This observation is strongly
supported by the analysis of complex circuitry.  Although the diversity of
structures of logic networks, both combinational and sequential, is profound,
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their functional variation is extremely limited.  Like all pragmatic fields,
the vast majority of possible structures are irrelevant.

Worst-case performance is vital for some limited application areas, in
particular when one's life depends on the timely return of results, such as
dynamic control of flight and emergency medical diagnosis.  EDA has none of
these constraints. However, it would be very beneficial if the computational
complexity of EDA transformation tools was known.  At least an engineer could
know if the wait for results would take a minute or a year.  Here again,
algorithmic complexity is largely irrelevant.  For all but the most simple
cases of circuits (prevalent in the 1970s), all EDA algorithms are horribly
complex.  None are efficient.

There are several other fundamental problems with casting an evaluation of
EDA tools into a framework of complexity analysis. For example:

• Complexity analysis applies to procedurally specified algorithms,
those in which you tell the computer what to do step by step.  Modern
programming methods such as object-oriented programming are not procedural,
although the same analyses may apply, they are not accessible without
restructuring what is now known to be good programming practice.

• Complexity analysis applies to mathematical computational algorithms,
not to the vast majority of pragmatic tools such as graphic user-interfaces,
network switching, and design tools.

• Some algorithms take a huge amount of initialization effort and data
structure design. The right way of stating a problem can often change its
complexity.

• Some algorithms are not very complex, but what they have to do is.
For example, imagine putting the Social Security numbers for all Americans in
order.  Sorting can be very efficient, but sorting millions of things may not
be. Similarly, imagine gathering all financial transactions for a thousand
people.  Gathering can be very efficient, but gathering information from
widely distributed, incompatible, and inaccessible sources may not be.

• Most importantly, algorithm analysis assumes and is built upon
processing of linear strings, that is, typographical and stream structures.
It bypasses far more powerful spatial and geometric analytic tools by
historical accident, since early computers were based on processing linear
and sequential streams of bits. Parallel computing, for example, has created
a necessity for different types of analysis.

From this historical context, one finds that the first question and/or
critique aimed at EDA design tools, most always from those of academic
training and rarely from pragmatic application designers, is:  what is the
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computational complexity of this algorithm?  Despite concerns for realism,
BTC's Iconic Logic tools provide clear and powerful answers to this question.

Polynomial and Exponential

Complexity analysis asks the question:  if an algorithm performs at some
level given some input, what will happen to performance when the input is
increased in size?  If it takes, say 10 seconds to process 10 items, how long
will 11 items take?

The answer to this question is expressed in terms of a mathematical equation
which relates the effort expended by an algorithm to the number of things it
processes.  Let the number of things being processed be N.  Basically there
are two fundamental classes of mathematical complexity equations:  polynomial
and exponential (non-polynomial).  Polynomial refers to a type of
mathematical relation, one in which N is raised to some power, such as N^3 or
N^1.5.  Exponential refers to a relation in which some value is raised to the
Nth power, such as 2^N.  The following table shows why this distinction is
important:

N   N^2      2^N

  2     4        4
  5    25       32
 10   100     1024
 20   400 >1000000
100 10000 >> atoms in the universe

Polynomial algorithms work reasonably well as the number of processed items
increases.  Exponential algorithms are not feasible for anything but very
small numbers of items.

Some Terminology

NP:  non-polynomial

non-polynomial:  a relation which diverges extremely rapidly

polynomial:  a relation which diverges reasonably, maintaining practicality

tractable:  polynomial algorithms

intractable:  non-polynomial algorithms
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NP-complete:  a class of NP problems which are all formally equivalent

heuristics:  techniques which make the behavior of NP algorithms practical

SAT:  a simple NP problem, asking, does this logic expression have a solution?

TAUT:  the flipside of SAT, asking, does this problem have a non-solution?

SAT and TAUT

Historically, one of the simplest questions in logic is:  is there a set of
values which will make an expression True?  Mathematically this is called the
Satisfiability Problem, or SAT.  A problem which is not satisfiable has no
answers, you might say that it is a useless expression.  This simple
question, as it turns out, is also one of the most difficult to answer
computationally.  The issue is not how to determine an answer, that is well
known.  The issue is how much computational effort does it take to arrive at
an answer.  The state-of-the-art is that there are no known algorithms which
are feasible for solving SAT problems with large N.

The ways in which uselessness can be hidden in logic expressions are difficult
to identify.   For example these logic expressions are not satisfiable:

A and (not A)

(A or B) and (A or (not B)) and ((not A) or B) and ((not A) or (not B))

((not (A or B)) or (A and B)) iff (not (((not A) or B) and ((not B) or A))

A sister problem to SAT is tautology detection, or TAUT.  It asks:  is there
any set of values which would make an expression False?  A tautological
expression is always True, regardless of the values of its variables.
Tautologies too provide no useful information about their variables.
Negating any of the unsatisfiable expressions above makes them tautologies.

Fundamental research in the 1970s showed that many NP problems can be rephrased
to be the SAT problem.  To understand many problems, it thus suffices to analyze
the behavior of algorithms for the SAT problem.  There are some particular
castings of SAT which are very valuable, one is Boolean minimization.  Instead
of identifying useless expressions, minimization looks for useless portions and
islands within useful expressions.  For example, the expression

A and (A or B)

could be restructured simply as

 A
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without changing its meaning.  That is, the B variable is useless in this
context, while both logical operations are irrelevant.

To turn Boolean minimization into SAT, one asks an exponential number of SAT
questions, of the type:  if some variables are held constant, will the
remaining expression become totally useless?  Above, one would discover that
no matter what value variable B had, it would not effect the value of the
entire expression.  This does not necessarily identify a better way to
structure the expression.  Boolean minimization is not only intractable, it
is "intractably intractable";  finding the minimal form of logic expressions
requires an exponential number of exponentially difficult questions.  Boolean
minimization requires algebraic function analysis, not merely testing values.

Heuristics

How do any logic reduction algorithms work?  They use heuristics, specific
pieces of knowledge which limit the huge number of irrelevant structures,
those structures which compute no useful functions.  Heuristics put up stop
signs for intractable algorithms, saying "don't bother to go here".  Strong
heuristics -- said another way, strong knowledge of the application domain --
reduce horrendous computational problems to approachable ones.  Heuristics
must at some point fail to help, otherwise they would always succeed in
making difficult problems easy, that is, they would do away with difficulty.

The intractable nature of Boolean minimization, of SAT, and of TAUT cannot be
made to go away.  Intractability is an inescapable mathematical fact.
However, it is possible to remove so much of the apparent complexity of
common logical expressions, using tractable Boundary Logic (BL) means, that
what remains is one of two things, either:

1. a pathological, devious structure, one which would very rarely
appear in practical, applied problems, or

2. a very tangled structure for which further, exponential effort shows
little pragmatic gain.

The inherently powerful container-based data structures of BL express logical
problems in spatial geometric terms rather than in symbolic strings.  In so
doing, so much of the redundant clutter of conventional logical expressions,
such as that exhibited in the examples above, disappears.  What is left is
the core of the functionality.  This core can be exposed using tractable BL
algorithms.
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Satisficing

Technically, boundary logic does not generate exact minimization, instead it
generates satisficing solutions, minimizations for which pragmatic criteria
are reached, although effectively infinite effort could do better.

To understand how this is accomplished in detail requires an explanation and
an understanding of a highly innovative but tractable boundary logic
algorithm called virtual insertion.  BL uses computational techniques which
only a few people in the world have seen, and which are so fundamentally
different from those in common academic and industrial usage that
understanding them may require diligent study.

However, the claim of boundary logic is that it is inherently simpler.  It is
thus an obligation that, given the right perspective, frame of mind, and
conceptual training, virtual insertion is ultimately very simple and very
easy to understand.

The following three sections describe how boundary logic achieves what some
may consider to be computational magic.  They are written from a pedagogical,
rather than from a mathematical, point of view.  The first, Boundary Logic,
includes basic perspectives, definitions, and some simple examples.  Next,
Elusive Complexity uses boundary logic tools and techniques to demonstrate
that, seen from the perspective of boundary logic, the conventional rules of
inference, the Boolean equivalence formulas, and the common proof strategies
are all close to trivial.  Finally, Virtual Insertion describes the central
polynomial computational innovation of boundary logic, and then specifies
exactly where the boundary between intractable and tractable computation
occurs.

BOUNDARY LOGIC

This section presents the basic ideas of boundary logic, and provides several
simple examples.

The Nature of Boundary Logic

Boundary logic (BL) is a calculus of containers (mathematically, partially
ordered lattices).  A container can be interpreted as logical nor with an
arbitrary number of arguments. Although BL therefore can be read as
conventional logic, to do so obscures the powerful transformations that arise
only from a container-based interpretation.  Formally, BL is more succinct
than conventional logic, the mapping from logical forms to containers is
many-to-one.  The simplicity of the formal model translates directly into
simplicity in data structures and algorithms.
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BL is utterly simple, once a few perspective changes have been accepted.
These are simply stated:

• Rather than True and False (or 1 and 0), BL uses presence and
absence.  Absence permits half of a binary system to simply not exist.

• To manipulate presence and absence, basic objects require an inside
and an outside, thus containers.  Conventional variables lack an inside.

• Textually, a parenthesis (called parens) is a container.  The
following parens contains the objects A and B:  (A B).  And this parens
contains nothing:  ( ).  When expressed in boundary notation, all logic
expressions are simply well-balanced parens.  

• Containers are spatial objects which do not possess ordering,
grouping, or cardinality properties (commutativity, associativity, arity).
The only property that characterizes containers is that of containment.

• Parens forms are transformed and simplified by deletion (erasure)
operations rather than by rearrangement or by accumulating facts.

• Transformational rules rely on the transparency property of parens:
everything inside a nest of parens containers is transparent and accessible
to everything which is outside.  

• There are only three BL transformations, all of which are both
visually and algorithmically simple.

Nesting of parens is equivalent to multiple levels of logic, that is, to
logic expressions embedded inside other logic expressions.  In general, well-
formed parens are trees.  By enforcing unique objects without
representational replicates, parens forms are directed acyclic graphs.  Thus
a parens form can be understood to be a succinct representation of a logic
graph or network.

The Map from Logic to Parens

Logical nor is containment:

not (a or b or c) (a b c)

From the single mapping of nor to parens, the parens form of the other
logical connectives is easily deduced.  The nor of a single argument is
logical not:

not a (a)
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The nor of no arguments is logical True:

True ( )

Since a parens therefore negates its inside, the True empty parens is the
negation of nothing.  That is, logical False has no representation, it is
absence.  The absence of True is False:

False

Logical or, as the absence of the negation imposed by nor, is sharing space:

a or b or c  a b c

In BL, forms are disjoint in that space provides no connective or relational
structure.  Sharing space is defined solely as being the contents of the same
container.  Forms sharing the same space can be processed in parallel.
Logical and is formed by containing a space and every object within that
space:

a and b and c ((a)(b)(c))

Finally implication, logical implies, is expressed simply as the distinction
between inside and outside. The inside of a boundary implies the outside.

a implies b (a) b

Therefore any combinational logic form can be expressed as a well-formed
parens form with variables.  Table I presents the map from Boolean to
boundary logic.

It is illustrative to transform the DeMorgan law into parens:

a and b = not ((not a) or (not b)) ((a)(b)) = ((a)(b))

That is, expressions which are structurally different in conventional logic
may not differ in the simpler boundary logic.  

To understand void-equivalence and the role of non-representation, the
following transcription is useful:

(False or (False or False)) implies False ( )
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Other examples of transcription between conventional logic and boundary logic
follow:

a iff b (version 1) (a b) ((a)(b))

a iff b (version 2) ((a (b))((a) b))

if a then b else c (((a) b)(a c))

2/3majority(a,b,c) ((a b)(a c)(b c))

all-equal(a,b,c) (a b c) ((a)(b)(c))

In transcribing logic expressions to parens, square brackets are used solely
for pedagogical purposes, to make the transcription more readable by
highlighting particular structures.  Square brackets are parens.   

BL is an algebraic system, function composition is achieved by substitution.
Consider this transcription as an example.  Square brackets highlight the
structure of if-then-else:

if a then 2/3majority(b,c,d) else all-equal(b,c,d)

[[[a] ((b c)(b d)(c d))] [a (b c d) ((b)(c)(d))]]

Transformation of Parens Forms

All of the mechanism of logical inference, Boolean transformation, and proof
strategy reduces to three BL deletion equations which can be considered to be
the axioms of boundary logic:

(A ( ))  =  <void> OCCLUSION   occ

((A))    =  A INVOLUTION   inv

A {B A}  =  A {B} PERVASION   per

Capital letters refer to any parens form regardless of complexity, including
spatial collections of separate forms and the absence of any forms.  Each
equation proceeds from left to right via deletion of structure.  The curly
braces in Pervasion convey the transparency rule, they stand in place of any
intervening content at the same or a deeper level of nesting.  Pervasion is a
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multilevel simplification rule:  what is outside can be deleted or inserted
inside, independent of the depth of nesting within a parens form.  Some
examples of Pervasion follow.  The layout of these examples uses space to
emphasize which parens structures have been deleted.

a (a b)
 ==>  a (  b)

a (b (c (a d)))
 ==>  a (b (c (  d)))

(a b) (c (d (e (a b))))
 ==>  (a b) (c (d (e      )))

Table IIa presents the conventional axioms of inferential logic with their
transcription to boundary logic.  What appears to be a relatively complex
axiomatization is shown to be compound applications of the three simple BL
axioms.  Table IIa also presents the axioms of Boolean algebra, a group-
theoretic approach to logic.  These are also transcribed into BL with similar
results, all are derivable from the boundary axioms.  Table IIb presents
three separate but quite related axiomatic bases of boundary logic, including
the one above.

For illustration, here is the BL approach to a Boolean minimization problem
expressed in the symbolism of both logical connectives and Boolean algebra.
Spacing is again used to emphasize deletions.

       b or ((not a) and b) or ((not b) and c) or (c and d)

       f(a,b,c,d) = b + a'b + b'c + cd

b (((a))(b)) (((b))(c)) ((c)(d))              transcribe
b (  a  (b)) (  b  (c)) ((c)(d))              inv
b (  a  ( )) (     (c)) ((c)(d))              per b
b            (     (c)) ((c)(d))              occ
b                   c   ((c)(d))              inv
b                   c   (( )(d))              per c
b                   c                         occ

        f = b + c                                   transcribe

        b or c
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All BL algorithms are of low degree polynomial complexity, basically sorting
and pattern-matching.  BL removes sufficient redundancy from logical
expressions so that only rare pathological expressions require the extra non-
polynomial effort.  For example, boundary logic algorithms produce world-
class minimization without exponential processes.  Boundary logic is a
simple, tractable multilevel calculus for Boolean minimization.

ELUSIVE COMPLEXITY

This section is an exploration which attempts to explicitly locate the
boundary between exponential logical complexity and polynomial logical
simplicity.  The strategy is to identify those logical expressions that may
harbor the need for exponential computational effort in the course of
determining whether or not they are tautologies.  

Apparently complex logical expressions can be transcribed into parens
notation and reduced to their minimal form using polynomial BL algorithms.
When the parens form of a logical expression requires exponential reduction
effort have we reached the source of computational complexity.  As it turns
out, this occurs only for large and convoluted logical expressions, ones that
are rarely encountered in pragmatic applications of logic such as deduction
problems, database queries, expert systems, and circuit schematics.

Since BL is an algebraic system, parens forms are algebraically minimized
during the tautology identification process.  The BL reduction process is
more powerful than simple tautology identification.  The same polynomial
computational effort used to untangle potential tautologies also removes
irrelevant logical structure, leading to approximate minimal forms.  The
minimization is not exact, since in the BL process that would be analogous to
Boolean factoring, it is common to fall into a local minimum which requires
exponential effort to escape.  However, these local minima are generally
quite close to the global minima. Thus, pragmatically, Boolean minimization
is tractable, requiring only simple and efficient algorithms.

