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Abstract. Peirce's Alpha Existential Graphs (AEG) is combined with Spencer 
Brown's Laws of Form to create an algebraic diagrammatic formalism called 
boundary logic.  First, the intuitive properties of configurations of planar non-
overlapping closed curves are viewed as a pure boundary mathematics, without 
conventional interpretation.  Void representational space provides a featureless 
substrate for boundary forms.  Pattern-equations impose constraints on forms to 
define semantic interpretation.  Patterns emphasize void-equivalence, deletion of 
structure that is syntactically irrelevant and semantically inert.

Boundary logic maps one-to-many to  propositional calculus.  However, the three 
simple pattern-equations of boundary logic provide capabilities that are 
unavailable in token-based systems.  Void-substitution replaces collection and 
rearrangement of forms.  Patterns incorporate transparent boundaries  that  ignore 
the arity and scope of logical connectives.  The algebra is  isomorphic to AEG 
but eliminates difficulties with reading  and with use by substituting a purely 
diagrammatic formalism for the logical mechanisms incorporated within AEG.

1     Introduction

Barwise [1], Shin [2][3], Hammer [4],  Jamnik [5] and others have shown that Peirce's 
Alpha Existential Graphs (AEG) and other diagrammatic systems for logic are indeed 
sufficiently rigorous to be relied upon as formal reasoning systems.  Shin identifies 
the next level of criticism of Existential Graphs (EG):  "The graphs of EG are difficult 
to read off,  and the rules of EG difficult to use." [3, p.3]  Shin then provides two 
formal improvements to EG that address these weaknesses:  a new reading algorithm 
that allows a greater flexibility of interpretation, and reformulated transformation 
rules that better expose symmetries in Peirce's original system.

Spencer Brown's Laws of Form (LoF) [6] presents a version of diagrammatic logic 
that maps to Peirce's Entitative Graphs [7, 3.456-552], the dual interpretation of 
Existential Graphs.  Spencer Brown improves upon the rule sets of both Peirce and 
Shin by formulating diagrammatic logic as an algebraic rather than an implicative 
system.  LoF also introduces an arithmetic of logic based on spatial containment (cuts 
in AEG).  The single ground value is a closed planar curve.  The absence of a form, 
void, becomes the second logical value, just as The Sheet of Assertion in AEG absorbs 
the logical value TRUE into the unmarked page.



Herein, Alpha Existential Graphs is combined with Laws of Form to create an 
algebraic diagrammatic formalism called boundary logic.  The axioms of boundary 
logic are similar to those of both Peirce and Spencer Brown, however they are 
particularly formulated for ease of use.1

The notation of boundary logic (and of AEG and LoF) maps one-to-many onto that of 
Boolean algebra and conventional implicative logic.  Shin's alternative readings of 
AEG incorporate this one-to-many mapping.  Boundary logic transformations are 
achieved by valid substitutions defined by pattern-equations.  The algebraic technique 
of boundary logic continues Shin's refinement of the rules of AEG to its conclusion, 
but is derivative of Spencer Brown rather than Peirce.

A one-to-many mapping between formal systems denies isomorphism and affirms the 
smaller system to be more elegant.   This elegance shows up as improved notational 
and transformational techniques.  The one-to-many mapping provides a formal basis 
for the observation that boundary logic is both easier to read and easier to use than 
conventional logical systems.

The following presentation is informal, relying on what Shin has called the 
"intuitively homomorphic visual facts" [3, p.27] of closed curves.  A diagrammatic 
grammar, boundary operators, and an axiomatic basis of algebraic equations over 
boundary patterns are developed first.  Then boundary logic is compared to both 
propositional calculus and to Peirce's Alpha Graphs.

2     First Class Diagrammatic Formalism

In order to discover the inherent formal properties of configurations of closed 
boundaries, a pure boundary mathematics is first presented,  without anchors to 
conventional mathematical interpretation.  The approach echoes Kempe's goal:  "...to 
separate the necessary matter of exact or mathematical thought from the accidental 
clothing -- geometrical,  algebraical, logical, etc." [11, p.2]

Boundary logic is not isomorphic to propositional calculus.   Isomorphism shows 
mathematical equivalence, but it does not show the ways in which diagrams can be 
formally superior to token strings.  The pattern-equation approach of boundary logic 
incorporates types of structure that are simply not available within a string-based 
notation, providing new tools to simplify our understanding of logic.

1 Boundary logic has been extensively tested and applied  to  Computer Science problems over 
the last two decades, including theorem proving and satisfiability [8], minimization of 
software and knowledge-bases, parallel processing [9], visual  languages [10], and logic 
synthesis  of the over 200 small and large semiconductor designs included in  the ISCAS'89 
benchmarks.  See the boundary mathematics section of www.wbricken.com.



