
COMPARISON TO PROLOG

William Bricken

January 1986

I consider parens notation as a sort of machine language for deduction.

Consequently any system with an interface needs to retranslate into a higher

level language for comprehensibility. Simplification of Prolog takes the

rough form of translating Prolog code into Losp, reducing, and then re-

transcribing back into Prolog. Logically redundant code gets boiled out, and

(using extract) the most global location for variables is identified.

Logical variables are treated as free, so they pass into and out of Losp

unchanged. We're working with a minimal form of Prolog; most of our

experience is with canonical forms of LISP, and with First Order Logic

specifications. In this regard, Prolog is a subset of FOL, so it doesn't get

much attention. The goal is full on programming in logic, for which Losp is

the compiler.

Example of Membership

The logical definition of member is:

member{a, S} =

(a = (first S)) or (a = (first (first S))) or ... or (a = {})

The last clause is the halting condition that yields false when S is empty.

I'll use {} instead of () for Prolog arguments, and numerals for logical

variables standardized apart:

member{1, [1|_]}.

member{2, [_|3]} :- member{2, 3}.

?- member{b, [a, b, c]}.

Transcribing the logic of Prolog (in its inference engine):

 (mem{1, [1|_]}) ((mem{2, 3}) mem{2, [_|3]}) mem{b, [a, b, c]}

The mem{2,3} term is a formal condition for Prolog matching, really needed by

the inference engine for sequencing of operations, and not necessary as part

of the representation of the problem. The terms in the parens (i.e. the

rules) have unlimited number of copies. From this point on, all processing

is by unify-and-extract, no "natural deduction" is necessary.

Unify-and-extract

mem{2, [_|3]}

2 => b

3 => [b, c]

==> (mem{1, [1|_]}) ((mem{b, [b, c])) mem{b, [a, b, c]}

==> (mem{1, [1|_]}) mem{b, [b, c] mem{b, [a, b, c]}

==> (mem{1, [1|_]}) ((mem{4,5}) mem{4, [_|5]}) mem{b, [b, c]}

Unify-and-extract

mem{1, [1|_]}

1 => b

==> () ((mem{4,5}) mem{4, [_|5]}) mem{b, [b, c]}

==> ()

I've skipped over various pointer maintenance operations that make

unification choices simpler, and keep track of results. The only necessary

transformations we do are the the Losp erasure rules, although Transposition

does provide a variety of final forms.

Actually the member function is expressable directly in Losp:

member{1, [2, 3, 4]} is

 (((1) 2 3 4) (1 (2) (3) (4)))

member{b, [a, b, c]} is

 (((b) a b c) (b (a) (b) (c)))

==> ((() a b c) (b (a) () (c)))

==> () ==> true

This example gives a flavor of how extract-and-unify works. The point is

that it is a sufficient mechanism for deduction when combined with

Transposition.