The purpose of showing all the BL proofs in the following is to demonstrate
that none require NP processes, in fact almost all require little thought
beyond identifying variables which occur both outside and inside nested
parens.  The boundary logic proofs toward the end of this section look quite
complex, however, by following the sequence of deletions visually, they
become relatively easy to follow.

Irrelevant Variables

It is easy to see how variables can occur in a logical expression without
contributing to the meaning of the expression.  We begin with simple
expressions and progress through all conventional logical theorems.  Each
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logic expression on the left is accompanied by the equivalent parens form on
the right.

Dominance of Truth

(A or True) = True A ( ) = ( )

Any logical expression joined by disjunction with True is a tautology.  This
type of irrelevance may be buried in multiple disjunctions:

(A or (B or (C or True))) = True A B C ( ) = ( )

For both of the above logic expressions, the equivalent boundary theorem is
Dominion:

A ( ) = ( ) DOMINION      dom

In parens notation, the capital letter A stands for any parens form,
including a collection of forms or no forms at all.

Logical Addition

A -> (A or B) = True (A) A B = ( )

The logical law of Addition permits the inclusion of arbitrary forms through
disjunction, without implicating a logical ground.  From the BL perspective,
this is a simple application of Pervasion followed by Dominion.

A {B A} = A {B} PERVASION     per

The curly braces of Pervasion represent any degree of parens nesting.  Thus,
by setting {B} to <void>, Pervasion becomes the logical law of Idempotency,
called Replication in BL:

A A = A REPLICATION   rep

We will use the default interpretation of parens forms, that if they exist
they are intended to be True.  That is, after reduction, existent parens
forms are always satisfiable.  Tautological forms reduce to the form of
boundary logic truth, an empty parens: ( ).  The empty parens is called a
mark.  Contradictory forms vanish into the boundary logic void.  Forms that
need not exist, that is which are equivalent to logical False, are called
void-equivalent forms.  The BL proof of Logical Addition follows:
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(A) A B transcribe
( ) A B per A
( ) dom

Excluded Middle

(A or ~A) = True A (A) = ( )

The Law of Excluded Middle is fundamental to conventional logic, however
boundary logic does not share the same historical evolution.  Excluded Middle
is not an important BL theorem.  Instead it is a simple proof, identical to
that of Logical Addition shown above.

A (A) transcribe
A ( ) per A
  ( ) dom

In conventional logic, the form of A, however, may look different in
different locations, due to other logical equivalences.  For example,
consider the Symmetry-of-And:

A and B = B and A ((A)(B)) = ((B)(A))

Combining this with Excluded Middle generates a more complicated logical
expression:

((A and B) or (not (B and A)) = True ((A)(B)) (((B)(A)))

This complexity is pragmatically removed by canonical ordering.  Since
sorting can be achieved efficiently, this type of logical embedding is not
the source of computational complexity.

The typographical conventions of parens create an appearance of sequential
ordering, however BL is formulated in featureless space.  It does not matter
which components of the form "come first", since BL does not possess an
ordering concept.  Pragmatically, when implementing BL in parens notation,
all forms are first standardized into a canonical sequential order.  The
rules that define the canonical ordering are arbitrary, and can be customized
to particular implementation environments and data structures.  As an
analogy, consider that the members of a set also have no ordering concept,
although ordering is forced upon a set when it is represented as a list or as
an array.  Thus the reduction of this compound logical tautology is identical
to those above:
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((A)(B)) (((B)(A))) transcribe
((A)(B)) (((A)(B))) sort
((A)(B)) (        ) per ((A)(B))

   (        ) dom

We begin to see here what would be expected from an inherently simpler
system: forms that are different in an inefficient representation are not
different in an efficient representation; proofs that differ in a more
complicated system do not differ in a simpler system such as boundary logic.

In the following, the artificial sort operation, which is solely an artifact
of sequential implementation, will not be included in BL proofs.

More Ways to Hide Irrelevant Variables

BL is an algebraic calculus, its main connective is the equal sign, =.  The
algebraic form of a Boolean equivalence asserts that two expressions are
equal no matter what values are assigned to the variables.  Logical
Equivalence converts any BL equation into a pure parens form.   

Logical Equivalence

A = B   iff   (A -> B) & (B -> A) = True

A = B   iff   (((A) B)((B) A))

It is not necessary to assert the truth of such a parens form, since if it is
False, it will vanish.  By default, existent parens forms are assumed to be
True.

In the Boolean domain, algebraic equivalences can always be converted into
Truth statements in standard form by applying the Logical Equivalence
transformation.  This permits hiding irrelevant variables in yet another way.
Using the Symmetry-of-And as an example:

((A and B) -> (B and A)) & ((B and A) -> (A and B)) = True

Here, square brackets emphasize the parens form of Logical Equivalence.  The
proof is straight-forward:

[ [[((A)(B))] ((B)(A))] [[((B)(A))] ((A)(B))] ] transcribe
 [ [[        ] ((B)(A))] [[        ] ((A)(B))] ] per ((A)(B))

[                                             ] occ
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The final line of proof uses the Occlusion axiom:

(A ( )) = <void> OCCLUSION   occ

For completeness, together with Pervasion and Occlusion, the third and only
other BL axiom is Involution:

((A)) = A INVOLUTION  inv

Absorption

(A and (A or B)) = A ((A)(A B)) = A

The logical rule of Absorption asserts a Boolean equivalence.  Algebraic
forms are converted into tautologies by the logical process of necessary and
sufficient conditions;  above this was identified as Logical Equivalence.
Converting logical Absorption to standard form yields

((A and (A or B)) -> A) and (A -> (A and (A or B))) = True

The BL proof uses square brackets to highlight the form of Logical
Equivalence:

[ [[((A) (A B))] A] [[A] ((A) (A B))] ] transcribe
[ [  (A) (A B)   A] [[A] ((A) (A B))] ] inv
[ [  ( ) (  B)   A] [[A] ((A) (A B))] ] per A
[                   [[A] ((A) (A B))] ] occ
                     [A] ((A) (A B))    inv
                     [A] (    (A B))    per (A)
                     [A]       A B      inv
                     [ ]       A B      per A
                     [ ]                dom

Although Absorption and Involution both stumped the theorem proving community
up until the 1980s, parens notation shows them both to be simple on both
sides of the necessary and sufficient conditions proof.

In general, to facilitate pattern-matching, BL transforms are expressed
without outer bounds.  Thus BL Absorption is stated as

(A) (A B) = (A) SHALLOW ABSORPTION
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Pervasion

It is the algebraic proof of Absorption (below) which first suggests non-
trivial computation.  The axioms of Occlusion and Involution are both
inherently simple, it is the axiom of Pervasion which houses all notions of
Boolean intractability.

 A (A B) = A (B) SHALLOW PERVASION

Pervasion can operate in two directions:  by erasing forms that are deeper
than (pervaded by) identical forms, and by inserting replicates of forms
existent in an exterior space into any interior space.  Since erasure cannot
contribute to complexity, it is the insertion operation which is potentially
costly.

Consider the left-side of Absorption.  How can it be directly transformed
into the right-side?  No simple BL rules appear to apply.  To move forward
with an algebraic proof, we must insert the exterior (A) into the interior
space.  We will call the constructive use of Pervasion insertion (labeled ins
in proofs).  An inserted form is highlighted by carets, ^...^.

(A) (      A B) left-side
(A) (^(A)^ A B) ins (A)
(A) (^( )^ A B) per A
(A) occ, right-side

An important understanding is that insertion is virtual rather than literal.
That is, the inserted form is never actually transcribed into the inner form.
Instead, it is inserted hypothetically, to examine the consequences.  As the
virtual form reduces through the effect of pervading variables in its
environment, it may either

1) vanish, in which case it has no reducing effect

2) reduce to a mark, ( ), in which case the context of the virtual mark
is erased by Occlusion, or

3) reduce to a non-ground form, one still containing variables, in
which case it has no direct reducing effect.

How a virtual form reduces cannot be predicted in advance.  The inserted form
may contain more variables than the form being inserted into, these extra
variables may be eliminated in the course of insertion reduction.  The
inserted form may contain fewer variables than the form being inserted into,
the reduction of the inserted form to a mark may occur at a shallower depth
than some of the unmentioned variables.  Thus, the effect of insertion is
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empirical, but at no time is it non-polynomial since insertion is simple tree
descent without backtracking.

Instead of a virtual insertion proof, the effect of bounded forms on the
forms they share space with can be expressed as a theorem.  The BL Absorption
theorem was visited in a less general form above.

(A) {C (A B)} = (A) {C} ABSORPTION   abs

Absorption, like Pervasion, is a deep theorem, relying on the transparency of
parens to their contexts.  The capital letters A,B, and C each represent
arbitrary parens forms.

In the case of natural deduction, adding theorems leads to an explosion in
computation effort, since which theorem to apply at which point must be
identified, and this may result in a trial and error process which is the
hallmark of NP computation.  In BL, Absorption is implemented by the
Pervasion algorithm; from a BL perspective they are actually the same rule.
In any event, all BL theorems introduced herein can be implemented using low
degree polynomial algorithms for sorting, pattern-matching, and substitution.
For the purpose of identifying the source of NP complexity, the BL theorems
are all polynomial, as is any compound combination of them.

Deep Transformations

Like Pervasion and its sister Absorption, most boundary logic theorems are
deep, in that they are insensitive to depth of nesting.  The two exceptions
are Distribution and Pivot, which are discussed in later sections.

Deep transformations greatly simplify proof and minimization by rendering
intervening parens transparent while not increasing computational effort.
Deep rules are extremely powerful and have no parallels in conventional
logical theorems.  Consider deep Absorption directly above.  The curly braces
indicate that {C} can be any arbitrary intervening content or depth of
nesting.  Here are several examples of increasing apparent complexity.  Forms
deleted via Absorption are highlighted by spaces:

     (a) (c (d (e (a b)))
==>  (a) (c (d (e      ))

     (a b) (c (d (e (a b f g))))
==>  (a b) (c (d (e          )))

     (a b) (c (a d (e (b f))))
==>  (a b) (c (a d (e      )))
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The last example illustrates another feature of deep rules:  constituent
forms do not need to share the same space.  We can refine the definition of
Absorption to emphasize this:

(A B) {C A {D (B E)}} = (A B) {C A {D}} ABSORPTION

In the above equation, the {C} form indicates that the location of the
embedded A form can be arbitrarily deep.  The {D} form indicates that the
location of the embedded B form can be arbitrarily deeper again than the A
form.  That is, the deleted (B E) form does not have to be in the same space
as the embedded A.  This is substantially different than all conventional
equational or logical transformations, which express rules for expressions
only at the same level of depth.   

Here, the typographical notation begins to show signs of weakness.  Although
we will continue to use textual forms herein, it may be more convenient to
express BL forms and transforms as graph reduction algorithms.

A deep rule can be proved as a theorem by successive application of shallow
rules.  Consider a proof of deep Absorption, expressed without depth braces:

(A B) (        C (        A (      D (      B E))))
(A B) (^(A B)^ C (        A (      D (      B E)))) ins (A B)
(A B) (^(A B)^ C (^(A B)^ A (      D (      B E)))) ins (A B)
(A B) (^(A B)^ C (^(  B)^ A (      D (      B E)))) per A
(A B) (^(A B)^ C (^(  B)^ A (^(B)^ D (      B E)))) ins (B)
(A B) (^(A B)^ C (^(  B)^ A (^(B)^ D (^(B)^ B E)))) ins (B)
(A B) (^(A B)^ C (^(  B)^ A (^(B)^ D (^( )^ B E)))) per B
(A B) (^(A B)^ C (^(  B)^ A (^(B)^ D            ))) occ
(A B) (^(A B)^ C (^(  B)^ A (      D            ))) per (B)
(A B) (^(A B)^ C (^(A B)^ A (      D            ))) ins A
(A B) (^(A B)^ C (        A (      D            ))) per (A B)
(A B) (        C (        A (      D            ))) per (A B)

This approach is a fundamental miscomprehension of boundary logic theory in
two distinct ways.  First, the careted form ^(A B)^ is virtual, it is void-
equivalent and does not exist in the form.  Thus it need not be Occluded to
be erased.  Virtual forms are simply abandoned into <void> after they have
served their reduction purpose.  This point is illustrated by changing the
steps of the above proof which follow Occlusion:

(A B) (^(A B)^ C (^(  B)^ A (^(B)^ D            ))) occ
(A B) (        C (        A (      D            ))) virtual
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Second, deep rules are independent of depth of nesting.  Parens are
transparent to the outside, they are computationally semipermeable.  The
intermediate copies of (A B) should not be recorded, since only one replicate
need exist for insertion.  Thus, the appropriate proof of deep Absorption
calls upon deep Pervasion directly:

  (A B) (        C (        A (      D (        B E))))
  (A B) (        C (        A (      D (^(A B)^ B E))))   ins (deep)
  (A B) (        C (        A (      D (^(  B)^ B E))))   per A (deep)
  (A B) (        C (        A (      D (^(   )^ B E))))   per B(shallow)
  (A B) (        C (        A (      D              )))   occ

This understanding permits the curly braces generalization to Absorption,
where curly braces represent any number of levels of intervening parens, and
the label attached to the curly braces represents any arbitrary form(s):

  (A B) {C         (        A {D       (        B E)})}
  (A B) {C         (        A {D                    })}   abs

A subtle question is whether or not it is possible to tangle forms of
Absorption recursively to generate an intractable tautology.  The
computational implications of transparency assure that this cannot be the
case, since tangled forms will continue to be pervaded by forms which reduce
them.

The Simplicity of Logical Deduction

Moving forward, we enter the territory of logical inference rules,
replacement rules, and proof strategies.  First we consider a compound form
of Excluded Middle, sometimes called the Law of Cases:

Compound Excluded Middle (Cases)

((A or B) and (A or (not B))) = A ((A B)(A (B))) = A

A BL rule of shallow Compound Excluded Middle might be stated as

(A B) (A (B)) = (A) SHALLOW CASES

In BL however, this is not a theorem, it is simply an instance of the
Absorption rule.
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The BL proof of Shallow Cases using standard form follows:

[ [[((A B)(A (B)))] A] [[A] ((A B)(A (B)))] ] transcribe
[ [  (A B)(A (B))   A] [[A] ((A B)(A (B)))] ] inv
[ [  (  B)(  (B))   A] [[A] ((A B)(A (B)))] ] per A
[ [  (  B)(     )   A  [[A] ((A B)(A (B)))] ] per (B)
[                      [[A] ((A B)(A (B)))] ] occ
                        [A] ((A B)(A (B)))   inv
                        [A] (            )   abs (twice)
                            (            )   occ

All the Inferential Rules

The tautologies of Boolean expressions are well catalogued, and implicitly we
have already visited most of them.  Table III presents the traditional
inferential rules of logic, and their transcription into parens notation.
Each parens form is reduced, and each reduces to a mark.  (The final trivial
application of Dominion has been omitted.)  This table demonstrates that the
rules of inference can be derived from repeated applications of the three BL
axioms.

One significant difference between conventional inferential logic and BL is
that conventional logic has a strong differentiation between syntax (what an
expression looks like) and semantics (what an expression means).  The
syntax/semantics gulf is an artifact of symbolic representations which permit
the form of an expression to be essentially arbitrary.  Much of the
development of modern logic theory has focused on the compatibility and
computability of meaning and representation.  BL could adopt a similar
approach, however diagrammatic formalisms have another route:  the shape of a
parens form is a picture of its meaning.  When interpreted as containers
rather than as logic, parens forms are what they portray, which is a map of
the spatial relationships between collections and nestings of bounded spaces.
From the perspective of BM, logical inference, logical intent (symbolized by
the single and double turnstiles, |= and =||=) and logical form are the same.
BL transcriptions do not distinguish between types of distinctions, those
used to convey valid inferential steps, and those used to convey the form of
logical connectives.  The transcriptions in Table III use a bold parens,
(...), to identify the container which represents the semantic inference.
The BL proofs immediately ignore these bold forms, treating them as normal
parens.  For inferential purity, every parens proof can be formulated so that
the final dominating parens is indeed the bold, semantic one.