2.1   Forms

A configuration of closed curves is called a boundary form, or more simply, a form.  
The empty closed curve is called a mark.  The symbols of boundary algebra consist of 
one ground form (the empty enclosure or mark), and sufficient capital letters 
{A,B,C,...} to stand in place of arbitrary forms.  The mark is not a token, since it 
has an inside;  however, it is the only symbol in a formal language of boundary forms.  
There is no "empty form", only an empty mark that serves to ground the spatial 
grammar.   These and no other structures are forms:

 is a form. GROUND

 is a form   iff   A is an existent form. BOUNDING

       A  B is a form   iff   both A and B are existent forms. SHARING

This definition of structure embodies two operations for composing forms:  
BOUNDING and SHARING.   The operations are defined to be bidirectional, and thus can 
be used both constructively and deconstructively to add and remove boundary 
structure.  An enclosure, or boundary, can be constructed in any space, and around any 
contents.  Multiple forms can be constructed in any space,  in which case the forms 
share that space.  In the diagrammatic language above,  labeled forms are required to 
exist in order to avoid defining operations on void,  that is,  on the absence of form.

2.2   Representational Space

The space upon which forms are recorded is called the representational space.  There 
is a simple perspective that characterizes this space:

Representational space has absolutely no properties.

The representational space of strings has the accidental property of total ordering, 
requiring rearrangement and precedence rules to express abstract mathematical 
concepts.  One might say that the syntax of string notation interferes with the natural 
semantics of symmetry by being unidimensional.  In contrast, forms are a partial 
ordering that provides both equivalence (SHARING) and total ordering (BOUNDING).

Here, representational space is identified with void.  The emptiness of the underlying 
substrate does not support metric concepts such as size, shape, location and origin, 
and does not support topological concepts such as points, proximity, connectedness 
and continuity.   The accidental properties of a mark include all structure that may be 
associated with a metric.   The accidental properties of a representational space include 
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all structure that may be associated with a topology.  The mathematically abstract 
mark,  divorced from its visceral semantics, simply distinguishes an interior and 
nothing more.   As a diagrammatic form, a mark looks like what it means.

Within a featureless space, all structure is directly visible as boundary forms.  By 
construction, forms do not have an implicit structure that requires enforcement by 
transformation rules.  From a diagrammatic viewpoint, the conventional properties of 
associativity, commutativity, transitivity, and arity are superfluous, indeed misleading, 
when attributed to forms SHARING representational space.  For example, void space 
does not possess the relational property of commutativity defined for string notation 
as a rearrangement in the ordering of arguments.  More abstractly, commutativity is a 
type of operator symmetry: ordering of arguments is irrelevant, the operator applies to 
unordered rather than ordered pairs.  The freedom of two-dimensional space permits a 
direct representation of unordered pairs as two forms occupying an unstructured 
space.  SHARING is not limited to apply to only two forms at a time.  Both SHARING 
and BOUNDING are variary:  any number of forms, including none, can share a 
representational space,  and can be enclosed by a boundary.

It is important to realize that a boundary does not necessarily separate space into two 
independent portions.  The outermost space could also be seen to pervade all bounded 
forms within it, just as physical space pervades all objects within it.   Unlike the cuts 
of AEG, an underlying representational space need not be fragmented.  Intuitively, 
representational space supports every boundary, and every form inside and outside of 
each boundary.  Boundaries that separate space into exclusive portions are 
impermeable;  boundaries that permit pervasive spaces are semipermeable.2

2.3   Parens Notation

Parens notation is a convenient representation for forms.  It is essentially well-formed 
parenthesis structures with the delimiters interpreted as closed boundaries.  Parens 
notation is used solely as a shorthand for the spatial structure of boundary forms.  An 
example of a parens abbreviation and the form that it stands for follows:

The set of well-formed parentheses is a well-known mathematical structure, since 
operator precedence is conventionally expressed using parentheses.   Unfortunately, 
the conventional definition of well-formed parentheses violates the closure property 
of a boundary by addressing the "left" and the "right" delimiter independently, an 
excellent example of how string formalism can modify the semantics of spatial forms.  

2 Boundaries that are fully permeable are not boundaries, since they fail to make a distinction.

( () (()(())) ) ( () (()(())) )



Parens notation has the accidental properties of syntactically fragmented boundaries 
and of ordering forms in one dimension. Placing forms in a canonical order greatly 
improves the efficiency of parens processing,  but only adds unwanted syntactic 
complexity to the abstract idea of spatial enclosure.  Parens forms are foremost data 
structures, they bear only partial resemblance to their intended meaning.

2.4   Equality

Comparing boundary forms for equality is restricted at this point to forms that are 
structurally identical, since pattern-equations have not yet been incorporated.  
Intuitively, two forms are identical when every form within each is identical.  A 
recursive definition of equality is supported by the deconstructive direction of the 
boundary form grammar.3 

               ( ) = ( )
               (A) = (B)   iff   A=B
               A B = C D   iff   A=C  and  B=D

Equality includes the common transformations associated with equations:4

    Form Substitution:      A=B  implies  subst[W,X,A]=subst[W,X,B]

    Form Replacement:     A=B and W=X  implies  A=subst[W,X,B]

    Functional Substitution:  A=B  implies  F[A]=F[B]

Substitution and replacement furnish the entire transformational mechanism of 
boundary logic.   Pattern-equations use form replacement;  evaluation and renaming 
use form substitution.  Functional substitution permits BOUNDING and SHARING to be 
applied constructively to both sides of a valid equation.

2.5   Pattern-Equations 

Forms consisting of boundaries, with or without form variables, are patterns.  In a 
diagrammatic formalism, spatial patterns take the place of relational properties such 
as transitivity and symmetry.  Patterns that can be validly substituted for one another 
are expressed as pattern-equations.   Pattern-equations define pre- and post-conditions 
for transformations.  For instance, permission to construct and to eliminate replicate 

3 To avoid implicating a specific mechanism for testing  pairs  of subforms, variable matching in 
the decomposition of SHARING implicitly includes backtracking in case of a poor selection 
of which pairs to compare.

4 subst[X,Y,Z] reads "substitute X for every Y in Z".



bounded forms SHARING a space might be asserted as the pattern-equation   B B = B, 
where B stands for any boundary form.

2.6   Void-Equivalence

Computation over boundary forms involves the use of void in fundamental ways.

A featureless void space assures that the only relational property ascribed to forms 
SHARING space is universality.  SHARING is a universal relation that in conventional 
terms is trivially reflexive, associative, symmetric and transitive.  Abstractly, many 
relational properties reflect characteristics of the substrate representational space.  
Conventional string-based relational properties are not "implicit" or "tacit" in 
representational space,  they are simply not relevant.5

Most pattern-equations identify forms with structure that can be deleted.   Structure 
that is equal to no structure is void-equivalent.  Strictly, structures that reduce to 
nothing are imaginary.  The idea of void-equivalence emphasizes that boundary 
pattern transformations are achieved by void-substitution (that is,  by deletion or 
erasure), in contrast to transformation by rearrangement and evaluation that is 
characteristic of string-based systems.  Deletion operations confer excellent behavior 
on boundary computation;  for instance, rapid convergence is assured.   

Void-equivalent forms can be brought into syntactic existence in any representational 
space.  Like the virtual particles of the physical vacuum, void-equivalent forms 
permeate the entire representational space.  Such forms are virtual,  they can interact 
with existent forms as catalysts and then subside back into non-existence.  To Peirce, 
"Every blank part of the sheet is a partial graph." [7, 4.397].

Void-equivalence strongly impacts the conventional approach to semantics.  
Intuitively, syntactic structures that turn out to be equivalent to no structure at all 
cannot influence the value of a form.  Thus,  void-equivalent forms can be manipulated 
by pattern-equations without concern for validity.  This is the Principle of Void-
Equivalence:

Void-equivalent forms are syntactically irrelevant and semantically inert.

Each of the inference rules in AEG incorporates addition or deletion of structure.  
Other conventional forms of inference rely upon rearrangement and accumulation of 

5  "Operations  of commutation, like xy therefore yx, may be dispenced [sic] with by not 
recognizing any order of arrangement as significant.  Associate transformations, like (xy)z 
therefore x(yz), which is  a species of commutation, will be dispenced with in the same 
way..." Peirce, [7, 4.374].



structure.  Inference (and computation) via void-equivalence is a most important 
innovation in AEG, other features such as the Sheet of Assertion and multiple 
readings derive directly from this fundamental change in the mechanism of valid 
reasoning.

2.7   Laws of Form

In contrast to Peirce's implicative approach, Spencer Brown casts the diagrammatic 
logic of enclosure within an algebraic formalism.  One of Spencer Brown's most 
important contributions is the semantic use of the absence of a mark.  While Peirce 
treated non-representation tangentially, Spencer Brown made it central to the 
understanding of LoF.  He provided a modern axiomatization of diagrammatic logic, 
whereas Peirce struggled to identify components of the yet-to-be-formulated 
axiomatic method.

Another fundamental contribution of LoF is the specification of the axioms of an 
arithmetic of enclosures.  The boundary arithmetic presented in LoF consists of two 
initial equations relating replications of the one constant.   

               ( ) ( ) = ( )              CALLING
                (( ))  =                  CROSSING

The left-sides of these equations are quite natural,  they identify the two configurations 
that are possible when a replicated mark is constructed in the same representational 
space as the original mark.   The replicate can be drawn outside of the original, in 
which case the two marks are SHARING space. The replicate can be drawn on the 
inside of the original,  in which case the two marks are nested, the outer boundary is 
BOUNDING the inner mark.

Although the two configurations of replicates are structurally determined, the value of 
each configuration on the right-side is a choice, defining a particular boundary 
arithmetic.   These two particular rules partition the set of forms into two equivalence 
classes, those that reduce to mark and those that reduce to nothing at all.  