Table IV transcribes and proves the replacement rules of conventional logic.
In Table III, proof is by reduction to a mark.  The bidirectional inference
of replacement rules converts to the BL equal sign.  Proof in Table IV is by
reduction of an equation to an identity.  Proofs in Tables III and IV are
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intended to illustrate the simplicity and the similarity of rules which have
evolved as separate principles in conventional logic.  All are nearly trivial
combinations of the three simple BL axioms.

A few logical replacement rules have non-trivial algebraic proofs.  Some of
these are included in Table V.  The strategy in most of these proofs is
conversion of one side of an equation to the other.  Expressing any of these
proofs in standard form reduces the difficulty of the proof substantively.  

Distribution

    ((A or B) and (A or C)) = (A or (B and C))     ((A B)(A C)) = A ((B)(C))

One commonly occurring transformation is the rule of Distribution.  Table V
presents an algebraic proof of Distribution, the standard form proof follows.
The structure of this rule immediately suggests potential new complexities.
There are three variable forms rather than two, the right-side is not
inherently simpler than the left-side (although it does contain one less
reference), and the rule itself suggests an irreducible entanglement.  We
examine its standard form proof structure:

  [ [[((A B)(A C))] A ((B)(C))] [[A ((B)(C))] ((A B)(A C))] ] transcribe
  [ [  (A B)(A C)   A ((B)(C))] [ A ((B)(C))] ((A B)(A C))] ] inv
  [ [  (  B)(  C)   A ((B)(C))] [[A ((B)(C))] ((A B)(A C))] ] per A
  [ [  (  B)(  C)   A (      )] [[A ((B)(C))] ((A B)(A C))] ] per (B)(C)
  [                             [[A ((B)(C))] ((A B)(A C))] ] occ
                                 [A ((B)(C))] ((A B)(A C))  inv

One direction of the logical equivalence has shown to be trivial to prove.
To make progress in proving the other direction we must again insert an outer
form into an inner form:

(A ((B)(C))) ((               A B)(A C)) subproblem
(A ((B)(C))) ((^(A ((B)(C)))^ A B)(A C)) ins
(A ((B)(C))) ((^(  (( )(C)))^ A B)(A C)) per A B
(A ((B)(C))) ((^(          )^ A B)(A C)) occ
(A ((B)(C))) (                    (A C)) occ
(A ((B)(C)))                       A C  inv
(  ((B)( )))                       A C  per A C
(          )                       A C  occ
(          )                            dom
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We restate the BL rule of Distribution:

A ((B)(C)) = ((A B)(A C)) DISTRIBUTION   dis

From the BL perspective, separating forms is indeed a simplification.  Thus,
BL Distribution has a preferred direction, here from right to left.  In
logic, Distribution is an axiom, it is considered to be fundamental.  The BL
proof decomposes it into a simpler form by showing that it can be derived
from the three BL axioms.  Here too, BL has exposed an unnecessary
complication which has been built into the foundation of conventional logic.

Looking Deeply for Complexity

The proof of Distribution is non-trivial, but not complex.  Boolean
intractability may perhaps require a subtle mixture of Distribution and
other, perhaps complicated, logical theorems.  This observation would be
esoteric, but for the fact that the combination of Distribution and Cases is
a primary construct in programming languages as the If-then-else statement,
and in circuitry as the Mux gate.

  (if A then B else C) =def= ((A -> B) and ((not A) -> C))    (((A) B)(A C))

In the boundary form of If-then-else we can see the shape of Cases,

((A B)(A (B))) Cases
((C A)(B (A))) If-then-else

Parens forms provide a capability not available to conventional logic:  the
location of parens can be compared for the same shape, while ignoring the
particular variable names.

An implication of If-then-else derives from the Excluded Middle; since the
expression A is in both polarities, either B or C must occur:

(if A then B else C) -> (B or C)

The BL proof of this implication uses square brackets to highlight the form
of implication:

[(((A) B)(A C))] B C transcribe
  ((A) B)(A C)   B C inv
  ((A)  )(A  )   B C per B C
  (     )(A  )   B C per (A)
  (     )           dom
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In BL, the If-then-else implication is expressed in an even more general
form, called Consensus:

Consensus

(A B) (C (A)) (B C) = (A B) (C (A)) SHALLOW CONSENSUS

The standard form proof is straight-forward (a smaller font is now desirable
to contain the proof display to single lines):

[ [[(A B) (C (A)) (B C)] (A B) (C (A))] [[(A B) (C (A))] (A B) (C (A)) (B C)] ]    trans
[ [[              (B C)] (A B) (C (A))] [[             ] (A B) (C (A)) (B C)] ]    per
[ [                B C   (A B) (C (A))]                                       ]    occ
                   B C   (  B) (  (A))                                             inv
                   B C   (  B) (     )                                             per
                               (     )                                             dom

The form of deep Consensus emphasizes that neither of the consensual forms (A
B) or (C (A)), nor the implied forms B and C need share the same space.  All
that is necessary is that the deepest form be one of the implied forms.

(A B) {D B {E (C (A)) {F (C G)}}} = (A B) {D B {E (C (A)) {F}}}

CONSENSUS   con

Should both consensual forms occur in shallower spaces than both implied
forms, then both implied forms are void-equivalent, as well as any other
forms sharing their space.  The algebraic proof of deep Consensus is
instructive.

(A B) {D B {E (C (A)) {F (               C G)}}}
(A B) {D B {E (C (A)) {F (^(A B)(C (A))^ C G)}}} ins
(A B) {D B {E (C (A)) {F (^(A  )(  (A))^ C G)}}} per B C
(A B) {D B {E (C (A)) {F (^(A  )(     )^ C G)}}} per (A)
(A B) {D B {E (C (A)) {F                     }}} occ

Technically, Consensus as well is not a separate theorem in BL, it is simply
the accumulation of absorbed forms through deep nesting.

The two consensual forms, (A B) and (C (A)) also have the shape of
Distribution, but with the distributed form A in two polarities, rather like
Excluded Middle.  This creates a generalization of Distribution, called
Biconditional Negation in logic.  It is called Pivot in BL terms.  The
algebraic proof is presented in Table V, the standard form proof follows.
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Pivot

((A or B) and (C or (not A))) = (((not A) and B) or (A and C))

((A B)(C (A))) = (A (B)) ((A)(C)) PIVOT    piv

The proof using standard form:

[ [[((A B)(C (A)))] (A (B)) ((A)(C))] [[(A (B))((A)(C))] ((A B)(C (A)))] ]
[ [  (A B)(C (A))   (A (B)) ((A)(C))] [[(A (B))((A)(C))] ((A B)(C (A)))] ] inv

Here the simple reduction appears to stop.  A closer look yields an
application of deep Absorption in the first subform:

  [  (A B) (C (A))  (A (B)) ((A)(C))] subproblem
  [  (A  ) (C (A))          ((A)(C))] abs
  [  (A  ) (C    )          (   (C))] per (A)
  [                         (      )] per (C)

<void> inv

This subform vanishes, leaving the following:

[                                    [[(A (B))((A)(C))] ((A B)((A) C))] ] prob
                                      [(A (B))((A)(C))] ((A B)((A) C)) inv

Again we insert the outer form and reduce:

((A (B))((A)(C))) ((^((A (B)) ((A)(C)))^ A B) ((A) C))    ins
((A (B))((A)(C))) ((^((  ( )) (( )(C)))^ A B) ((A) C))    per A B
((A (B))((A)(C))) ((^(                )^ A B) ((A) C))    occ
((A (B))((A)(C))) (                           ((A) C))    occ
((A (B))((A)(C)))                              (A) C      inv
((A (B))(   ( )))                              (A) C      per (A) C
((A (B))        )                              (A) C      inv
  A (B)                                        (A) C      inv
  A (B)                                        ( ) C      per A
                                               ( )        dom

In general, all recursive embeddings of logical theorems in themselves and in
each other reduce with polynomial effort, as do any deep nestings of subforms
involved in the theorems.  The key is the transparency of parens.
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Tangles

There are two boundary logic tangles:

 (A B) ((A)(B)) = ((A (B))((A) B)) PIVOT

    A ((B)(C)) = ((A B)(A C)) DISTRIBUTION

Tangles cannot have a deep counterpart, since deep transformations rely upon
the transparency of parens, and tangling is simply another way of recognizing
when transparency is not applicable.  The NP complexity of tautology
identification does not stem from these tangles when, in the course of a
proof, they are applied in one direction only.  BL has a preferred direction,
the one in which a single form is partitioned, or untangled, into two forms,
right to left in both rules above.

A significant problem with these rules is that the capital letters are
arbitrarily complex forms themselves, which are required to be equivalent in
value only, not in structure.  Therefore, a structural approach such as
pattern-matching could fail.  For example, Distribution can be recursively
tangled within itself:

X ((Y)(Z)) = ((X Y) (X' Z))

X = ((A B) (A C))
X' = A ((B)(C))

((A B) (A C)) ((Y)(Z)) = ( (((A B) (A C)) Y) (A ((B)(C)) Z) )

Although such tangles may add significantly to computational effort,
Pervasion, and the transparency of parens, is sufficient to untangle them, as
was demonstrated in the previous section.  Embedded instances of both
Distribution and Pivot untangle because both theorems are based on Pervasion,
itself a deep rule.  

How Can Irrelevant Variables Hide in Intractable Ways?

Consider the recursive embedding of If-then-else forms, that is, Distribution
of If-then-else.

Distribution of If-then-else

(if (if A B C) D E) = (if A (if B D E) (if C D E))

Transcription is in parts for readability:
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(if X D E) = (if A Y Z)

X = (if A B C) = ((A C) ((A) B))
Y = (if B D E) = ((B E) ((B) D))
Z = (if C D E) = ((C E) ((C) D))

(if X D E) = ((      X         E) ((      X        ) D))
           = ((((A C) ((A) B)) E) ((((A C) ((A) B))) D)) subst
           = ((((A C) ((A) B)) E) (  (A C) ((A) B)   D)) inv

(if A Y Z) = ((A       Z        ) ((A)       Y        ))
           = ((A ((C E) ((C) D))) ((A) ((B E) ((B) D)))) subst

The entire problem stated as a parens equation is therefore:

((((A C)((A) B)) E) ((((A C)((A) B))) D)) = ((A ((C E)((C) D))) ((A) ((B E)((B) D))))

The proof as well is in parts, -> and <-, using square brackets to highlight
the implication in each direction:

Proof ->:

[((((A C)((A) B)) E) ((A C)((A) B) D))] ((A ((C E)((C) D))) ((A)((B E)((B) D))))
  (((A C)((A) B)) E) ((A C)((A) B) D)   ((A ((C E)((C) D))) ((A)((B E)((B) D))))    inv

There are three separate forms, two formerly inside the Involution, one
outside.  Here a new type of complexity might arise:  which forms should be
inserted into which?  This issue is addressed in depth in the following
section.  The answer is set-insertion, insert all exterior forms into the
interior of all others.  This may add significant overhead, but does not yet
step into exponential effort.  Since all inserted forms are virtual, should
they fail to trigger a reduction, they can simply be discarded into the void.

Insert both the first and the second subforms into the third.  Note that the
third subform is itself composed of two components.  Below the insertion
visits each of them separately.  The inserted pair still exists and is saved
to the side.

((^(((A C)((A) B)) E) ((A C)((A) B) D)^ A ((C E)((C) D))) ((A)((B E)((B) D))))    ins
((^(((  C)(( ) B)) E) ((  C)(( ) B) D)^ A ((C E)((C) D))) ((A)((B E)((B) D))))    per A
((^(((  C)       ) E) ((  C)        D)^ A ((C E)((C) D))) ((A)((B E)((B) D))))    occ
((^(    C          E) ((  C)        D)^ A ((C E)((C) D))) ((A)((B E)((B) D))))    inv
((^(    C          E) ((  C)        D)^ A (            )) ((A)((B E)((B) D))))    per
(                                                         ((A)((B E)((B) D))))    occ



31

When inserted into, the first component of the third subform vanishes, so we
insert again into the remaining component:

(                   (^(((A C)((A) B)) E) ((A C)((A) B) D)^ (A)((B E)((B) D))))    ins
(                   (^(((A C)(    B)) E) ((A C)(    B) D)^ (A)((B E)((B) D))))    per (A)
(                   (^((     (    B)) E) (     (    B) D)^ (A)((B E)((B) D))))    abs
(                   (^(           B   E) (     (    B) D)^ (A)((B E)((B) D))))    inv
(                   (^(           B   E) (     (    B) D)^ (A)(            )))    per
(                                                                            )    dom

Rather than vanishing, the second insertion leaves a mark.  When this is
recombined with the original two inserted forms which still exist, the entire
expression reduces:

(((A C)((A) B)) E) ((A C)((A) B) D)   ( )
                                      ( ) dom

We have demonstrated that the proof -> is indeed True.  Before going on to
the proof <-, observe that both component insertions were necessary to reduce
the expression.  Although this appears to double the effort, the increase is
only linear in the number of forms to be inserted into, and thus still
polynomial.  Strictly, this effort was necessary due to the size of the
original problem, rather than due to the insertion algorithm.  Continuing,

Proof <-:

[((A ((C E)((C) D))) ((A)((B E)((B) D))))] ((((A C)((A) B)) E) ((A C)((A) B) D))
  (A ((C E)((C) D))) ((A)((B E)((B) D)))   ((((A C)((A) B)) E) ((A C)((A) B) D)) inv

Again the first two subforms are set-inserted into the third, remembering
that the first two subforms remain in existence:

    (((( ^(A ((C E)((C) D))) ((A)((B E)((B) D)))^ A C)((A) B)) E) ((A C)((A) B) D))     ins
    (((( ^(  ((   )(( ) D))) (( )((B  )((B) D)))^ A C)((A) B)) E) ((A C)((A) B) D))     per A C E
    (((( ^(  ((   )       ))                    ^ A C)((A) B)) E) ((A C)((A) B) D))     occ
    (((( ^(                )                    ^ A C)((A) B)) E) ((A C)((A) B) D))     occ
    (((                                               ((A) B)) E) ((A C)((A) B) D))     occ
    ((                                                 (A) B   E) ((A C)((A) B) D))     inv

The inner component (A C) which received the insertion vanishes.  Set-
inserting now into the newly created component:
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((   ^(A ((C E)((C) D))) ((A)((B E)((B) D)))^      (A) B   E) ((A C)((A) B) D)) ins
((   ^(A ((C E)((C) D))) (   ((   )(( ) D)))^      (A) B   E) ((A C)((A) B) D)) per
((   ^(A ((C E)((C) D))) (                 )^      (A) B   E) ((A C)((A) B) D)) occ
(                                                             ((A C)((A) B) D)) occ
                                                               (A C)((A) B) D   inv

Let us collect what remains to examine the current state of the problem.  We
have the remnants of the third subform (above) and the two subforms which
were the source of the virtual insertion:

(A ((C E)((C) D))) ((A)((B E)((B) D))) (A C) ((A) B) D

Continued set-insertion of the first two subforms into the smaller remaining
remnants would fail.  However, these newly created remnants have an immediate
Pervasive impact on the two original subforms:

(A ((C E)((C) D))) ((A)((B E)((B) D))) (A C) ((A) B) D
(A ((C E)((C)  ))) ((A)((B E)((B)  ))) (A C) ((A) B) D per D
(A ((C E)  C    )) ((A)((B E)  B    )) (A C) ((A) B) D inv
(A ((  E)  C    )) ((A)((  E)  B    )) (A C) ((A) B) D per B C

There has been a surprising turn of events.  The initial insertions did
reduce the problem, but not completely.  However, the remnants which resulted
from the original insertions can now themselves be inserted back into the
subforms which served as the initial set-insertions:

(A ((E) C) ^(A C) ((A) B)^) ((A) ((E) B)) (A C) ((A) B) D ins
(A ((E) C) ^(  C) (( ) B)^) ((A) ((E) B)) (A C) ((A) B) D per
(A ((E) C) ^(  C)        ^) ((A) ((E) B)) (A C) ((A) B) D occ
(A         ^(  C)        ^) ((A) ((E) B)) (A C) ((A) B) D abs
(A                        ) ((A) ((E) B)) (A C) ((A) B) D virtual
(A                        ) (    ((E) B)) (A C) (    B) D per (A)
(A                        )       (E) B   (A C) (    B) D inv
(A                        )       (E) B   (A C) (     ) D per B
                                                (     )   dom

Virtual set-insertion was used maximally to reduce the problem form.  This
did not however result in failure, since the partial reductions created
actual conditions sufficient to complete the proof.  Even though the choice
of which subform to insert has changed, the proof proceeds directly to
smaller and smaller remnants.  Computational complexity means that a problem
gets more complex, not simpler.  Thus, the above technique does not require
exponential effort.