3     Interlude

Boundary algebra is defined by the set of forms, the structural operators BOUNDING 
and SHARING, the mechanisms of substitution and replacement, and specific assumed 
pattern-equations that align with the intended semantics of forms.  Pattern-equations 
can be used to express the result of operations, the presence of void-equivalent forms, 
the constraints of a particular interpretation, the rules of inference, and other desired 
theorems used to transform and manipulate forms.



The language of well-formed boundaries has a natural and visually apparent 
semantics, that of partial ordering, or containment.  Containment (as membership) is 
the fundamental relation of set theory, partial ordering is the fundamental relation of 
order and lattice theory, and since the logical conditional is an inclusion relation,  the 
concept of containment is also sufficient to express propositional calculus and 
Boolean algebra, as AEG shows.

The pure mathematics of boundary logic has been addressed thus far.   Operations can 
be applied to boundary structures without having to consider the meaning of a form.  
A specific boundary algebra consisting of a set of pattern-equations is defined next.  
Pattern-equations define valid transformations within an interpreted application of 
boundary mathematics (such as logic).   As with any mathematical system, the 
representation and mechanism of the system is independent of the particular 
application.  Thus, an interpretation of boundary algebra for logic is constrained to 
entry into the boundary formalism, via transcription from logic to forms, and to exit 
from the formalism, via interpretation of forms for logic.  Algebraic manipulation of 
forms via pattern-equations is then free of logical semantics.   This in turn facilitates 
the removal of difficulties encountered while reading and using AEG.

The relationship between boundary forms and conventional logic can be viewed from 
many perspectives, each of which requires a longer discussion.  They include:

•  from first principles, the nature of void and mark
•  from the nature of boundaries
•  from the semantics of containers and containment
•  from the arithmetic and algebra of boundaries in LoF
•  from the implicative boundaries in AEG
•  from the mapping of forms to logic connectives
•  from partial order theory
•  from properties of the BOUNDING and SHARING relations
•  from viewing BOUNDING and SHARING as properties of boundaries
•  from viewing BOUNDING as a binary relation between spaces 

Here, Peirce's lead is followed, his transformation rules are simply transcribed into 
boundary pattern-equations.  For an application to logic, pattern-equations partition 
the set of forms into one of two equivalence classes, which are interpreted as the class 
of TRUE forms and the class of FALSE forms.  The structures and transformations of 
boundary logic, however, are expressed in terms of diagrammatic concepts such as 
boundary forms, void-equivalence, and boundary semipermeability.  

4     The Map to Logic

The following map is a bridge between the diagrammatic semantics of forms and the 
linguistic semantics of logical connectives.  This map reduces propositional calculus 



and two-valued Boolean logic to a unary boundary logic with one ground value (the 
mark or the empty boundary).  The other ground value is imaginary, FALSE forms are 
cast into void and thus into non-existence.

        LOGIC               BOUNDARY          ABSTRACTION

       false                                   void
       true                   ( )              ground
       not A                  (A)              BOUNDING property
       if A then B            (A) B            BOUNDING relation
       A or B                  A  B            SHARING relation
       A and B               ((A)(B))          a compound form
       A iff B           (((A) B)((B) A))      equivalence relation

It is illustrative to transform DeMorgan's law into parens notation: 

        A ∧ B = ¬(¬A ∨ ¬B)             ((A)(B)) = ((A)(B))

Expressions that are structurally different in conventional logic may not be different in 
boundary logic.  To understand void-equivalence, the following transcription is useful:

    ((false ∨ false) → false) ∨ false          ( )

4.1   Axioms of Boundary Logic

The mechanisms of logical inference, of Boolean transformation, and of proof 
strategy reduce to three pattern-equations that can be considered to be the axioms of 
boundary logic.  The right-side of each equation identifies void-equivalent structure 
that can be deleted from the left-side.

               (A ( ))  =                 OCCLUSION
                ((A))   =  A              INVOLUTION
               A {A B}  =  A {B}          PERVASION

Capital letters refer to any form regardless of complexity, including multiple forms 
SHARING a space, and the absence of any form.  Capital letters can also refer to 
propositions, forms that, when interpreted for logic, take on one of two ground values.

The curly brace in PERVASION is a meta-boundary, standing in place of any 
intervening content,  including none.  What is outside can be deleted or inserted inside, 
independent of the depth of nesting within a form.  Conventionally,  PERVASION 
would be called an axiom schema,  a rule abstract standing in place of a set of specific 
rules that apply to specific forms.   In terms of boundary logic,  however, PERVASION 
is a single rule that expresses the semipermeability, or transparency, of boundaries 



from the outside.  Strictly, semipermeable boundaries are invisible from their 
transparent side; they do not support counting depth of nesting or taking steps 
sequentially through each level.  Thus PERVASION is yet another application of void-
equivalence:  relative to an outside form, both intervening boundaries and inner 
replicates are void-equivalent.