Finally, the following problem, Transitivity of Equality, illustrates an
implicational proof.
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Transitivity of Equality  

((A = B) and (B = C)) -> (A = C)

[(((A B) ((A)(B))) ((B C) ((B)(C))))] (A C) ((A)(C))
  ((A B) ((A)(B))) ((B C) ((B)(C)))   (A C) ((A)(C))      inv
(A C) ((A)(C)) ((A B) ((A)(B))) ((B C) ((B)(C)))          rearrange

Note that there are four subforms in the transcription above.  Inserting any
one of them into the others achieves no reduction.  Set-inserting all of them
into either of the first two fails as well.  Only when all are set-inserting
into one of the two larger subforms does the proof succeed.  This is because
the reduction dependency is spread across all of the subforms, and is
"threaded" only through the final two subforms.  We cannot determine in
advance which specific form will reduce via set-insertion.  Fortunately,
inserting all others into each subform does not yet involve exponential
effort.

For a successful proof, we set-insert the first three subforms into the final
one, and reduce:

   (A C) ((A)(C)) ((A B)((A)(B)))               the inserted subforms

((^(A C) ((A)(C)) ((A B)((A)(B)))^ B C) ((B)(C))) ins
((^(A  ) ((A)( )) ((A  )((A)( )))^ B C) ((B)(C))) per B C
((^(A  )          ((A  )        )^ B C) ((B)(C))) occ
((^(A  )          (             )^ B C) ((B)(C))) per (A)
(                                       ((B)(C))) occ
                                         (B)(C)  inv

Recombining with the inserted subforms:

(A C) ((A)(C)) ((A B) ((A)(B))) (B)(C) reduced
(A C) ((A)   ) ((A B) ((A)   )) (B)(C) per
(A C)   A      ((A B)   A     ) (B)(C) inv
(  C)   A      ((  B)         ) (B)(C) per A
(  C)   A      (              ) (B)(C) per (B)
               (              )       dom

Set Insertion

For set-insertion to be completely general, all exterior subforms must be
inserted into all interior forms.  A form cannot be inserted into itself.
During insertion reduction, care must be taken not to prematurely delete
information which may assist the reduction.  This restriction can be stated
as a simple rule:  during insertion reduction, apply Pervasion only one level
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at a time.  Do not use Absorption.  As a subform descends into a nested
interior space, Absorption will turn into Pervasion, so reduction is not
weakened.  This process traces the proof of shallow Absorption discussed
earlier.  Compare the first steps of the proof of Transitivity of Equality
above, in which Pervasion is applied at all levels, to the following one-
level Pervasion proof:

((^(A C) ((A)(C)) ((A B)((A)(B)))^ B C) ((B)(C))) ins
((^(A  ) ((A)(C)) ((A B)((A)(B)))^ B C) ((B)(C))) per C
((^(A  ) (   (C)) ((A B)(   (B)))^ B C) ((B)(C))) per (A)
((^(A  )      C   ((A B)     B  )^ B C) ((B)(C))) inv
((^(A  )      C   ((A  )        )^ B C) ((B)(C))) per B
((^(A  )      C   (             )^ B C) ((B)(C))) per (A)
(                                       ((B)(C))) occ
                                         (B)(C)  inv

Although these constraints have not been used in this section, they certainly
become important when addressing intractable tautologies in the following
section.

Algorithm Discussion

Can the convoluted interplay of virtual insertions become exponentially
complex?
Analysis of virtual set-insertion, including those insertions that result in
wasted effort, yields an interesting result:  although potentially
complicated, the algorithm remains polynomial.

One method to generate NP complexity is to force the direction of either of
the non-deep rules, Distribution and Pivot, in both directions.  Then, from
an algorithmic point of view, we would not know at any given step which
direction to apply first.  We would be forced to guess, and this would mean
that we have entered the realm of non-polynomial search.  However, these BL
theorems, as well as all the others, have not been necessary for proof.  None
of the proof steps used thus far have called upon any of the more complicated
theorems.  The only mechanisms that are needed to get us to the current level
of apparent logical complexity are the trivial Occlusion and Involution
axioms and the Pervasion/Absorption axiom.  Distribution/Pivot is not the key
to complexity. Virtual set-insertion is sufficient alone.  

Using the three axioms in a straight-forward manner as reduction rules
requires polynomial effort.  We would encounter exponential effort only if a
problem required an exponential number of applications of these rules.
Nothing in the parens forms thus far, no matter how complicated, requires
this.   
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Virtual insertion has suggested in itself some potential sources of
complexity. These are the issues:

• Failure of an insertion to reduce
• Discovered new insertions when a subform reduces but does not vanish
• Insertion into many different forms at many different depths
• Selecting which forms to insert into which
• Set-insertion, inserting all exterior forms into each interior form

First, consider a relatively complicated case, in which we have a large
parens form.  Inserting an exterior subform into all the spaces pervaded by
that subform makes the large parens perhaps much larger, but this only
multiplies the number of times the simple axioms must be applied.  No parens
form in itself requires an exponential number of insertions;  in all cases
the number of parens that express the problem is the upper limit on the
number of required insertions.  Clearly, a nested parens form does not grow
exponentially when more variables are added (although flattened parens forms
without nesting, which correspond to two-level logic expressions, do grow
exponentially).  When a subform reduces to remnants, the set-insertion
algorithm may be reinitialized for the smaller problem, but since the smaller
problem has fewer parens, the new effort is less, disqualifying the method as
growing with exponentially complexity.  Thus the first three issues do not
introduce NP complexity.  

The source of potential complexity may be in the selection process itself.
Here is how that might happen:  imagine that there are two large parens forms
and that we must choose which to insert into which.  One insertion may be a
wrong guess while one may be a correct guess.  Having to guess and then
backtrack is one hallmark characteristic of NP problems.  However this too is
a false concern, all possible set-insertions can be made as a first step,
even here the problem size has only been multiplied by some factor which
relates to the number of parens in the problem statement.  The key is to see
that virtual insertions never enter themselves, and thus never generate an
exponential growth.  Set-insertion subsumes the selection question; it still
is at most a multiplier of effort that does not introduce intractability.

One easy way to see that none of the above issues introduce complexity is to
consider the parens form to be a directed acyclic graph.  Parens are nodes,
nestings are links.  In this representation, virtual insertion is simply
increasing the number of links in the graph, making it densely rather than
sparsely connected.  Reduction involves traversing the graph from top to
bottom.  Thus the graph algorithms which are analogous to the three BL axioms
only traverse more links, they do not loop or backtrack.  All that the
addition of more links will cause is the linear increase of effort associated
with doing the same thing more times.  The key here is to see that every
transformation deletes parens structure;  deletion can never increase
complexity.
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We have yet to identify a logical tautology which requires exponential effort
to reduce.  BL heuristics still exist.  It could be the case, for example,
that always inserting the smaller forms into the largest form produces a
reduction.  Or perhaps always inserting the premise form into the conclusion
form in a directional proof (-> or <-) will yield success.  Or perhaps there
is some method of counting the occurrences of specific variables which would
always identify what to insert.  The main point, however, is that these
heuristics make a polynomial algorithm more efficient.  They are not relevant
to the search for exponential complexity.  Moreover, we are not seeking
heuristics here, for heuristics may fail to provide any reduction.

In order to finally find logical complexity, we will need to identify a
problem for which virtual set-insertion does not succeed.  This is the topic
of the final section.

The current status can be summarized as follows.  Virtual set-insertion is
not complete in that it does not identify some tautologies.  Those
tautologies that it does identify include all combinations of all
conventional logic theorems, complicated to any degree of mutual embedding.  

We should expect that the construction of a non-reducible tautology is itself
non-trivial.  From research that has accumulated over the last thirty years,
we know that many problems map onto (are the same as) the tautology problem,
hence they are NP-complete.  Large collections of these problems have been
published.  Many have particular names, such as the Pigeon-hole Problem, the
Three-coloring Problem, the Traveling Salesman Problem, the Hamiltonian Cycle
Problem, and the Satisfiability Problem.  

The thesis of the next section is that it takes a NP-problem description,
itself a difficult task, to cause virtual set-insertion to fail.  This is
very much a pragmatic, rather than a theoretical, result.  Indeed, set-
insertion does not help for the really hard problems, those known to be
complex.  However, it does distinguish between really hard problems and those
that appear to be complex due merely to logical tangles.  

This result has significant practical value.  Experience has shown that
practical problems, those constructed during the course of building practical
applications and products, are almost always of the logical tangle type, and
very rarely of the NP-complex type.  Databases, expert system knowledge
bases, circuit designs, designing patterns for clothing, seasonal scheduling
of football games, arranging meeting times for busy executives, and a host of
other pragmatic tasks all regularly run into logical tangles, but these
tangles are rarely sufficient to create the need for an unavoidable
exponential effort.  

The benefits of the set-insertion algorithm run in two directions.  Should
the algorithm fail to reduce a problem, it is then known that the reduction
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is not tractable.  Should the algorithm succeed, then a problem for which
other techniques rapidly become intractable has been solved efficiently.

For the purposes of this exploration, we have tacitly accepted that the
technique of virtual set-insertion will indeed identify any tautology.  The
question has been solely whether or not the identification process is NP.  In
the following section, we will see how to make virtual set-insertion
complete, so that it can solve even NP-complete problems.  As might be
expected, the generalization which makes set-insertion complete also makes it
exponential.  

VIRTUAL INSERTION

The previous section introduced a complicated example, Distribution of If-
then-else, of virtual set-insertion.  This final section further describes
and illustrates this boundary logic proof technique.  We identify two
examples of tautological intractability, and provide this answer to the
original question:  the boundary between polynomial simplicity and
exponential complexity is when the set-insertion algorithm must be applied
recursively to insertions during the course of tautology identification.  In
closing, we briefly examine the role of symmetry in intractable problems.

A New Proof Technique

The virtual set-insertion algorithm as thus far presented is not a decision
procedure for propositional logic like the other three widely known
techniques (truth tables, natural deduction, and resolution).  A decision
procedure will always identify a tautology, whereas set-insertion fails for
some tautologies, it is not complete.  A recursive generalization of set-
insertion is a complete decision procedure;  however, it is also intractably
complex.  We will examine this later in the section.

Unlike the other known proof techniques, the algorithmic effort of set-
insertion is polynomially bounded.  Application of set-insertion
discriminates between P and NP problems, it identifies logical tangles
without relying on exponential processes.  The conventional decision
procedures, in an attempt to be complete, are all NP algorithms.  In the case
of truth tables, each variable evaluation step is exponential.  For natural
deduction, the selection of which rules to apply when is an exponential
search.  For resolution, the selection of resolving clauses is exponential.
All three use heuristics to contain the exponential processes, however, all
are inherently NP, and complete, algorithms.

Set-insertion is a new type of complexity tool, one which exchanges
completeness for polynomial efficiency.  Some other nice features of set-
insertion include:
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•  It has simple steps which do not rely on search or creativity (in
contrast to natural deduction).

•  It is very efficient, never generating new forms which increase the
search space (in contrast to resolution).  All steps reduce a problem through
deletion of irrelevant structure.

•  It uses virtual forms (i.e., queries) rather than assertions.  A
positive answer returns a reduced form directly.

•  It has powerful pattern-matching and variable counting heuristics
which can improve its polynomial performance greatly.

•  It returns a minimal form (like algebraic approaches) rather than a
Boolean failure.

Boolean Minimization

Here is an example of using insertion for the purpose of Boolean
minimization.  The key idea which enhances the efficiency of minimization is
to avoid both of the tangled transforms Pivot and Distribution.  Consider
minimizing the following logic expression:

(A or B) and ((not (A or C)) or (not (D or (not B))))

((A B) ((A C)(D (B)))) transcribe

A computationally expensive approach using Distribution:

((A B) ((      A C) (      D (B))))
(      (((A B) A C) ((A B) D (B)))) dis-in
(      (((  B) A C) ((A B) D (B)))) per A
(      (((  B) A C) (      D (B)))) abs (A B)
((B)   ((      A C) (      D    ))) dis-out

((B) ((D) (A C))) rewrite

B and ((not D) or (not (A or C))) transcribe

A computationally inexpensive approach using both virtual insertion and
virtual distribution:
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((A B)     ((        A C) (D (B))))
((A B)     ((^(A B)^ A C) (D (B)))) ins (A B)
((A B)     ((^(  B)^ A C) (D (B)))) per A
((A B) (B) ((        A C) (D    ))) dis-out
(      (B) ((        A C) (D    ))) abs

((B) ((D) (A C))) rewrite

The distribute-out step is innovative, since it combines a virtual and an
actual form of (B) to achieve reduction.  So long as Pervasion is used
instead of inward Distribution, the potential complexity of using
Distribution can be avoided.  Its application direction is no longer a guess,
it is always outward.

All BL transformations have a virtual counterpart. Here's an algebraic proof
of shallow Consensus using virtual absorption.

 (A B) (C (B)) (A C) = (A B) (C (B)) SHALLOW CONSENSUS

(A B) (C (B)) (^(C (B))^ A C)
(A B) (C (B)) (^(C (B))^ A C) ins

 (A B) (C (B)) (^(  (B))^ A C) per C
 (A B) (C (B)) (^    B  ^ A C) inv

(A B) (C (B))              abs

The final shallow Absorption step is

(A B) (A ^B^ C) => (A B)

Computational Complexity and Virtual Insertion

We begin now to look at known NP tautologies.  These problems are not
susceptible to the basic set-insertion technique.  Characterizing the parens
shape of these problems is useful for identifying potential candidates for NP
complex tautologies via their symmetries.

For convenience in the following sections, we will call single variables
atoms, and single variables within a boundary, such as (a), natoms.  The
combination of atoms and natoms is called literals.  Parens forms containing
only literals are called clauses.  

From complexity theory, we know that any collection of two-literal clauses is
tractable and that tautologies which require a three-literal clause are
intractable (this is called the 3SAT Problem).  From BL, we know that for
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virtual insertion, natoms, being more deeply nested, are the most likely
location of reduction action.

Intractable Example I:  The Pigeon-hole Problem

The pigeon-hole problem is cited in the theorem-proving literature as being
one that is intractable for tautology checkers.  Its formulation reads:
"There are N pigeons (first index) and N-1 holes (second index).  Not every
pigeon can find a separate hole."

The 3-2 pigeon-hole problem consists solely of clauses with two literals, it
is thus tractable.  The 4-3 pigeon-hole problem, however, is clearly
intractable.  We first examine the 3-2 pigeon-hole, and then move on to the
simplest intractable problem of this type, the 4-3 pigeon-hole.

3-2 Pigeon-hole

   (and (or 11 12) (or 21 22) (or 31 32) [each hole has one pigeon]
        (or (not 11)(not 21))           [each pigeon has one hole]
        (or (not 11)(not 31))
        (or (not 12)(not 22))
        (or (not 12)(not 32))
        (or (not 21)(not 31))
        (or (not 22)(not 32)))

As stated, the assertion is false, the expression is unsatisfiable.
Transcribing:

 ( (11 12) (21 22) (31 32) ((11)(21)) ((11)(31)) ((12)(22)) ((12)(32)) ((21)(31)) ((22)(32)) )

In BL, we can freely remove the outer parens by reversing the value of the
form, and we do so, converting an unsatisfiable expression into a tautology.
The form below should reduce to a mark, ( ), representing True.

   (11 12) (21 22) (31 32) ((11)(21)) ((11)(31)) ((12)(22)) ((12)(32)) ((21)(31)) ((22)(32))

This shape is known as clausal form, each parens has only literals within it,
but no deeper nestings.  Since there are nine clauses at the top-level of the
transcription, it seems like a good idea to use a heuristic to limit the
number of insertions, but this is exactly what the pigeon-hole problem
thwarts.  We must set-insert the entire external context of each clause, i.e.
all other clauses, into that clause for every clause:
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  ( 11  12  ^       (21 22)(31 32)((11)(21))((11)(31))((12)(22))((12)(32))((21)(31))((22)(32))^)
  ( 21  22  ^(11 12)       (31 32)((11)(21))((11)(31))((12)(22))((12)(32))((21)(31))((22)(32))^)
  ( 31  32  ^(11 12)(21 22)       ((11)(21))((11)(31))((12)(22))((12)(32))((21)(31))((22)(32))^)
  ((11)(21) ^(11 12)(21 22)(31 32)          ((11)(31))((12)(22))((12)(32))((21)(31))((22)(32))^)
  ((11)(31) ^(11 12)(21 22)(31 32)((11)(21))          ((12)(22))((12)(32))((21)(31))((22)(32))^)
  ((12)(22) ^(11 12)(21 22)(31 32)((11)(21))((11)(31))          ((12)(32))((21)(31))((22)(32))^)
  ((12)(32) ^(11 12)(21 22)(31 32)((11)(21))((11)(31))((12)(22))          ((21)(31))((22)(32))^)
  ((21)(31) ^(11 12)(21 22)(31 32)((11)(21))((11)(31))((12)(22))((12)(32))          ((22)(32))^)
  ((22)(32) ^(11 12)(21 22)(31 32)((11)(21))((11)(31))((12)(22))((12)(32))((21)(31))          ^)

We can call upon symmetry to reduce the number of subforms which must be
examined to the number of different parens shapes, here two (this is solely a
convenience and does not implicate the complexity result):

  ( 11  12  ^       (21 22)(31 32)((11)(21))((11)(31))((12)(22))((12)(32))((21)(31))((22)(32))^)
  ((11)(21) ^(11 12)(21 22)(31 32)          ((11)(31))((12)(22))((12)(32))((21)(31))((22)(32))^)

We follow each clause plus insertion separately.  Set-insertion into the two-
atom clauses reduces via Pervasion followed by Occlusion, but then the
reduction halts.   

  ( 11  12  ^       (21 22)(31 32)((11)(21))((11)(31))((12)(22))((12)(32))((21)(31))((22)(32))^)
  ( 11  12  ^       (21 22)(31 32)((  )(21))((  )(31))((  )(22))((  )(32))((21)(31))((22)(32))^)
  ( 11  12  ^       (21 22)(31 32)                                        ((21)(31))((22)(32))^)

Set-insertion into the two-natom clauses reduces to mark via Pervasion
followed by Involution:

  ((11)(21) ^(11 12)(21 22)(31 32)          ((11)(31))((12)(22))((12)(32))((21)(31))((22)(32))^)
  ((11)(21) ^(11 12)(21 22)(31 32)          (    (31))((12)(22))((12)(32))(    (31))((22)(32))^)
  ((11)(21) ^(11 12)(21 22)(31 32)                31  ((12)(22))((12)(32))      31  ((22)(32))^)
  ((11)(21) ^(11 12)(21 22)(   32)                31  ((12)(22))((12)(32))          ((22)(32))^)
  ((11)(21) ^(11 12)(21 22)(   32)                31  ((12)(22))((12)    )          ((22)    )^)
  ((11)(21) ^(11 12)(21 22)(   32)                31  ((12)(22))  12                  22      ^)
  ((11)(21) ^(11   )(21   )(   32)                31  ((12)(22))  12                  22      ^)
  (         ^(11   )(21   )(   32)                31  ((12)(22))  12                  22      ^)
  (                                                                                            )

Note the delicate untangling through successive choreographed exposures of
atoms and natoms.  The step which deletes the actual (11)(21) natoms calls
upon Pervasion in the same space, earlier identified as the rule of
Replication.  Once the actual natoms are gone, the remaining fragments are
deleted as virtual, leaving a mark.  This mark then dominates all eight other
clauses to complete the proof.
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Without a symmetry identification algorithm, nothing less than set-insertion
into every clause will assure reduction of this type of problem.  We now
consider an actual intractable problem, the 4-3 pigeon-hole.

4-3 Pigeon-hole

(and (or 11 12 13) (or 21 22 23)                [each hole has one pigeon]
     (or 31 32 33) (or 41 42 43))
     (or (not 11)(not 21)) (or (not 11)(not 31)) [each pigeon has one hole]
     (or (not 11)(not 41)) (or (not 21)(not 31))
     (or (not 21)(not 41)) (or (not 31)(not 41))
     (or (not 12)(not 22)) (or (not 12)(not 32))
     (or (not 12)(not 42)) (or (not 22)(not 32))
     (or (not 22)(not 42)) (or (not 32)(not 42))
     (or (not 13)(not 23)) (or (not 13)(not 33))
     (or (not 13)(not 43)) (or (not 23)(not 33))
     (or (not 23)(not 43)) (or (not 33)(not 43)))

Transcribing and dropping the outer parens to make the clausal form True:

(11 12 13) (21 22 23) (31 32 33) (41 42 43)
((11)(21)) ((11)(31)) ((11)(41)) ((12)(22)) ((12)(32)) ((12)(42))
((13)(23)) ((13)(33)) ((13)(43)) ((21)(31)) ((21)(41)) ((22)(32))
((22)(42)) ((23)(33)) ((23)(43)) ((31)(41)) ((32)(42)) ((33)(43))

The slight change of having three-atom clauses makes the difference between a
tractable and an intractable tautology.  Twenty-two clauses are needed to
express the 4-3 pigeon-hole problem.  For convenience we call again upon
symmetry to examine set-insertion for only two.

The first insertion into a three-atom clause proceeds as in the 3-2 pigeon-
hole problem, and halts prior to complete reduction:

(11 12 13 ^(21 22 23)(31 32 33)(41 42 43)
   ((11)(21))((11)(31))((11)(41))((12)(22))((12)(32))((12)(42))((13)(23))((13)(33))((13)(43))
   ((21)(31))((21)(41))((22)(32))((22)(42))((23)(33))((23)(43))((31)(41))((32)(42))((33)(43))^)

(11 12 13 ^(21 22 23)(31 32 33)(41 42 43)
   ((  )(21))((  )(31))((  )(41))((  )(22))((  )(32))((  )(42))((  )(23))((  )(33))((  )(43))
   ((21)(31))((21)(41))((22)(32))((22)(42))((23)(33))((23)(43))((31)(41))((32)(42))((33)(43))^)

(11 12 13 ^(21 22 23)(31 32 33)(41 42 43)
   ((21)(31))((21)(41))((22)(32))((22)(42))((23)(33))((23)(43))((31)(41))((32)(42))((33)(43))^)

The failure to reduce should not be surprising, since the three atoms which
share space with the insertion do not permit the two-natom insertion clauses
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to reduce to a mark.  We proceed with set-insertion into the other clausal
shape, those with two natoms:

             ((11)(31))((11)(41))((12)(22))((12)(32))((12)(42))((13)(23))((13)(33))((13)(43))
   ((21)(31))((21)(41))((22)(32))((22)(42))((23)(33))((23)(43))((31)(41))((32)(42))((33)(43))^)

((11)(21) ^(11 12 13)(21 22 23)(31 32 33)(41 42 43)
             (    (31))(    (41))((12)(22))((12)(32))((12)(42))((13)(23))((13)(33))((13)(43))
   (    (31))(    (41))((22)(32))((22)(42))((23)(33))((23)(43))((31)(41))((32)(42))((33)(43))^)

((11)(21) ^(11 12 13)(21 22 23)(31 32 33)(41 42 43)
                   31        41  ((12)(22))((12)(32))((12)(42))((13)(23))((13)(33))((13)(43))
         31        41  ((22)(32))((22)(42))((23)(33))((23)(43))((31)(41))((32)(42))((33)(43))^)

((11)(21) ^(11 12 13)(21 22 23)(   32 33)(   42 43)
                   31        41  ((12)(22))((12)(32))((12)(42))((13)(23))((13)(33))((13)(43))
                       ((22)(32))((22)(42))((23)(33))((23)(43))((  )(  ))((32)(42))((33)(43))^)

((11)(21) ^(11 12 13)(21 22 23)(   32 33)(   42 43)
                   31        41  ((12)(22))((12)(32))((12)(42))((13)(23))((13)(33))((13)(43))
                       ((22)(32))((22)(42))((23)(33))((23)(43))          ((32)(42))((33)(43))^)

Unfortunately, removing new atoms does not create new natoms, but rather new
two-atom subforms.  Here is the crux of why three-atom clauses make an
intractable tautology.  We might try to insert into the next deeper level.
That insertion deletes only one atom since 11 and 21 occur only once in the
insertion.  Unfortunately, both occur in separate three-atom clauses, again
halting the reduction.  

A Case Analysis

We can verify that the above subform, with insertions, is indeed a tautology
by taking an exponential step, to consider two cases, one in which, say, 32
is <void> and one in which 32 is a mark.  The variable 32 is a good choice
because it is inside one of the newly formed two-atom clauses.  The case
analysis first deletes 32 and reduces, then marks 32 and reduces.  Both forms
reduce to mark, i.e. they are both True.  Thus the subform is True, and by
Occlusion, the entire expression is True.

Substitution of <void>

Void-substitution for (i.e., deleting) variable 32 leads to reduction
success:
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((11)(21) ^(11 12 13)(21 22 23)(      33)(   42 43)
                   31        41  ((12)(22))((12)(  ))((12)(42))((13)(23))((13)(33))((13)(43))
                       ((22)(  ))((22)(42))((23)(33))((23)(43))          ((  )(42))((33)(43))^)

((11)(21) ^(11 12 13)(21 22 23)(      33)(   42 43)
                   31        41  ((12)(22))          ((12)(42))((13)(23))((13)    )((13)(43))
                                 ((22)(42))((23)    )((23)(43))                    (    (43))^)

((11)(21) ^(11 12 13)(21 22 23)(      33)(   42 43)
                   31        41  ((12)(22))          ((12)(42))((13)(23))  13      ((13)(43))
                                 ((22)(42))  23      ((23)(43))                          43  ^)

((11)(21) ^(11 12   )(21 22   )(      33)(   42   )
                   31        41  ((12)(22))          ((12)(42))((  )(  ))  13      ((  )(  ))
                                 ((22)(42))  23      ((  )(  ))                          43  ^)

Rewriting the current reduction, and continuing:

((11)(21) ^(11 12)(21 22)(33)(42) 13 23 31 41 43 ((12)(22))((12)(42))((22)(42))^)
((11)(21) ^(11 12)(21 22)(33)(42) 13 23 31 41 43 ((12)(22))((12)    )((22)    )^)
((11)(21) ^(11 12)(21 22)(33)(42) 13 23 31 41 43 ((12)(22))  12        22      ^)
((11)(21) ^(11   )(21   )(33)(42) 13 23 31 41 43 ((  )(  ))  12        22      ^)
(         ^(11   )(21   )(33)(42) 13 23 31 41 43             12        22      ^)
(                                                                               )

Now we return to the case in which 32 is a mark, in the process expending
exponential effort.  

Substitution of mark

The substitution of mark for 32 also succeeds:

((11)(21) ^(11 12 13)(21 22 23)(   () 33)(   42 43)
                   31        41  ((12)(22))((12)(()))((12)(42))((13)(23))((13)(33))((13)(43))
                       ((22)(()))((22)(42))((23)(33))((23)(43))          ((())(42))((33)(43))^)

((11)(21) ^(11 12 13)(21 22 23)          (   42 43)
                   31        41  ((12)(22))((12)    )((12)(42))((13)(23))((13)(33))((13)(43))
                       ((22)    )((22)(42))((23)(33))((23)(43))          (    (42))((33)(43))^)

((11)(21) ^(11 12 13)(21 22 23)          (   42 43)
                   31        41  ((12)(22))  12      ((12)(42))((13)(23))((13)(33))((13)(43))
                         22      ((22)(42))((23)(33))((23)(43))                42  ((33)(43))^)

((11)(21) ^(11    13)(21    23)          (      43)
                   31        41  ((  )(  ))  12      ((  )(  ))((13)(23))((13)(33))((13)    )
                         22      ((  )(  ))((23)(33))((23)    )                42  ((33)    )^)
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Rewriting and continuing:

((11)(21) ^(11 13)(21 23)(43) 12 13 22 23 31 33 41 42 ((13)(23))((13)(33))((23)(33))^)
((11)(21) ^(11   )(21   )(43) 12 13 22 23 31 33 41 42 ((  )(  ))((  )(  ))((  )(  ))^)
(         ^(11   )(21   )(43) 12 13 22 23 31 33 41 42                               ^)
(                                                                                    )

Thus we have succeeded not only in reducing this problem, but also in
identifying a problem which may require exponential effort to reduce.  We are
close to the boundary between tractable and intractable tautologies.

Intractability

In order to extend set-insertion so that it will reduce this problem, we need
to find a clever way to reduce the insertion subproblem above, prior to the
exponential split:

((11)(21) ^31 41 (11 12 13)(21 22 23)(32 33)(42 43)((12)(22))((12)(32))((12)(42))((13)(23))
            ((13)(33))((13)(43))((22)(32))((22)(42))((23)(33))((23)(43))((32)(42))((33)(43))^)

Reducing this subproblem to <void>, that is, reducing the insertion to a
mark, would not succeed in demonstrating a tautology.  By symmetry, all two-
natom clauses in the original problem would then erase, leaving only three-
atom clauses.  A problem stated in clausal form which has only atoms, or only
natoms, is not a tautology.  This general observation rests upon a simple
principle of Pervasion:  to reduce a clause to a mark, at least one variable
must occur at both odd and even depths.  Above, we know that the insertion
itself must reduce to a subform which contains either (11) or (21).  However,
we are now no longer in the domain of identifying a tautology, rather this is
a problem in Boolean minimization, the "intractable intractable" problem.

In summary:  Three-atom forms will halt reduction via Pervasion, while clever
approaches will be stymied by Boolean minimization rather than by tautology
detection.

To provide an appreciation about how exponential problems get out of hand,
consider the effect of increasing the number of pigeons.  Going from 3 to 4
pigeons made tractable two-atom clauses into intractable three-atom clauses.
In going to 5 pigeons, the same clauses will contain four atoms.  In the
prior reduction of the three-atom clauses, one variable needed to be removed
via case analysis, which doubled the work.  Four-atom clauses will reduce to
three-atom clauses when one variable is removed.  In this case, the doubled
effort does not provide a solution, instead it leaves another problem (going
from three-atom clauses to two-atom clauses) which we already know doubles
the effort yet again.  Thus every new pigeon beyond three will double the
effort needed to reduce the pigeon-hole tautology.
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However, the central point of this entire exploration is that, using BL, the
type of problem that requires exponential effort must indeed be very tangled,
and in a quite symmetrical way, with appropriate occurrences of appropriate
variables in just the right places and just the right depth of nesting.
Simply by counting variable occurrences after Pervasion reduction fails, we
might know the chances that we have a tangled tautology.  

We will return to this problem after identifying how to extend insertion to
intractable problems.

Intractable Example II:  Three Coloring a Tetrahedron

Symmetries in the representation of the problem of three coloring a
tetrahedron provide nice properties in that there are very few natoms.  This
problem is known to be NP.  Its formulation is:  "Assign three colors to each
of the six edges of a tetrahedron so that no vertex has two edges of the same
color."