4.2   Alpha Graphs

Peirce considered "The Sheet of Assertion" (i.e. the blank page) to be conjunctive, so 
that any form written on it is asserted to be TRUE.  The Sheet of Assertion represents 
the universe of discourse; each form SHARING the empty page is a TRUE form.  
Should a set of assertions be NOT TRUE, then a transformed graph would result in an 
"absurd" configuration, such as an empty enclosure.  Peirce's boundaries are "cuts".  
The area enclosed by a cut is considered to be NOT on the sheet of assertion.   Peirce 
structured the page into two separate alternating types of spaces, those areas nested at 
even depths and those at odd depths.  Forms at even depths are TRUE, while those at 
odd depths are FALSE.

Peirce defined his transformation rules (permissions) to be the "Pure Mathematical 
Definition of Existential Graphs, Regardless of their Interpretation".  That is,  he 
considered the rules to be structural rather than semantic.  Peirce developed AEG for 
logic, and did not call upon the notational advantages of an algebra.  Equality does not 
play a role in Alpha Graphs, leading Peirce to state bidirectional transforms as two 
separate rules, one for each implicative direction.

Expressing the scope of Peirce's diagrammatic rules in conventional string notation, or 
in conventional binary operator interpretation, is quite difficult.  Logical interpretation 
of AEG generally generates a shallow approximation of the strength of Peirce's 
diagrammatic rules, since a logical interpretation must limit the concept of boundary 
semipermeability expressed by PERVASION to impermeable binary connectives.  
Iteration, for example, gives permission to insert a replicate of any graph into any 
level of nesting deeper than (or at the same level as) the replicated graph.   This rule 
has been transcribed by Norman [12] as 

φ → ψ  ⊨  φ → (φ ∧ ψ)

The transcription captures little of the intent of the rule of iteration.  In the OR-logic of 
Entitative Graphs, for example, all four forms in the following table are equivalent in 
value.  The final three forms are derived from the first by a single application of 
iteration.  The iterated form is highlighted.6

6 Square brackets are used to highlight specific parens boundaries.  Otherwise, they  are identical 
to  round parentheses.



         CONVENTIONAL LOGIC              ENTITATIVE GRAPH

  S1.  A→(  B∧(C→    ¬    D  ))     (A)(   (B)((C)   (    D))))

  S2.  A→(A∧B∧(C→    ¬    D  ))     (A)([A](B)((C)   (    D))))
  S3.  A→(  B∧(C→(¬A∨¬    D )))     (A)(   (B)((C)[A](    D))))

  S4.  A→(  B∧(C→    ¬(A→ D))))     (A)(   (B)((C)   ([A] D))))

S2 is easily derivable from S1; if A implies a conjunction, then A also implies that 
conjunction with A added.  In S3, ¬A jumps over two connectives to build a negation 
with a new disjunction.  In S4, A jumps over two connectives to build a new 
conditional, while shifting the negation of D to the outside of the new conditional. 

Not only is it challenging to prove the equivalence of forms derived through deeply 
nested iteration by conventional means,  it is entirely foreign to skip over connectives, 
to add new connectives deep within an expression, and to indirectly move negations 
within an expression.  The central point, though, is that iteration is a single, succinct 
rule for diagrammatic forms, and cannot be expressed as a rule using string-based 
concatenation of binary connectives.  The diagrammatic concepts of transparency and 
semipermeability are not included in the concepts of conventional mathematics.

4.3   Boundary Logic and Alpha Graphs Compared

AEG applies the diagrammatic structure of enclosure specifically to logic.  The 
representations of boundary logic and AEG are isomorphic, while the systems of 
transformation rules are remarkably close to being the same.  The primary differences 
between the two systems are:

•  AEG uses the dual interpretation of boundary logic, for which empty space 
is deemed TRUE as opposed to FALSE.   Peirce earlier developed Entitative 
Graphs [7, 3.456-552] that use emptiness as FALSE and space as disjunction, 
thus aligning with boundary logic.

•  AEG is assertion-based; forms are taken as premises.  Boundary logic is 
structure-based; forms are algebraic and do not require an interpretation as 
logic.

•  Boundary logic provides a more modern algebraic transformation system, 
uniting pairs of asymmetrical implicative rules into symmetrical equations.

•  Boundary logic assumes a homogeneous empty page, while the cuts of 
AEG are taken to severe the page into discrete portions.



•  The implicative add and erase rules of AEG fail to provide a clear 
termination goal.  Boundary logic uses a single void-equivalence rule.

•  The highly efficient algebraic axiomatization of boundary logic alleviates 
pragmatic difficulties of transforming forms in AEG.

These differences are overshadowed by the profound differences between 
conventional string-based and diagrammatic logics.  Both AEG and boundary logic 
take a diagrammatic formalism as foundational;  both assign a semantics to empty 
space;  both use PERVASION as a pattern rule rather than a functional transformation; 
and both incorporate void-equivalence into every transformation rule.