The coloring problem is encoded by stating the constraints on colors {B,G,R}
and on the vertices {1,2,3,4} of a tetrahedron.  Clauses that reference the
same color, (B1 B2) for example, state that each edge ends in the same color;
more literally the clauses state that any edge is one color.  Clauses which
reference the same vertex, (B1 G1) for example, state that edges terminating
at a specific vertex must be of a different color.  Here is the parens
encoded problem:

(B1 B2)(B1 B3)(B1 B4)(B2 B3)(B2 B4)(B3 B4)  [edges are the same color]
(G1 G2)(G1 G3)(G1 G4)(G2 G3)(G2 G4)(G3 G4)
(R1 R2)(R1 R3)(R1 R4)(R2 R3)(R2 R4)(R3 R4)
(B1 G1)(B1 R1)(G1 R1)((B1)(G1)(R1))  [each vertex has a color exactly once]
(B2 G2)(B2 R2)(G2 R2)((B2)(G2)(R2))
(B3 G3)(B3 R3)(G3 R3)((B3)(G3)(R3))
(B4 G4)(B4 R4)(G4 R4)((B4)(G4)(R4))    

For clausal forms such as the one above, we use the heuristic that reduction
terminates with insertion into clauses with natoms, as occurred in the pigeon-
hole problem.  The absence of natoms in the predominance of the clauses in
this problem keeps them from interacting and thus keeps reduction well
constrained.  What kind of tangle is holding up this form?  We know that the
eventual collapse will be caused by one of the clauses becoming a mark, ( ).
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Partial Reduction

Simple set-insertion yields the following reduction:  clauses referring to
the same vertex vanish.  For example, consider the single clause (B1 G1) when
all other clauses are inserted into it:

(B1 G1 ^(B1 B2)(B1 B3)(B1 B4)(B2 B3)(B2 B4)(B3 B4)
        (G1 G2)(G1 G3)(G1 G4)(G2 G3)(G2 G4)(G3 G4)
        (R1 R2)(R1 R3)(R1 R4)(R2 R3)(R2 R4)(R3 R4)
               (B1 R1)(G1 R1)((B1)(G1)(R1))
        (B2 G2)(B2 R2)(G2 R2)((B2)(G2)(R2))
        (B3 G3)(B3 R3)(G3 R3)((B3)(G3)(R3))
        (B4 G4)(B4 R4)(G4 R4)((B4)(G4)(R4))^)

Extracting occurrences of the atoms B1 and G1 generates new natoms, which in
turn free up new atoms, etc., a pattern we have seen before.

(B1 G1 ^(   B2)(   B3)(   B4)(B2 B3)(B2 B4)(B3 B4)
        (   G2)(   G3)(   G4)(G2 G3)(G2 G4)(G3 G4)
        (R1 R2)(R1 R3)(R1 R4)(R2 R3)(R2 R4)(R3 R4)
               (   R1)(   R1)((B1)(G1)(R1))
        (B2 G2)(B2 R2)(G2 R2)((B2)(G2)(R2))
        (B3 G3)(B3 R3)(G3 R3)((B3)(G3)(R3))
        (B4 G4)(B4 R4)(G4 R4)((B4)(G4)(R4))^)

(B1 G1 ^(   B2)(   B3)(   B4)
        (   G2)(   G3)(   G4)
                             (R2 R3)(R2 R4)(R3 R4)
               (   R1)       ((B1)(G1)    )
                             (        (R2))
                             (        (R3))
                             (        (R4))^)

(B1 G1 ^(   B2)(   B3)(   B4)
        (   G2)(   G3)(   G4)
                             (     )(     )(     )
               (   R1)       ((B1)(G1)    )
                                       R2   
                                       R3   
                                       R4  ^)
(B1 G1  ^(  )^ )

Thus, Occlusion causes the entire clause to vanish.  All clauses with a
structure symmetrical to (B1 G1) are void-equivalent, however this does not
help in reducing the problem to a mark.
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More Set Insertions

Now we consider the effect of set insertion on clauses referencing the same
color, such as (B1 B2).  Although 12 two-atom clauses have been shown above
to be void-equivalent, they are still essential during set-insertion, since
they provide contextual information for the reduction.

(B1 B2 ^       (B1 B3)(B1 B4)(B2 B3)(B2 B4)(B3 B4)
        (G1 G2)(G1 G3)(G1 G4)(G2 G3)(G2 G4)(G3 G4)
        (R1 R2)(R1 R3)(R1 R4)(R2 R3)(R2 R4)(R3 R4)
        (B1 G1)(B1 R1)(G1 R1)((B1)(G1)(R1))
        (B2 G2)(B2 R2)(G2 R2)((B2)(G2)(R2))
        (B3 G3)(B3 R3)(G3 R3)((B3)(G3)(R3))
        (B4 G4)(B4 R4)(G4 R4)((B4)(G4)(R4))^)

We rewrite to conserve display space.  The two atoms create new natoms, which
in turn pervade the three-natom clauses to create the reduction:

(B1 B2 ^(   B3)(   B4)(   B3)(   B4)(B3 B4)(G1 G2)(G1 G3)(G1 G4)(G2 G3)(G2 G4)(G3 G4)(R1 R2)(R1 R3)
        (R1 R4)(R2 R3)(R2 R4)(R3 R4)(   G1)(   R1)(G1 R1)(   G2)(   R2)(G2 R2)(B3 G3)(B3 R3)(G3 R3)
        (B4 G4)(B4 R4)(G4 R4)((B1)(G1)(R1))((B2)(G2)(R2))((B3)(G3)(R3))((B4)(G4)(R4))^)

(B1 B2 ^(B3)(B4)(G1)(R1)(G2)(R2) (G3 G4)(R3 R4)(G3 R3)(G4 R4)((B1))((B2))((G3)(R3))((G4)(R4))^)
(B1 B2 ^(B3)(B4)(G1)(R1)(G2)(R2) (G3 G4)(R3 R4)(G3 R3)(G4 R4)  B1    B2  ((G3)(R3))((G4)(R4))^)
(      ^(B3)(B4)(G1)(R1)(G2)(R2) (G3 G4)(R3 R4)(G3 R3)(G4 R4)  B1    B2  ((G3)(R3))((G4)(R4))^)
(                                                                                             )

Thus, by symmetry, all two-atom color clauses are void-equivalent.  Note that
the variables B1 and B2 were not removed from their natom positions inside
the three-natom clauses.  Removing them would have obscured the potential
reduction.

Demonstrating that even more clauses are void-equivalent does not result in
reduction to a mark.  We might expect reduction when clauses are set-inserted
into those other clauses containing natoms.  We explore only one,
((B1)(G1)(R1)), inserting directly into the natom (R1):

((B1)(G1)(R1 ^(B1 B2)(B1 B3)(B1 B4)(B2 B3)(B2 B4)(B3 B4)(G1 G2)(G1 G3)(G1 G4)(G2 G3)(G2 G4)(G3 G4)
              (R1 R2)(R1 R3)(R1 R4)(R2 R3)(R2 R4)(R3 R4)(B1 G1)(B1 R1)(G1 R1)(B2 G2)(B2 R2)(G2 R2)
              ((B2)(G2)(R2))(B3 G3)(B3 R3)(G3 R3)((B3)(G3)(R3))(B4 G4)(B4 R4)(G4 R4)((B4)(G4)(R4))^))

((B1)(G1)(R1 ^(B1 B2)(B1 B3)(B1 B4)(B2 B3)(B2 B4)(B3 B4)(G1 G2)(G1 G3)(G1 G4)(G2 G3)(G2 G4)(G3 G4)
              (   R2)(   R3)(   R4)(R2 R3)(R2 R4)(R3 R4)(B1 G1)(B1   )(G1   )(B2 G2)(B2 R2)(G2 R2)
              ((B2)(G2)(R2))(B3 G3)(B3 R3)(G3 R3)((B3)(G3)(R3))(B4 G4)(B4 R4)(G4 R4)((B4)(G4)(R4))^))

((B1)(G1)(R1 ^                     (B2 B3)(B2 B4)(B3 B4)                     (G2 G3)(G2 G4)(G3 G4)
              (   R2)(   R3)(   R4)                            (B1   )(G1   )(B2 G2)
              ((B2)(G2)    )(B3 G3)              ((B3)(G3)    )(B4 G4)              ((B4)(G4)    )^))
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This form does not reduce.  It appears that virtual insertion cannot reduce
this problem.

Success in Failure

By inserting into the three-natom clauses, the insertion reduced to one which
makes no reference to vertex 1.  After pervading (B1)(G1), the insertion
directly above is:

((B1)(G1)(R1 ^(B2 B3)(B2 B4)(B3 B4)(G2 G3)(G2 G4)(G3 G4)(B2 G2)(B3 G3)(B4 G4)
              (R2)(R3)(R4)((B2)(G2))((B3)(G3))((B4)(G4))^ ))

Should the insertion in the above subproblem reduce to a mark, it would
succeed in reducing the (R1) natom to <void>.  That is, we might ask: Is the
above insertion a tautology?  We can recursively enter the same virtual
insertion algorithm to obtain an answer.

              (B2 B3)(B2 B4)(B3 B4)(G2 G3)(G2 G4)(G3 G4)(B2 G2)(B3 G3)(B4 G4)
              (R2)(R3)(R4)((B2)(G2))((B3)(G3))((B4)(G4))

It is easy to see that the natoms (R2)(R3)(R4) will not participate in a
reduction, they can be omitted without loss:

(B2 B3)(B2 B4)(B3 B4)(G2 G3)(G2 G4)(G3 G4)(B2 G2)(B3 G3)(B4 G4)((B2)(G2))((B3)(G3))((B4)(G4))

We now apply set-insertion to the reduced insertion itself, inserting into
one of the clauses with atoms:

(B2 B3 ^(B2 B4)(B3 B4)(G2 G3)(G2 G4)(G3 G4)(B2 G2)(B3 G3)(B4 G4)((B2)(G2))((B3)(G3))((B4)(G4))^)
(B2 B3 ^(   B4)(   B4)(G2 G3)(G2 G4)(G3 G4)(   G2)(   G3)(B4 G4)((B2)(G2))((B3)(G3))((B4)(G4))^)
(B2 B3 ^(   B4)                            (   G2)(   G3)       ((B2)    )((B3)    )(    (G4))^)
(B2 B3 ^(   B4)                            (   G2)(   G3)         B2        B3            G4  ^)
(      ^(   B4)                            (   G2)(   G3)         B2        B3            G4  ^)
(                                                                                              )

The void-equivalence of the two-atom clauses is consistent with what was
found before.  Next we explore the second insertion type, into natom clauses:

((B2)(G2 ^(B2 B3)(B2 B4)(B3 B4)(G2 G3)(G2 G4)(G3 G4)(B2 G2)(B3 G3)(B4 G4)((B3)(G3))((B4)(G4))^))
((B2)(G2 ^(B2 B3)(B2 B4)(B3 B4)(   G3)(   G4)(G3 G4)(B2   )(B3 G3)(B4 G4)((B3)(G3))((B4)(G4))^))
((B2)(G2 ^              (B3 B4)(   G3)(   G4)       (B2   )              ((B3)    )((B4)    )^))
((B2)(G2 ^              (B3 B4)(   G3)(   G4)       (B2   )                B3        B4      ^))
((B2)(G2 ^              (     )(   G3)(   G4)       (B2   )                B3        B4      ^))
((B2)                                                                                          )
  B2
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This succeeds in removing G2.  Substituting B2 for its original clause
((B2)(G2)) results in the following subproblem:

(B2 B3)(B2 B4)(B3 B4)(G2 G3)(G2 G4)(G3 G4)(B2 G2)(B3 G3)(B4 G4)  B2      ((B3)(G3))((B4)(G4))
(   B3)(   B4)(B3 B4)(G2 G3)(G2 G4)(G3 G4)(   G2)(B3 G3)(B4 G4)  B2      ((B3)(G3))((B4)(G4))
(   B3)(   B4)                     (G3 G4)(   G2)                B2      (    (G3))(    (G4))
(   B3)(   B4)                     (G3 G4)(   G2)                B2            G3        G4
(   B3)(   B4)                     (     )(   G2)                B2            G3        G4
                                   (     )

The clausal reduction propagates to reduce the entire insertion to mark.  We
have demonstrated that the following form is a tautology:

              (B2 B3)(B2 B4)(B3 B4)(G2 G3)(G2 G4)(G3 G4)(B2 G2)(B3 G3)(B4 G4)
              (R2)(R3)(R4)((B2)(G2))((B3)(G3))((B4)(G4))

Returning from the recursion, we can substitute this result into the context
it came from:

((B1)(G1)(R1 ^(B2 B3)(B2 B4)(B3 B4)(G2 G3)(G2 G4)(G3 G4)(B2 G2)(B3 G3)(B4 G4)
              (R2)(R3)(R4)((B2)(G2))((B3)(G3))((B4)(G4))^ ))

((B1)(G1)(R1 ^( )^))
((B1)(G1)          )

Calling upon symmetry, we can also eliminate (B1) and (G1).  Only (B1) is
demonstrated:

((G1)(R1)(B1 ^(B1 B2)(B1 B3)(B1 B4)(B2 B3)(B2 B4)(B3 B4)(G1 G2)(G1 G3)(G1 G4)(G2 G3)(G2 G4)(G3 G4)
              (R1 R2)(R1 R3)(R1 R4)(R2 R3)(R2 R4)(R3 R4)(B1 G1)(B1 R1)(G1 R1)(B2 G2)(B2 R2)(G2 R2)
              ((B2)(G2)(R2))(B3 G3)(B3 R3)(G3 R3)((B3)(G3)(R3))(B4 G4)(B4 R4)(G4 R4)((B4)(G4)(R4))^))

((G1)(R1)(B1 ^(   B2)(   B3)(   B4)(B2 B3)(B2 B4)(B3 B4)(G1 G2)(G1 G3)(G1 G4)(G2 G3)(G2 G4)(G3 G4)
              (R1 R2)(R1 R3)(R1 R4)(R2 R3)(R2 R4)(R3 R4)(   G1)(   R1)(G1 R1)(B2 G2)(B2 R2)(G2 R2)
              ((B2)(G2)(R2))(B3 G3)(B3 R3)(G3 R3)((B3)(G3)(R3))(B4 G4)(B4 R4)(G4 R4)((B4)(G4)(R4))^))

((G1)(R1)(B1 ^(   B2)(   B3)(   B4)                                          (G2 G3)(G2 G4)(G3 G4)
                                   (R2 R3)(R2 R4)(R3 R4)(   G1)(   R1)                     (G2 R2)
              (    (G2)(R2))              (G3 R3)(    (G3)(R3))              (G4 R4)(    (G4)(R4))^))

We now take another recursive step, determining whether or not the new
insertion itself is a tautology.  Rewriting the insertion while deleting the
natoms which cannot be involved in further reductions, yields:

(G2 G3)(G2 G4)(G3 G4)(R2 R3)(R2 R4)(R3 R4)(G2 R2)(G3 R3)(G4 R4)((G2)(R2))((G3)(R3))((G4)(R4))
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Now inserting into a two-natom clause of this subproblem:

((G2)(R2 ^(G2 G3)(G2 G4)(G3 G4)(R2 R3)(R2 R4)(R3 R4)(G2 R2)(G3 R3)(G4 R4)((G3)(R3))((G4)(R4))^))
((G2)(R2 ^(G2 G3)(G2 G4)(G3 G4)(   R3)(   R4)(R3 R4)(G2   )(G3 R3)(G4 R4)((G3)(R3))((G4)(R4))^))
((G2)(R2 ^              (G3 G4)(   R3)(   R4)                            ((G3)    )((G4)    )^))
((G2)(R2 ^              (G3 G4)(   R3)(   R4)                              G3        G4      ^))
((G2)(R2 ^              (     )(   R3)(   R4)                              G3        G4      ^))
((G2)                                                                                          )
  G2

Substituting the result, and further reducing:

(G2 G3)(G2 G4)(G3 G4)(R2 R3)(R2 R4)(R3 R4)(G2 R2)(G3 R3)(G4 R4)  G2      ((G3)(R3))((G4)(R4))
(   G3)(   G4)(G3 G4)(R2 R3)(R2 R4)(R3 R4)(   R2)(G3 R3)(G4 R4)  G2      ((G3)(R3))((G4)(R4))
(   G3)(   G4)                     (R3 R4)(   R2)                G2      (    (R3))(    (R4))
(   G3)(   G4)                     (R3 R4)(   R2)                G2            R3        R4
(   G3)(   G4)                     (     )(   R2)                G2            R3        R4
                                   (     )

And finally, returning from the recursion with the current result:

((G1)(R1)(B1 ^( )^))
((G1)(R1)          )

This demonstrates that all the natoms in one of the three-natom clauses in
the original problem are void-equivalent, leaving:

(B1 B2)(B1 B3)(B1 B4)(B2 B3)(B2 B4)(B3 B4)
(G1 G2)(G1 G3)(G1 G4)(G2 G3)(G2 G4)(G3 G4)
(R1 R2)(R1 R3)(R1 R4)(R2 R3)(R2 R4)(R3 R4)
(B1 G1)(B1 R1)(G1 R1)(            )
(B2 G2)(B2 R2)(G2 R2)((B2)(G2)(R2))
(B3 G3)(B3 R3)(G3 R3)((B3)(G3)(R3))
(B4 G4)(B4 R4)(G4 R4)((B4)(G4)(R4))

The mark dominates all other clauses, and the proof is complete.  Note that
the fact that all two-atom clauses are void-equivalent is irrelevant to the
result.