4.4   Boundary Logic and Alpha Graph Rules

The rules of AEG (AND-logic), Entitative Graphs (OR-logic), and boundary logic are 
transcribed into symbolic notation below.7

   RULE         ALPHA           ENTITATIVE        BOUNDARY

R1. Erase   ((A) B) ⊨ (( ) B)    ((A) B) ⊨ ((A)  )
                                                   (A ( )) =
R2. Insert       (A) ⊨ (A B)          A ⊨ A B

R3. Iterate    A (B) ⊨ A (A B)     A (B) ⊨ A (A B)
                                                 A {B} = A {A B}
R4. Deiterate  A (A B) ⊨ A (B)     A (A B) ⊨ A (B)

R5. Double cut     A = ((A))           A = ((A))          A = ((A))

Alignment of Rules.   Double cut,  R5, is INVOLUTION in boundary logic.  
INVOLUTION is the only rule that has a clear isomorphic interpretation as a 
conventional rule, that of double negation.  In boundary logic, this theorem is not 
fundamental, it can be derived from OCCLUSION and PERVASION alone,  given an 
antisymmetry property of boundaries that provides a bridge between equational and 
implicative forms.

Rules R1 and R2 give permission to erase and to insert forms in an Alpha Graph,  with 
the exception that an empty boundary cannot be erased.  This grounds the 
representation of AEG with two halting conditions, the empty page taken as TRUE and 
the empty boundary taken as FALSE.  Rather than inserting forms to achieve a 

7  The numbering of rules  follows Roberts [12].  For readability, the rules for AEG and for 
Entitative Graphs  do not include a notation for application at arbitrary depths.  For R1 and 
R2, the representation of deep rules  would require identification of odd and even depths of 
nesting.



reduction pattern as in R2, boundary logic begins by recording the entire problem, 
including the postulated conclusion when available.  Forms are then deleted until 
either void, a single mark, or a form contingent on variables remains.

The boundary logic rule of OCCLUSION identifies the void-equivalent pattern that 
unites R1 and R2:

               (( ) A)  =                 OCCLUSION

DOMINION is a variation of OCCLUSION that is used only once, as the final terminating 
step of a valid deduction.  It can be derived from OCCLUSION by BOUNDING each side 
(functional substitution) and applying INVOLUTION. 

                ( ) A   =  ( )            DOMINION

Insert/erase rules in AEG are anchored to the parity of depth of nesting.  In OR-logic, 
erasure (R1) is a variant of the logical rule of addition, while insertion (R2) is a 
variant of logical simplification.

                     R1: ERASE              R2: INSERT

Conventional logic:      simplification              addition
                     A ∧ B ⊨ A             A ⊨ A ∨ B

Entitative graphs:         erase odd               insert even
                  ((A)(B)) ⊨ ((A)  )        A ⊨ A B

Boundary logic:    [ ((A)(B)) ] ((A)  )       [ A ] A B
                   (A)(B)      A           [ A ] A B    involution
                   ( )(B)      A           [   ] A B    pervasion
                   ( )                     [   ]        dominion

In boundary logic, R1 and R2 are simply specific applications of PERVASION 
combined with DOMINION.  This is easily seen above by converting the implicative 
forms of R1 and R2 into boundary form and reducing using boundary logic axioms.  
Essentially, R1 and R2 combine into the single rule of DOMINION in OR-logic, and into 
the rule of OCCLUSION in Peirce's preferred AND-logic.

The separation of Alpha Graphs into two discrete domains (odd and even depths of 
nesting) is undermined by PERVASION, creating subtle inconsistencies in the 
description of AEG rules.  This leads to an inappropriate embedding of logic into the 
manipulation of Alpha Graphs.  Boundaries are seen to require alternate 
interpretations via varieties of DeMorgan laws, creating an overemphasis on counting 
the depth of nesting.  PERVASION requires no count of depth;  in fact,  the notion of 
depth of nesting is irrelevant to each boundary logic rule.



Mathematical Abstraction.  The differences between the AND-logic and OR-logic 
interpretations of boundary forms can be strictly limited to transcription from logic to 
boundaries and from boundary logic back into conventional logic.  Thus, there is no 
need to carry logical interpretation into the transformation rules themselves or their 
applications.  Once a transcription is completed, the diagrammatic rules are not 
logical rules, but rather a much stronger set of spatial pattern transformations that 
apply independently of logical interpretation.

Within boundary logic, BOUNDING is not associated with logical negation, it is simply 
adding an enclosure.  Double cut/INVOLUTION is a structural void-equivalence having 
no association with double negation,  although it does keep track of the logical parity 
of spaces structurally.  Similarly, SHARING is not associated with disjunction or with 
conjunction, it is simply a property of forms contained within the same outer 
boundary.  But independence from logical interpretation is most prevalent in 
PERVASION,  since it calls upon the semipermeability of boundaries to transcend the 
scope and arity of logical connectives by rendering them transparent.  

Entailment.  In the table of AEG and boundary logic rules above, pairs of logical 
entailments, ⊨,  are combined into a single pattern-equation.  In conventional logic, 
syntactic proof, ⊢, is a series of syntactic steps grounded by axioms that define the 
validity of each step solely in terms of material implication.  Syntactic proof is related 
to semantic entailment by the Deduction Theorem, which establishes that the two are 
equivalent.   In an algebra, proof rests on a sequence of syntactic substitution steps 
grounded by axiomatic equations that define valid substitutions,  while "entailment" 
rests on the validity of substitution and replacement themselves.  The equivalence of 
proof and validity is built into the algebraic mechanism.

In boundary logic, proof consists of a sequence of void-substitution steps grounded by 
axiomatic pattern-equations that define valid void-equivalent forms.  The Principle of 
Void-Equivalence, which asserts that algebraic manipulation of void-equivalent forms 
is independent of semantics, achieves the objectives of the Deduction Theorem, that 
of assuring that symbol manipulation does not undermine intention.   Comparative 
entailment then reduces to the mapping between proof steps and pattern substitutions:

               X = Y   iff   X ⊢ Y and Y ⊢ X

This definition bridges between logical and algebraic forms.   The parens version is:

               A = B  =def=  (([A] B)([B] A)) = ( )

with the highlighted boundaries standing in place of syntactic proof steps.  That is,

               X ⊢ Y   iff   [X] Y = ( )



Here, the steps of syntactic proof have been transcribed into an algebraic constraint 
that a sequence of void-substitutions must reduce a form to a mark, and in particular, 
that the consequent form, Y, must render the antecedent form, X, to be void-equivalent 
through PERVASION.  Logical implication is simply an assertion about two forms, 
potentially compound, separated by a simple boundary.  The boundary that represents 
syntactic proof is the same boundary used to represent syntactic form.  The multiple 
steps in a proof become multiple applications of pattern-equations. The mechanism of 
PERVASION (and the other boundary logic pattern-equations) is functionally identical 
whether representing the conventional concepts of proof, logical implication, or 
material implication.  Only the form of the contents, X,  and the context, Y, differ.

Distribution.  In contrast to Boolean algebra, DISTRIBUTION is not an axiom of 
boundary logic.   DISTRIBUTION is required to convert deeply nested forms into 
conjunctive normal form (CNF) with only two levels of nesting.   CNF, in turn, is used 
as a canonical representation underlying the proof of metatheorems of logic.

DISTRIBUTION is an axiom in LoF, however in boundary logic, DISTRIBUTION is a 
consequence of PERVASION.   This has significant impact on how to think about proof 
in diagrammatic logic.  CNF trades multiple reference to variables for a shallow 
nesting of boundaries in order to accommodate a conventional binary connective 
reading. However, boundary transformations, especially PERVASION, are most 
efficient as rules for transforming deeply nested forms, forms for which a 
conventional interpretation requires the many steps associated with descent into 
nested connectives.   An appropriate (semi)canonical representation for boundary 
logic has minimal replication of variable labels and maximal nesting of boundaries.

The boundary rule of DISTRIBUTION can be rewritten to emphasize the relationship 
between variable replication and depth of nesting:

          A ((B)(C))  =  ((A B)(A C))     DISTRIBUTION

         (A ((B)(C))) = (((A B)(A C)))         functional substitution
                      =   (A B)(A C)           involution

The left-side has three levels of nesting while the right-side has only one.  The right-
side de-emphasizes applications of PERVASION, while the left-side de-emphasizes 
replication of labels.

A Proof Example.  The self-distributive law of the conditional serves as an example 
of the deductive procedures of AEG and of boundary logic.  Two proofs follow.  The 
first AEG proof from Roberts [13, p46] illustrates how the directionality of the rules 



of AEG interferes with the maximal use of void-equivalence to achieve efficient 
transformation sequences.8  The second proof is that of boundary logic..

Implicative theorem:    (p → (q → r)) → ((p → q) → (p → r))

Alpha Graph proof (the outermost scroll is highlighted):

      [p [(q (r))]]                                antecedent A
                      [(p (q))  [(p (r))]]         consequent C
    [ (p ((q (r)))) [ ((p (q))  ((p (r)))) ]]      theorem (scroll)

1.                                                 sheet of assertion
2.  [               [                      ]]      R5
3.  [ (p ((q (r)))) [                      ]]      R2
4.  [ (p ((q (r)))) [ ( p     ((q   (r)))) ]]      R3
5.  [ (p ((q (r)))) [ ( p       q   (r)  ) ]]      R5
6.  [ (p ((q (r)))) [ ( p   (  (q)) (r)  ) ]]      R5
7.  [ (p ((q (r)))) [ ( p   (p (q)) (r)  ) ]]      R3
8.  [ (p ((q (r)))) [ ((p (q))  ((p (r)))) ]]      R5, QED.