Is this proof tractable?  Certainly not.  By taking the recursive step, we
have begun a search process.  Basically we do not know which of the many
possible insertion fragments, generated by insertions into different clauses,
will succeed and which will fail.  Thus, each insertion may spawn several
options to be explored, and the successful one is not known in advance.  Each
option , as well, may spawn yet other suboptions.  This circumstance is
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significantly different than that of the original set-insertions which are
bounded by the number of nested parens, and do not themselves generate the
need for more reduction effort.  As the number of clauses and variables
increases, the recursive insertion technique enters into more and more
recursions, each branching exponentially.

Now we can say exactly where the boundary between P and NP effort is:

If set-insertion must be applied recursively,
a tautology takes exponential effort to reduce.

This operational definition provides a new complexity analysis tool, one that
can distinguish between problems which are intractable and those which are
not.

The 4-3 Pigeon-hole Revisited

For completion, we now apply the recursive set-insertion technique to the 4-3
pigeon-hole problem which previously required case analysis to reduce.
Although this example is of exponential complexity, it serves to illustrate
the powerful heuristic filters available for NP problems expressed in parens
form.

Recurring on an Insertion

We left the 4-3 pigeon-hole while working on the following fragment.  At the
time, we also left polynomial simplicity by applying case analysis to this
fragment.

((11)(21) ^31 41 (11 12 13)(21 22 23)(32 33)(42 43)((12)(22))((12)(32))((12)(42))((13)(23))
           ((13)(33))((13)(43))((22)(32))((22)(42))((23)(33))((23)(43))((32)(42))((33)(43))^)

We argued that this subform could not erase, since it is the source of natoms
in the problem statement;  we must be able to reduce it to a mark or to a
single variable.  Therefore the insertion must contain either (11) or (12),
preferably both.  Taking the insertion as a new problem, we proceed with the
recursive reduction:

           31 41 (11 12 13)(21 22 23)(32 33)(42 43)((12)(22))((12)(32))((12)(42))((13)(23))
           ((13)(33))((13)(43))((22)(32))((22)(42))((23)(33))((23)(43))((32)(42))((33)(43))

The first observation is that the single atoms cannot effect the result.  We
also observe that the only route to success is to reduce one of the three-
atom clauses, since that is the only way to end up with the appropriate
natom, here either (11) or (21).  Note that there is no expectation of being
able to avoid reducing the three-atom clauses, since we know that the problem
will not yield to a simple solution.  Selecting the first two-natom clause,
set-inserting and reducing:
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((12)(22) ^(11 12 13)(21 22 23)(32 33)(42 43)((12)(32))((12)(42))((13)(23))((13)(33))
           ((13)(43))((22)(32))((22)(42))((23)(33))((23)(43))((32)(42))((33)(43))^ )

((12)(22) ^(11 12 13)(21 22 23)(32 33)(42 43)(    (32))(    (42))((13)(23))((13)(33))
           ((13)(43))(    (32))(    (42))((23)(33))((23)(43))((32)(42))((33)(43))^ )

((12)(22) ^(11 12 13)(21 22 23)(32 33)(42 43)      32        42  ((13)(23))((13)(33))
           ((13)(43))      32        42  ((23)(33))((23)(43))((32)(42))((33)(43))^ )

((12)(22) ^(11 12 13)(21 22 23)(   33)(   43)      32        42  ((13)(23))((13)(33))
           ((13)(43))                    ((23)(33))((23)(43))((  )(  ))((33)(43))^ )

((12)(22) ^(11 12 13)(21 22 23)(   33)(   43)      32        42  ((13)(23))((13)    )
           ((13)    )                    ((23)    )((23)    )          (        )^ )

We have succeeded in demonstrating that this two-natom clause is void-
equivalent, which does not achieve the goal.  We demonstrate the reduction of
the next two-natom clause:

((12)(32) ^(11 12 13)(21 22 23)(32 33)(42 43)((12)(22))((12)(42))((13)(23))((13)(33))
           ((13)(43))((22)(32))((22)(42))((23)(33))((23)(43))((32)(42))((33)(43))^ )

((12)(32) ^(11 12 13)(21 22 23)(32 33)(42 43)(    (22))(    (42))((13)(23))((13)(33))
           ((13)(43))((22)    )((22)(42))((23)(33))((23)(43))(    (42))((33)(43))^ )

((12)(32) ^(11 12 13)(21 22 23)(32 33)(42 43)      22        42  ((13)(23))((13)(33))
           ((13)(43))  22      ((22)(42))((23)(33))((23)(43))      42  ((33)(43))^ )

((12)(32) ^(11 12 13)(21    23)(32 33)(   43)      22        42  ((13)(23))((13)(33))
           ((13)(43))          ((  )(  ))((23)(33))((23)(43))          ((33)(43))^ )

Rewriting and continuing:

((12)(32) ^22 42 (11 12 13)(21 23)(32 33)(43)((13)(23))((13)(33))((13))((23)(33))((23))((33))^ )
((12)(32) ^22 42 (11 12 13)(21 23)(32 33)(43)((13)(23))((13)(33))  13  ((23)(33))  23    33  ^ )
((12)(32) ^22 42 (11 12   )(21   )(32   )(43)((  )(  ))((  )(  ))  13  ((  )(  ))  23    33  ^ )
((12)     ^22 42 (11 12   )(21   )(32   )(43)                      13              23    33  ^ )
((12)                                                                                          )
  12

This result has reduced a two-natom clause to a single atom.  We substitute
into the context it came from:

           31 41 (11 12 13)(21 22 23)(32 33)(42 43)((12)(22))  12      ((12)(42))((13)(23))
           ((13)(33))((13)(43))((22)(32))((22)(42))((23)(33))((23)(43))((32)(42))((33)(43))

This single result is not sufficient to complete the reduction.  In a
complete set-insertion, each of the twelve two-atom clauses would return a
result concurrently.  Another processing strategy is to incorporate single
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reductions one at a time and reduce sequentially.  We illustrate both
approaches with the next two-natom clause that results in reduction.

Parallel Reduction

((13)(33) ^(11 12 13)(21 22 23)(32 33)(42 43)((12)(22))((12)(32))((12)(42))((13)(23))
                     ((13)(43))((22)(32))((22)(42))((23)(33))((23)(43))((32)(42))((33)(43))^)

((13)(33) ^(11 12 13)(21 22 23)(32 33)(42 43)((12)(22))((12)(32))((12)(42))(    (23))
                     (    (43))((22)(32))((22)(42))((23)    )((23)(43))((32)(42))(    (43))^)

((13)(33) ^(11 12 13)(21 22 23)(32 33)(42 43)((12)(22))((12)(32))((12)(42))      23
                           43  ((22)(32))((22)(42))  23      ((23)(43))((32)(42))      43  ^)

((13)(33) ^(11 12 13)(21 22   )(32 33)(42   )((12)(22))((12)(32))((12)(42))      23
                           43  ((22)(32))((22)(42))          ((  )(  ))((32)(42))          ^)

Rewriting and continuing:

((13)(33) ^23 43 (11 12 13)(21 22)(32 33)(42)((12)(22))((12)(32))((12))((22)(32))((22))((32))^)
((13)(33) ^23 43 (11 12 13)(21 22)(32 33)(42)((12)(22))((12)(32))  12  ((22)(32))  22    32  ^)
((13)(33) ^23 43 (11    13)(21   )(   33)(42)((  )(  ))((  )(  ))  12  ((  )(  ))  22    32  ^)
((13)     ^23 43 (11    13)(21   )(   33)(42)                      12              22    32  ^)
((13)                                                                                         )
  13

Sequential Reduction

((13)(33) ^(11 12 13)(21 22 23)(32 33)(42 43)((12)(22))  12      ((12)(42))((13)(23))
                     ((13)(43))((22)(32))((22)(42))((23)(33))((23)(43))((32)(42))((33)(43))^)

((13)(33) ^(11    13)(21 22 23)(32 33)(42 43)((  )(22))  12      ((  )(42))(    (23))
                     (    (43))((22)(32))((22)(42))((23)    )((23)(43))((32)(42))(    (43))^)

Rewriting and continuing:

((13)(33) ^12 23 43 (11 13)(21 22 23)(32 33)(42 43)((22)(32))((22)(42))((23)(43))((32)(42))^)
((13)(33) ^12 23 43 (11 13)(21 22   )(32 33)(42   )((22)(32))((22)(42))((  )(  ))((32)(42))^)
((13)(33) ^12 23 43 (11 13)(21 22   )(32 33)(42   )((22)(32))((22)    )          ((32)    )^)
((13)(33) ^12 23 43 (11 13)(21 22   )(32 33)(42   )((22)(32))  22                  32      ^)
((13)(33) ^12 23 43 (11 13)(21      )(   33)(42   )((  )(  ))  22                  32      ^)
((13)     ^12 23 43 (11 13)(21      )(   33)(42   )            22                  32      ^)
((13)                                                                                        )
  13

We return the parallel result to the current subproblem, having now provided
two clauses which have reduced to atoms, and proceed with the reductions that
those atoms generate:
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((11)(21) ^31 41 (11 12 13)(21 22 23)(32 33)(42 43)  12      ((12)(32))((12)(42))((13)(23))
             13      ((13)(43))((22)(32))((22)(42))((23)(33))((23)(43))((32)(42))((33)(43))^)

((11)(21) ^31 41 (11      )(21 22 23)(32 33)(42 43)  12      ((  )(32))((  )(42))((  )(23))
             13      ((  )(43))((22)(32))((22)(42))((23)(33))((23)(43))((32)(42))((33)(43))^)

(    (21) ^31 41 (11      )(21 22 23)(32 33)(42 43)  12   
             13                ((22)(32))((22)(42))((23)(33))((23)(43))((32)(42))((33)(43))^)

(    (21)                                                                                   )
      21

We can now exit the entire recursion, returning to the original 4-3 pigeon-
hole problem with a simplification

before: (11 12 13) (21 22 23) (31 32 33) (41 42 43)
        ((11)(21)) ((11)(31)) ((11)(41)) ((12)(22)) ((12)(32)) ((12)(42))
        ((13)(23)) ((13)(33)) ((13)(43)) ((21)(31)) ((21)(41)) ((22)(32))
        ((22)(42)) ((23)(33)) ((23)(43)) ((31)(41)) ((32)(42)) ((33)(43))

after:  (11 12 13) (21 22 23) (31 32 33) (41 42 43)
              21   ((11)(31)) ((11)(41)) ((12)(22)) ((12)(32)) ((12)(42))
        ((13)(23)) ((13)(33)) ((13)(43)) ((21)(31)) ((21)(41)) ((22)(32))
        ((22)(42)) ((23)(33)) ((23)(43)) ((31)(41)) ((32)(42)) ((33)(43))

        (11 12 13) (   22 23) (31 32 33) (41 42 43)
              21   ((11)(31)) ((11)(41)) ((12)(22)) ((12)(32)) ((12)(42))
        ((13)(23)) ((13)(33)) ((13)(43)) ((  )(31)) ((  )(41)) ((22)(32))
        ((22)(42)) ((23)(33)) ((23)(43)) ((31)(41)) ((32)(42)) ((33)(43))

        (11 12 13) (   22 23) (31 32 33) (41 42 43)
              21   ((11)(31)) ((11)(41)) ((12)(22)) ((12)(32)) ((12)(42))
        ((13)(23)) ((13)(33)) ((13)(43))                       ((22)(32))
        ((22)(42)) ((23)(33)) ((23)(43)) ((31)(41)) ((32)(42)) ((33)(43))

Certainly little gain for such a large amount of work.  We now see the
downside of virtual insertion:  although it is excellent for reducing logical
tangles, it is horrible for reducing NP-complex problems, potentially growing
at N! rather than 2^N.  However, recursive set-insertion is complete.

The technique of recursive set-insertion performs an algebraic contingency
analysis for each clause.  This differs from case analysis, which performs a
contingency analysis for each value of a particular variable.

Symmetry

For a form to be both a tautology and intractable, the variable occurrences
must be finely balanced, in raw number and in distribution across parens
subforms.
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Consider the variable count statistics for the intractable problems above.
For each tautology, we observe that the variables are a complete cross-
product of two sets and that all occur the same number of times at the same
depth of nesting.

3-2 Pigeon-hole (tractable)

(11 12)(21 22)(31 32)((11)(21))((11)(31))((12)(22))((12)(32))((21)(31))((22)(32))

Indices: {1,2,3} {1,2}
Variables: 6, the set product of the two indices
Clauses:  2-atom = 3,  2-natom = 6
Variable occurrences: for all variables, once at depth=1, twice at depth=2

4-3 Pigeon-hole

(11 12 13) (21 22 23) (31 32 33) (41 42 43)
((11)(21)) ((11)(31)) ((11)(41)) ((12)(22)) ((12)(32)) ((12)(42))
((13)(23)) ((13)(33)) ((13)(43)) ((21)(31)) ((21)(41)) ((22)(32))
((22)(42)) ((23)(33)) ((23)(43)) ((31)(41)) ((32)(42)) ((33)(43))

Indices: {1,2,3,4} {1,2,3}
Variables: 12, the set product of the two indices
Clauses:  3-atom = 4,  2-natom = 18
Variable occurrences: for all variables, once at depth=1, thrice at depth=2

Three-color Tetrahedron

(B1 B2)(B1 B3)(B1 B4)(B2 B3)(B2 B4)(B3 B4)
(G1 G2)(G1 G3)(G1 G4)(G2 G3)(G2 G4)(G3 G4)
(R1 R2)(R1 R3)(R1 R4)(R2 R3)(R2 R4)(R3 R4)
(B1 G1)(B1 R1)(G1 R1)((B1)(G1)(R1))
(B2 G2)(B2 R2)(G2 R2)((B2)(G2)(R2))
(B3 G3)(B3 R3)(G3 R3)((B3)(G3)(R3))
(B4 G4)(B4 R4)(G4 R4)((B4)(G4)(R4))

Indices: {B,G,R} {1,2,3,4}
Variables: 12, the set product of the two indices
Clauses:  2-atom = 30,  3-natom = 4
Variable occurrences: for all variables, five times at depth=1, once at
depth=2
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Three-color Tetrahedron, Recursive Subproblem (tractable)

(B2 B3)(B2 B4)(B3 B4)(G2 G3)(G2 G4)(G3 G4)(B2 G2)(B3 G3)(B4 G4)((B2)(G2))((B3)(G3))((B4)(G4))

Indices: {B,G,R} {2,3,4}
Variables: 9, the set product of the two indices
Clauses:  2-atom = 6,  2-natom = 3
Variable occurrences: balanced over all variables

twice at depth=1, once at depth=2

It is not known whether or not there is a polynomial symmetry identification
algorithm which can reliably identify intractable tautologies.

Non-Symmetry

During set-insertion reduction, we identified subproblems in the context of
an insertion.  Essentially, the insertion context removes structure, and in
the process creates non-symmetrical tautologies.  Three non-symmetrical
examples follow:

4-3 Pigeon-hole, Recursive Subproblem

31 41 (11 12 13)(21 22 23)(32 33)(42 43)((12)(22))((12)(32))((12)(42))((13)(23))
((13)(33))((13)(43))((22)(32))((22)(42))((23)(33))((23)(43))((32)(42))((33)(43))

Context: ((11)(21) ^...^)
Indices: {1,2,3,4} {2,3}
Variables: 12, the set product of the two indices
Clauses:  3-atom = 2,  2-atom = 2, 2-natom = 12
Variable occurrences: for all variables without 1 as the second index,

once at depth=1, thrice at depth=2
11, 21 each occurring once at depth 1,
31, 41 each occurring once at depth 0

4-3 Pigeon-hole, Partially Reduced

        (11 12 13)(22 23)(31 32 33)(41 42 43) 21
        ((11)(31))((11)(41))((12)(22))((12)(32))((12)(42))((13)(23))((13)(33))((13)(43))
        ((22)(32))((22)(42))((23)(33))((23)(43))((31)(41))((32)(42))((33)(43))

Indices: {1,2,3,4} {1,2,3}
Variables: 12, the set product of the two indices
Clauses:  3-atom = 2,  2-atom = 1, 2-natom = 15
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Variable occurrences: for all variables without 1 as the second index,
once at depth=1, thrice at depth=2
11, 31, 41 once at depth=1, twice at depth=2
21 once at depth=0

These partial results indicate that complex tautologies do not necessarily
have to be completely symmetrical.  The 4-3 pigeon-hole recursive subproblem
is balanced when both the context (11)(21) and the inactive atoms 31 41 are
taken into account.  The partially reduced problem, however, is both non-
symmetric and intractable.

Near Symmetry

For a final illustration, here is a nearly symmetrical tautology which is
difficult to reduce.

(or (and b d) (and b e) (and c d) (and c e) (and a b g)
    (and a c g) (and a d f) (and a e f) (and a f g)
    (nor a b c) (nor b c f) (nor a d e) (nor d e g))

       (b d)(b e)(c d)(c e)(a b g)(a c g)(a d f)(a e f)(a f g) transcribe
       ((a)(b)(c))((a)(d)(e))((b)(c)(f))((d)(e)(f))

Indices: {a,b,c,d,e,f,g}
Variables: 7
Clauses:  2-atom = 4,  3-atom = 5, 3-natom = 4
Variable occurrences: all variables twice at depth=2

variables {b,c,d,e} twice in 2-atom clause, once in 3-atom
variables {e,f} thrice in 3-atom
variable {a}, five times in 3-atom

We cannot call upon symmetry arguments for this problem, so set insertion
into every clause is inescapable.  For simplification, we might note that all
2-atom clauses fail to reduce since each pair of atoms causes every 3-natom
clause to Occlude.  With no remaining natoms, reduction will not proceed.

We continue by examining set insertion into the three-natom clauses.
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(a b g^(b d)(b e)(c d)(c e)(a c g)(a d f)(a e f)(a f g)((a)(b)(c))((a)(d)(e))((b)(c)(f))((d)(e)(f))^)
(a b g^(  d)(  e)(c d)(c e)(  c g)(  d f)(  e f)(  f  )(( )( )(c))(( )(d)(e))(( )(c)(f))((d)(e)(f))^)
(a b g^(  d)(  e)(c d)(c e)(  c g)(  d f)(  e f)(  f  )(( )( )(c))(( )(d)(e))(( )(c)(f))(         )^)

(a c g^(b d)(b e)(c d)(c e)(a b g)(a d f)(a e f)(a f g)((a)(b)(c))((a)(d)(e))((b)(c)(f))((d)(e)(f))^)
(a c g^(b d)(b e)(  d)(  e)(  b  )(  d f)(  e f)(  f  )(( )(b)( ))(( )(d)(e))((b)( )(f))((d)(e)(f))^)
(a c g^(b d)(b e)(  d)(  e)(  b  )(  d f)(  e f)(  f  )(( )(b)( ))(( )(d)(e))((b)( )(f))(         )^)

(a d f^(b d)(b e)(c d)(c e)(a b g)(a c g)(a e f)(a f g)((a)(b)(c))((a)(d)(e))((b)(c)(f))((d)(e)(f))^)
(a d f^(b  )(b e)(c  )(c e)(  b g)(  c g)(  e  )(    g)(( )(b)(c))((a)( )(e))((b)(c)( ))((d)(e)( ))^)
(a d f^(b  )     (c  )                   (  e  )(    g)                                            ^)
(a e f^(b d)(b e)(c d)(c e)(a b g)(a c g)(a d f)(a f g)((a)(b)(c))((a)(d)(e))((b)(c)(f))((d)(e)(f))^)
(a e f^(b d)(b  )(c d)(c  )(  b g)(  c g)(  d  )(    g)(( )(b)(c))((a)(d)( ))((b)(c)( ))((d)( )( ))^)
(a e f^     (b  )     (c  )              (  d  )(    g)                                            ^)

(a f g^(b d)(b e)(c d)(c e)(a b g)(a c g)(a d f)(a e f)((a)(b)(c))((a)(d)(e))((b)(c)(f))((d)(e)(f))^)
(a f g^(b d)(b e)(c d)(c e)(  b  )(  c  )(  d  )(  e  )(( )(b)(c))(( )(d)(e))((b)(c)( ))((d)(e)( ))^)
(a f g^                    (  b  )(  c  )(  d  )(  e  )                                            ^)

Two of the five 3-atom clauses vanish.  We continue the 3-natom clause
insertions without them.  

((a)(b)(c) ^(b d)(b e)(c d)(c e)(a d f)(a e f)(a f g)((a)(d)(e))((b)(c)(f))((d)(e)(f))^)
((a)(b)(c) ^(b d)(b e)(c d)(c e)(a d f)(a e f)(a f g)(   (d)(e))(      (f))((d)(e)(f))^)
((a)(b)(c) ^(b d)(b e)(c d)(c e)(a d f)(a e f)(a f g)(   (d)(e))        f  ((d)(e)(f))^)
((a)(b)(c) ^(b d)(b e)(c d)(c e)(a d  )(a e  )(a   g)(   (d)(e))        f  ((d)(e)( ))^)
((a)(b)(c) ^(b d)(b e)(c d)(c e)(a d  )(a e  )(a   g)(   (d)(e))        f             ^)

Since the natom-level insertion has failed, we continue by an insertion into
each natom:

((a)(b)(c  ^(b d)(b e)(c d)(c e)(a d  )(a e  )(a   g)(   (d)(e))        f             ^))
((a)(b)(c  ^(b d)(b e)(  d)(  e)(a d  )(a e  )(a   g)(   (d)(e))        f             ^))
((a)(b)(c  ^(b d)(b e)(  d)(  e)(a d  )(a e  )(a   g)(         )        f             ^))
((a)(b)                                                                                 )

We have succeeded in eliminating one natom; the same insertion can be
attempted in the other natoms.  We continue, using sequentially accumulated
results:

((a)(b     ^(b d)(b e)(c d)(c e)(a d  )(a e  )(a   g)(   (d)(e))        f             ^))
((a)(b     ^(  d)(  e)(c d)(c e)(a d  )(a e  )(a   g)(   (d)(e))        f             ^))
((a)(b     ^(  d)(  e)(c d)(c e)(a d  )(a e  )(a   g)(         )        f             ^))
((a)                                                                                    )

((a        ^(b d)(b e)(c d)(c e)(a d  )(a e  )(a   g)(   (d)(e))        f             ^))
((a        ^(b d)(b e)(c d)(c e)(  d  )(  e  )(a   g)(   (d)(e))        f             ^))
((a        ^(b d)(b e)(c d)(c e)(  d  )(  e  )(a   g)(         )        f             ^))
(                                                                                       )
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This is the desired result, a mark in place of a clause.  All other clauses
are dominated, and the proof is complete.

CONCLUSION

We have presented a polynomial set-insertion algorithm, based on the BL axiom
of Pervasion, that pragmatically discriminates between tractable and
intractable tautologies.  The algorithm is not complete, which is the basis
of its discriminatory capability.  When extended, recursive set-insertion is
complete, however, the extension introduces an exponential effort which is
significantly worse than case analysis.  The polynomial algorithm is
sufficient for identifying tautologies constructed using logical inference
and replacement rules and any embeddings of these rules within themselves.
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Table I:  The Map from Logic to Boundary Logic

logic boundary comments

False <void> no representation

True  ( ) the empty boundary

A   A objects are labeled by tokens

not A  (A) negation: inside a boundary

A or B   A  B disjunction: sharing space

A and B ((A)(B)) conjunction: bounded bounds

if A then B  (A) B implication: separation by a boundary

A iff B (A B)((A)(B)) the source of variable replication
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Table IIa:  Axiomatic Bases for Conventional Logic

Conventional Implicational Basis:

p -> (q -> p) isTrue

((p -> False) -> False) -> p isTrue

(p -> (q -> r)) -> ((p -> q) -> (p -> r)) isTrue

Transcribing into boundary logic:

(p) (q) p   =  ( )

(((p))) p  =  ( )

((p) (q) r) ((p) q) (p) r  =  ( )

Huntington's Basis for Boolean Algebra:

Commutativity     a+b  = b+a       a*b  = b*a

Identity          a+0  = a       a*1  = a

Complement        a+a' = 1       a*a' = 0

Distribution   a+(b*c) = (a+b)*(a+c)    a*(b+c) = (a*b)+(a*c)

Transcribing into boundary logic:

       a b = b a   ((a)(b)) = ((b)(a))

         a = a ((a)(( ))) = a

     a (a) = ( ) ((a)((a))) = <void>

a ((b)(c)) = ((a b)(a c)) ((a)(b c)) = ((a)(b))((a)(c))
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Table IIb:  Axiomatic Bases for Boundary Logic

Spencer-Brown's Axioms in Laws of Form

Position     (A (A)) = <void>

Transposition     A ((B)(C)) = ((A B)(A C))

Computational Basis for Boundary Logic:

Occlusion      (( ) A) =  <void>

Involution       ((A))  =  A

Pervasion      A {B A} =  A {B}

Recursive Basis for Boundary Logic:

Base case:      (( ) A) = <void> Occlusion

Inductive case:      A {B A} =  A {B} Pervasion

Kauffman's Single Axiom for Boundary Logic:

Extension (A B)(A (B)) = (A)
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Table III:  Proving the Rules of Inference using Boundary Logic

Modus Ponens            p and (p->q) |= q (((p)((p) q))) q
                                              (p)((p) q)   q
                                              (p)(     )   q

Modus Tollens          ~q and (p->q) |= ~p ((((q))((p) q))) (p)
                                                q  ((p) q)   (p)
                                                q  (     )   (p)

Hypothetical Syllogism (p->q) and (q->r) |= p->r ((((p) q)((q) r))) (p) r
                                                     ((p) q)((q) r)   (p) r
                                                     (    q)((q)  )   (p) r
                                                     (    q)(     )   (p) r

Disjunctive Syllogism (pVq) and ~p |= q
                         (pVq) and ~q |= p (((p q)((q)))) p
                                                 (p q)  q     p
                                                 (   )  q     p

Dilemma  (p->q) and (r->s) and (pVr) |= qVs ((((p) q)((r) s)(p r))) q s
                                              ((p) q)((r) s)(p r)   q s
                                              ((p)  )((r)  )(p r)   q s
                                                p      r    (p r)   q s
                                                p      r    (   )   q s

Simplification p&q |= p
                p&q |= q (((p)(q))) q
                                        (p)(q)   q
                                        (p)( )   q

Conjunction                  p and q |= p&q (((p)(q))) ((p)(q))
                                               (p)(q)   ((p)(q))
                                               (p)(q)   (      )

Addition p |= pVq
          q |= pVq (q) p q
                                       ( ) p q

Cases             (p->q) and (~p->q) |= q ((((p) q)(((p)) q))) q
                                            ((p) q)(  p   q)   q
                                            ((p)  )(  p    )   q
                                            (     )(  p    )   q

Inconsistency               p and ~p |= q (((p)((p)))) q
                                             (p)  p     q
                                             ( )  p     q
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Table IV:  Proving the Logic Replacement Rules

Excluded Middle pV~p =||= T               (p) p = ( )
                                                        ( ) p = ( )

Contradiction p&~p =||= F          ((p)((p))) = <void>
                                                   ((p)(   )) = <void>
                                                   (   (   )) = <void>

Domination pVT =||= T                p ( ) = ( )
            pVF =||= p                    p = p
            p&F =||= F             ((p)( )) = <void>
                                                     (   ( )) = <void>
            p&F =||= p           ((p)(( ))) = p
                                                   ((p)     ) = p
                                                     p        = p

Double Negation p =||= ~~p                    p = ((p))
                                                            p =   p   

Duplication p =||= pVp                    p = p p
                                                            p = p   
             p =||= p&p                    p = ((p)(p))
                                                            p = ((p)   )
                                                            p =   p     

Commutation pVq =||= qVp                p q = q p
             p&q =||= q&p           ((p)(q)) = ((q)(p))

Association (pVq)Vr =||= pV(qVr)                  p q r = p q r
             (p&q)&r =||= p&(q&r)        ((((p)(q)))(r)) = ((p)(((q)(r))))
                                              (  (p)(q)  (r)) = ((p)  (q)(r)  )

Contraposition p->q =||= ~q->~p                (p) q = ((q)) (p)
                                                        (p) q =   q   (p)

DeMorgan's ~(pVq) =||= ~p&~q               (p q) = (((p))((q)))
                                                        (p q) = (  p    q  )
            ~(p&q) =||= ~pV~q          (((p)(q))) = (p)(q)
                                                     (p)(q)   = (p)(q)

Conditional Exchange p->q =||= ~pVq            (p) q = (p) q

Exportation    (p&q)->r =||= p->(q->r)     (((p)(q))) r = (p)(q) r
                                                   (p)(q)   r = (p)(q) r

Biconditional Exchange p=q =||= (p->q)&(q->p)      p=q = (((p) q)((q) p))
                          p=q =||= ~(pVq)V(p&q)       p=q =  (p q) ((q)(p))
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Table V:  Non-trivial Proofs of Logic Replacement Rules

Absorption
         pV(p&q) =||= p                       p ((p)(q)) = p
                                              p (( )(q)) = p
                                              p (( )   ) = p
                                              p          = p

         p&(pVq) =||= p                       ((p)(p q)) = p
                                        ((p)(^(p)^ p q)) = p
                                        ((p)(^( )^ p q)) = p
                                        ((p)           ) = p
                                          p              = p

Distribution    
         p&(qVr) =||= (p&q)V(p&r)               ((p)(q r)) = ((p)(q))((p)(r))
                                    ((p                    )(     q       r  ))
                                    ((p                    )((   (q))(   (r))))
                                    ((p                    )(((p)(q))((p)(r))))
                                    ((p^(((p)(q))((p)(r)))^)(((p)(q))((p)(r))))
                                    ((p^((( )(q))(( )(r)))^)(((p)(q))((p)(r))))
                                    ((p^(                )^)(((p)(q))((p)(r))))
                                    (                       (((p)(q))((p)(r))))
                                                             ((p)(q))((p)(r))

         pV(q&r) =||= (pVq)&(pVr)             p ((q)(r)) = ((p q)(p r))
                                          p                ((p q)(p r))
                                        ((p)              )((p q)(p r))
                                        ((p)^((p q)(p r))^)((p q)(p r))
                                        ((p)^(          )^)((p q)(p r))
                                                           ((p q)(p r))

Biconditional Identity
             p=p =||= T                 (((p) p)((p) p)) = ( )
                                        ((( ) p)(( ) p)) = ( )
                                        (              ) = ( )

Biconditional Negation
            p=~q =||= ~(p=q)         (((p)(q))(((q)) p)) = ((((p) q)((q) p)))
                                     (((p)(q))(  q   p)) =   ((p) q)((q) p)   
                               (((p      )(q      ))(                 q p))
                               (((p (q p))(q (q p)))(                 q p))
                               (((p (q  ))(q (  p)))(                 q p))
                               (((p (q  ))(q (  p)))(((p (q))(q (p))) q p))
                               (((p (q  ))(q (  p)))(((  ( ))(  ( ))) q p))
                               (((p (q  ))(q (  p)))((              ) q p))
                               (((p (q  ))(q (  p)))                      )
                                 (p (q  ))(q (  p))