Step 3 of the proof inserts the antecedent A at an odd depth.  Step 4 migrates A into the 
position of the consequent in the scroll.   The task is now to transform the migrated 
form A into the form of the consequent C.  A is first partially deconstructed in Step 5, 
and then rebuilt in Steps 6, 7 and 8.  Presumably Steps 5-8 require some thought and 
planning.  The plan for Steps 5-8 can most easily be developed backwards,  converting 
C into A.  It would be more natural, in fact, to reverse the entire procedure, but this is 
blocked by the (avoidable) directional Step 3.   The proof may just as well have begun 
at Step 4,  by introducing the tautological form (A (A)) onto the sheet of assertion.  
Even more straightforward would be to strip both A and C of both double cuts and 
iterated forms, both bidirectional transformations in AEG, which then leaves A and C 
the same.  A maximal deletion strategy above would proceed as follows:

    [ (p ((q (r)))) [ ((p (q))  ((p (r)))) ]]      theorem
    [ (p   q (r)  )    (p (q))    p (r)     ]      R5
    [ (    q      )    (  (q))    p (r)     ]      R4
    [ (    q      )    (     )    p (r)     ]      R4

But here, Peirce's approach would hang up, since deletion at odd depths is not 
permitted.  Peirce was focused on logical implication as a technique of thought.   The 
form (X ( )) could be generated but not deleted.  That is, proof steps are not 
reversible.  When read for logic,  this form is:  X → true,  certainly palatable as an 

8 Proofs  by Roberts [13, p46], Shin [3, p95], Hammer [4, p104], and to a lesser extent Dau [14, 
p215] contain unnecessary steps that can be attributed to the implicative approach of AEG.



assertion.   But apparently Peirce did not avail himself of the safe tautology (X (X)), 
which reads X → X, and can be freely added to or erased from the sheet of assertion.

The boundary logic proof uses the dual space of AEG that emphasizes PERVASION 
and directly implements the maximal deletion strategy suggested above:

        ( (p) (q) r ) ((p) q) (p) r        transcribe theorem
        (     (q)   ) (    q) (p) r        pervasion  (R4)
        (           ) (    q) (p) r        pervasion  (R4)
        (           )                      dominion, interpret as TRUE

5     Conclusion

Alpha Graphs have been widely perceived to be too clumsy and inefficient for general 
use.  The sources of clumsiness are:

• implicative rather than algebraic style
• implicative insert/erase rules rather than void-equivalent deletion
• entanglement of logic in purely diagrammatic pattern reduction

However, the dominant computational clumsiness has little to do with Peirce's 
formulation.  There has been a general failure to understand the power of deiteration/
PERVASION as a mechanism to disentangle the structure of logical problems.  This 
failure can be traced back to a predisposition to construct diagrammatic systems as 
representations for specific conventional mathematical systems, rather than to 
establish a pure diagrammatic mathematics based on the intuitive structure of 
boundaries themselves.

Boundary logic eliminates the sources of clumsiness in AEG by using mathematical 
abstraction to remove logical inference from diagrammatic pattern substitution.  A 
cost is to introduce the unfamiliar formal diagrammatic concepts of boundary forms, 
void-equivalence, and semipermeable boundaries.  Each of these concepts is available 
within both AEG and LoF.  Both systems use boundary forms.  It takes Spencer 
Brown's algebraic approach to bring out the power of void-substitution.  LoF 
however, treats crossing each boundary by PERVASION as a separate step.  It takes 
AEG's sweeping use of deep iteration and deiteration to bring out the power of 
semipermeable boundaries.  But AEG fails to take the final step in the use of 
PERVASION,  that of permitting OCCLUSION to terminate a deduction.  Alternating 
logical depths in the AEG boundary form coupled with unidirectional implication 
prevent this.  Therein is the contribution of boundary logic: to combine an algebraic 
formalism with deep PERVASION of diagrammatic boundary forms.



More fundamentally, diagrammatic mathematics can stand alone, without an 
interpretation as a conventional mathematical system.  Indeed, the properties of 
BOUNDING and SHARING assure that boundary mathematics does not mesh well with 
conventional techniques.  But it is not uncommon to find an unexpected formal 
technique that introduces new types of imaginaries in order to enhance understanding 
of a conventional system.  For example,  angular orientation in physical space is 
described by Euler angles (1752) in a natural, vector-oriented way.  Hamilton's 
quaternions (1843) introduce new types of imaginary units within an independent 
algebra.  Quaternions can be interpreted as orientation in physical space [15].  Peirce 
took the first step with the diagrammatic logic of AEG.  Spencer Brown incorporated 
void-equivalence into an algebra that stands independent of logic.  Boundary 
mathematics is built upon this new type of imaginary:  void-equivalent form in a 
featureless space.  It provides computation via void-substitution that eliminates 
imaginary diagrammatic structure.  And it can be interpreted as logic.  Courant and 
Hilbert (1953) provided a natural spatial understanding of quaternions.  The challenge 
issued by boundary logic is to find a natural understanding of logic based on the idea 
that one-half of each logical dual is non-existent.
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